Crystallographic Symmetry Operations
Total Page:16
File Type:pdf, Size:1020Kb
CRYSTALLOGRAPHIC SYMMETRY OPERATIONS Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain miércoles, 9 de octubre de 13 Bilbao Crystallographic Server http://www.cryst.ehu.es C´esar Capillas, UPV/EHU 1 SYMMETRY OPERATIONS AND THEIR MATRIX-COLUMN PRESENTATION miércoles, 9 de octubre de 13 Mappings and symmetry operations Definition: A mapping of a set A into a set B is a relation such that for each element a ∈ A there is a unique element b ∈ B which is assigned to a. The element b is called the image of a. ! ! The relation of the point X to the points X 1 and X 2 is not a mapping because the image point is not uniquely defined (there are two image points). The five regions of the set A (the triangle) are mapped onto the five separated regions of the set B. No point of A is mapped onto more than one image point. Region 2 is mapped on a line, the points of the line are the images of more than one point of A. Such a mapping is called a projection. miércoles, 9 de octubre de 13 Mappings and symmetry operations Definition: A mapping of a set A into a set B is a relation such that for each element a ∈ A there is a unique element b ∈ B which is assigned to a. The element b is called the image of a. An isometry leaves all distances and angles invariant. An ‘isometry of the first kind’, preserving the counter–clockwise sequence of the edges ‘short–middle–long’ of the triangle is displayed in the upper mapping. An ‘isometry of the second kind’, changing the counter–clockwise sequence of the edges of the triangle to a clockwise one is seen in the lower mapping. A parallel shift of the triangle is called a translation. Translations are special isometries. They play a distinguished role in crystallography. miércoles, 9 de octubre de 13 Description of isometries coordinate system: {O, a, b, c} isometry: ~ X X (x,y,z) (x,y,z)~ ~ ~ ~ x = F1(x,y,z) miércoles, 9 de octubre de 13 Matrix-column presentation of isometries linear/matrix translation part column part matrix-column Seitz symbol pair miércoles, 9 de octubre de 13 Short-hand notation for the description of isometries (W,w) ~ isometry: X X notation rules: -left-hand side: omitted -coefficients 0, +1, -1 -different rows in one line examples: -1 1/2 -x+1/2, y, -z+1/2 1 0 { x+1/2, y, z+1/2 -1 1/2 miércoles, 9 de octubre de 13 EXERCISES Problem 2.19 Construct the matrix-column pair (W,w) of the following coordinate triplets: (1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2 miércoles, 9 de octubre de 13 Combination of isometries (U,u) ~ X X (V,v) (W,w) ~ X miércoles, 9 de octubre de 13 Inverse isometries (W,w) X ~ X ~ X (C,c)=(W,w)-1 I = 3x3 identity matrix (C,c)(W,w) = (I,o) o = zero translation column (C,c)(W,w) = (CW, Cw+c) CW=I Cw+c=o C=W-1 c=-Cw=-W-1w miércoles, 9 de octubre de 13 Matrix formalism: 4x4 matrices augmented matrices: point X −→ point X˜ : miércoles, 9 de octubre de 13 4x4 matrices: general formulae point X −→ point X˜ : combination and inverse of isometries: miércoles, 9 de octubre de 13 EXERCISES Problem 2.19 (cont.) Construct the (4x4) matrix-presentation of the following coordinate triplets: (1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2 miércoles, 9 de octubre de 13 Crystallographic symmetry operations Symmetry operations of an object The isometries which map the object onto itself are called symmetry operations of this object. The symmetry of the object is the set of all its symmetry operations. Crystallographic symmetry operations If the object is a crystal pattern, representing a real crystal, its symmetry operations are called crystallographic symmetry operations. The equilateral triangle allows six symmetry operations: rotations by 120 and 240 around its centre, reflections through the three thick lines intersecting the centre, and the identity operation. miércoles, 9 de octubre de 13 Crystallographic symmetry operations characteristics: fixed points of isometries (W,w)Xf=Xf geometric elements Types of isometries preserve handedness identity: the whole space fixed translation t: no fixed point x˜ = x + t ◦ rotation: one line fixed φ = k × 360 /N rotation axis screw rotation: no fixed point screw axis screw vector miércoles, 9 de octubre de 13 Crystallographic symmetry operations miércoles, 9 de octubre de 13 Crystallographic symmetry operations Screw rotation n-fold rotation followed by a fractional p translation n t parallel to the rotation axis Its application n times results in a translation parallel to the rotation axis miércoles, 9 de octubre de 13 do not Types of isometries preserve handedness centre of roto-inversion fixed roto-inversion: roto-inversion axis inversion: centre of inversion fixed reflection: plane fixed reflection/mirror plane glide reflection: no fixed point glide plane glide vector miércoles, 9 de octubre de 13 Symmetry operations in 3D Rotoinvertions miércoles, 9 de octubre de 13 Symmetry operations in 3D Rotoinvertions miércoles, 9 de octubre de 13 Symmetry operations in 3D Rotoinvertions miércoles, 9 de octubre de 13 Crystallographic symmetry operations Glide plane reflection followed by a fractional translation 1 2 t parallel to the plane Its application 2 times results in a translation parallel to the plane miércoles, 9 de octubre de 13 Matrix-column presentation of some symmetry operations Rotation or roto-inversion around the origin: W11 W12 W13 0 0 0 W21 W22 W23 0 0 = 0 ( W31 W32 W33 0 ) 0 0 Translation: 1 w1 x x+w1 1 w2 y = y+w2 ( 1 w3) z z+w3 Inversion through the origin: -1 0 x -x -1 0 y = -y ( -1 0 ) z -z miércoles, 9 de octubre de 13 Geometric meaning of (W , w) W information (a) type of isometry order: Wn=I rotation angle miércoles, 9 de octubre de 13 EXERCISES Problem 2.19 (cont.) Determine the type and order of isometries that are represented by the following matrix-column pairs: (1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2 (a) type of isometry miércoles, 9 de octubre de 13 Geometric meaning of (W , w) W information Texto(b) axis or normal direction : (b1) rotations: = (b2) roto-inversions: reflections: miércoles, 9 de octubre de 13 EXERCISES Problem 2.19 (cont) Determine the rotation or rotoinversion axes (or normals in case of reflections) of the following symmetry operations (2) -x,y+1/2,-z+1/2 (4) x,-y+1/2, z+1/2 rotations: Y(W) = Wk-1 + Wk-2 + ... + W + I reflections: Y(-W) = - W + I miércoles, 9 de octubre de 13 Geometric meaning of (W , w) W information (c) sense of rotation: for rotations or rotoinversions with k>2 det(Z): x non-parallel to miércoles, 9 de octubre de 13 Fixed points of isometries solution: (W,w)Xf=Xf point, line, plane or space no solution Examples: What are the -1 0 0 0 x x fixed solution: 0 1 0 0 y = y 1/2 z points of this 0 0 -1 ) z ( isometry? -1 0 0 0 x x NO solution: 0 1 0 1/2 y = y ( 0 0 -1 1/2) z z miércoles, 9 de octubre de 13 Geometric meaning of (W,w) (W,w)n=(I,t) (W,w)n=(Wn,(Wn-1+...+ W+I)w) =(I,t) (A) intrinsic translation part : glide or screw component t/k (A1) screw rotations: = (A2) glide reflections: w miércoles, 9 de octubre de 13 Glide or Screw component (intrinsic translation part) (W,w)k= (W,w). (W,w). ... .(W,w)=(I,t) (W,w)k=(Wk,(Wk-1+...+ W+I)w) =(I,t) screw rotations : t/k=1/k (Wk-1+...+ W+I)w glide reflections: w miércoles, 9 de octubre de 13 EXERCISES Problem 2.20 (cont.) Determine the intrinsic translation parts (if relevant) of the following symmetry operations (1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2 screw rotations: t/k=1/k (Wk-1+...+ W+I)w glide reflections: w miércoles, 9 de octubre de 13 Fixed points of (W,w) Location (fixed points x F ): (B1) t/k = 0: (B2) t/k ≠ 0: miércoles, 9 de octubre de 13 EXERCISES Problem 2.19 (cont.) Determine the fixed points of the following symmetry operations: (1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2 fixed points: miércoles, 9 de octubre de 13 Space group P21/c (No. 14) EXAMPLE Matrix-column presentation Geometric interpretation miércoles, 9 de octubre de 13 www.cryst.ehu.es miércoles, 9 de octubre de 13 Crystallographic databases Group-subgroup relations Structural utilities Representations of point and space groups Solid-state applications miércoles, 9 de octubre de 13 Crystallographic Databases International Tables for Crystallography miércoles, 9 de octubre de 13 EXERCISES Problem 2.19 Construct the matrix-column pairs (W,w) of the following coordinate triplets: (1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2 Characterize geometrically these matrix-column pairs taking into account that they refer to a monoclinic basis with unique axis b, Use the program SYMMETRY OPERATIONS for the geometric interpretation of the matrix-column pairs of the symmetry operations.