Glide and Screw

Total Page:16

File Type:pdf, Size:1020Kb

Glide and Screw Space Groups •The 32 crystallographic point groups, whose operation have at least one point unchanged, are sufficient for the description of finite, macroscopic objects. •However since ideal crystals extend indefinitely in all directions, we must also include translations (the Bravais lattices) in our description of symmetry. Space groups: formed when combining a point symmetry group with a set of lattice translation vectors (the Bravais lattices), i.e. self-consistent set of symmetry operations acting on a Bravais lattice. (Space group lattice types and translations have no meaning in point group symmetry.) Space group numbers for all the crystal structures we have discussed this semester, and then some, are listed in DeGraef and Rohrer books and pdf. document on structures and AFLOW website, e.g. ZnS (zincblende) belongs to SG # 216: F43m) Class21/1 Screw Axes •The combination of point group symmetries and translations also leads to two additional operators known as glide and screw. •The screw operation is a combination of a rotation and a translation parallel to the rotation axis. •As for simple rotations, only diad, triad, tetrad and hexad axes, that are consistent with Bravais lattice translation vectors can be used for a screw operator. •In addition, the translation on each rotation must be a rational fraction of the entire translation. •There is no combination of rotations or translations that can transform the pattern produced by 31 to the pattern of 32 , and 41 to the pattern of 43, etc. •Thus, the screw operation results in handedness Class21/2 or chirality (can’t superimpose image on another, e.g., mirror image) to the pattern. Screw Axes (continued) The 11 possible screw axes: alternate plane projection: oblique projection: plane projection: A A A’ A’ A’ A When going from a space group to the parent point group, all the screw subscripts are eliminated and thus are converted back into the n-fold rotation, e.g. 65 6 ? ? Class21/3 Screw Axes (continued) Class21/4 Glide Planes •Glide is the combination of a mirror (reflection) and a translation. Recall: •Glide must be compatible with the translations of the Bravais lattice, thus the translation components of glide operators must be rational fractions of lattice vectors. •In practice, the translation components of a glide operation are always ½ or ¼ of the magnitude of translation vectors. •If the translation is parallel to a lattice vector, it is called axial glide (glide planes with translations a/2, b/2 or c/2 are designated with symbols a, b or c, respectively). •Another type of glide is diagonal glide (n) and has translation components of a/2+b/2, b/2+c/2 or a/2+c/2. Last type is diamond glide (d) w/ translation components of a/4+b/4, b/4+c/4 or a/4+c/4. two b-glide operations: two n-glide operations: a, b A A and [010] [110] d: d or in [100] 2-D: A’ (or c) (displacement vector) (b or c-axis is ┴ to g) Glide plane (a or c-axis is ┴ to g) can’t be ┴ to = net glide direction (a or b-axis is ┴ to g) (c-axis is ┴ to g) (a-axis is ┴ to g) (b-axis is ┴ to g) *Diamond glides (d-glide) can only occur in F and I-centered lattices, e.g. diamond cubic crystal (C, Si, Ge) structure is Fd3m (see next slide Class21/5 Diamond Glide Planes in Diamond Cubic d = 1/4b + 1/4c d = 1/4a + 1/4c [101] d = 1/4a + 1/4b [011] [011] [101] [110] [110] Class21/6 Conversion of Space Group (SG) to Point Group (PG) Symbolism •Eliminate translation from symbol. •Example: Space group #62: Pnma (Mg,Fe)2SiO4 belongs to point group mmm: •P=primitive lattice type does not apply to PG symmetry. •n(net glide plane perpendicular to x or a-axis)=m because the reflection of a net glide plane has no meaning in PG symmetry. •m(mirror plane perpendicular to y or b-axis)=m •a(axial glide plane perpendicular to z or c-axis)=m because the reflection of an axial glide plane has no meaning in PG symmetry. •Example: Space group #167: R3c (Al2O3) belongs to point group 3m: •R=rhombohedral lattice type does not apply to PG symmetry. •3(3-fold roto-inversion axis)=3(3-fold roto-inversion axis). •c(axial glide plane parallel to 3)=m because the reflection of an axial glide plane has no meaning in PG symmetry. You should be able to look at any one of the The 13 unique monoclinic 230 3-D Space groups space groups that are and identify its 3-D derived from the 3 Point group and monoclinic point groups 3-D Bravais lattice and the 2 monoclinic Bravais lattices: Class21/7 Space Group Pnma Class21/8 The 230 3-D Space Groups categorized according to crystal system from Rohrer Also good website: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm Class21/9 Alternative Notation for Crystal Structures Also listed in DeGraef Structure appendix .pdf The 230 space groups categorized according to crystal system with examples: Class21/10 http://www.aflowlib.org/CrystalDatabase/space_groups.html Example from International Tables for Crystallography (a) a. Identify all the symmetry elements in (a) and describe which operation they include. 1. Diads-indicate a two-fold rotation about the axis 2. Screw tetrads (42)-indicate a rotational axis of a tetrad plus a translation of T=½ where T is the lattice translation fraction parallel to the axis. 3. Axial glide plane( )-indicates that the translation glide vector is (b) ½ lattice spacing along line parallel to the projection plane 4. Axial glide plane( )-indicates that the translation glide vector is ½ lattice spacing along line normal to the projection plane. 5. Diagonal glide plane( )-indicates a translation of ½ of a face diagonal. b. In separate plots, apply each symmetry element to a general point (equipoint) and show which of the points in (b) are generated: Class21/11 More Examples from International Tables for Crystallography •No. 122 has Chalcopyrite (E11) Structure (CuFeS2, AgAlTe2, AlCuSe2, CdGeP2,etc. •No. 60 has no examples of real crystals at all! Class21/12 http://www.aflowlib.org/CrystalDatabase/space_groups.html.
Recommended publications
  • Group Theory Applied to Crystallography
    International Union of Crystallography Commission on Mathematical and Theoretical Crystallography Summer School on Mathematical and Theoretical Crystallography 27 April - 2 May 2008, Gargnano, Italy Group theory applied to crystallography Bernd Souvignier Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen The Netherlands 29 April 2008 2 CONTENTS Contents 1 Introduction 3 2 Elements of space groups 5 2.1 Linearmappings .................................. 5 2.2 Affinemappings................................... 8 2.3 AffinegroupandEuclideangroup . .... 9 2.4 Matrixnotation .................................. 12 3 Analysis of space groups 14 3.1 Lattices ....................................... 14 3.2 Pointgroups..................................... 17 3.3 Transformationtoalatticebasis . ....... 19 3.4 Systemsofnonprimitivetranslations . ......... 22 4 Construction of space groups 25 4.1 Shiftoforigin................................... 25 4.2 Determining systems of nonprimitivetranslations . ............. 27 4.3 Normalizeraction................................ .. 31 5 Space group classification 35 5.1 Spacegrouptypes................................. 35 5.2 Arithmeticclasses............................... ... 36 5.3 Bravaisflocks.................................... 37 5.4 Geometricclasses................................ .. 39 5.5 Latticesystems .................................. 41 5.6 Crystalsystems .................................. 41 5.7 Crystalfamilies ................................. .. 42 6 Site-symmetry
    [Show full text]
  • The Cubic Groups
    The Cubic Groups Baccalaureate Thesis in Electrical Engineering Author: Supervisor: Sana Zunic Dr. Wolfgang Herfort 0627758 Vienna University of Technology May 13, 2010 Contents 1 Concepts from Algebra 4 1.1 Groups . 4 1.2 Subgroups . 4 1.3 Actions . 5 2 Concepts from Crystallography 6 2.1 Space Groups and their Classification . 6 2.2 Motions in R3 ............................. 8 2.3 Cubic Lattices . 9 2.4 Space Groups with a Cubic Lattice . 10 3 The Octahedral Symmetry Groups 11 3.1 The Elements of O and Oh ..................... 11 3.2 A Presentation of Oh ......................... 14 3.3 The Subgroups of Oh ......................... 14 2 Abstract After introducing basics from (mathematical) crystallography we turn to the description of the octahedral symmetry groups { the symmetry group(s) of a cube. Preface The intention of this account is to provide a description of the octahedral sym- metry groups { symmetry group(s) of the cube. We first give the basic idea (without proofs) of mathematical crystallography, namely that the 219 space groups correspond to the 7 crystal systems. After this we come to describing cubic lattices { such ones that are built from \cubic cells". Finally, among the cubic lattices, we discuss briefly the ones on which O and Oh act. After this we provide lists of the elements and the subgroups of Oh. A presentation of Oh in terms of generators and relations { using the Dynkin diagram B3 is also given. It is our hope that this account is accessible to both { the mathematician and the engineer. The picture on the title page reflects Ha¨uy'sidea of crystal structure [4].
    [Show full text]
  • COXETER GROUPS (Unfinished and Comments Are Welcome)
    COXETER GROUPS (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] October 10, 2018 1 2 Contents Preface 4 1 Regular Polytopes 7 1.1 ConvexSets............................ 7 1.2 Examples of Regular Polytopes . 12 1.3 Classification of Regular Polytopes . 16 2 Finite Reflection Groups 21 2.1 NormalizedRootSystems . 21 2.2 The Dihedral Normalized Root System . 24 2.3 TheBasisofSimpleRoots. 25 2.4 The Classification of Elliptic Coxeter Diagrams . 27 2.5 TheCoxeterElement. 35 2.6 A Dihedral Subgroup of W ................... 39 2.7 IntegralRootSystems . 42 2.8 The Poincar´eDodecahedral Space . 46 3 Invariant Theory for Reflection Groups 53 3.1 Polynomial Invariant Theory . 53 3.2 TheChevalleyTheorem . 56 3.3 Exponential Invariant Theory . 60 4 Coxeter Groups 65 4.1 Generators and Relations . 65 4.2 TheTitsTheorem ........................ 69 4.3 The Dual Geometric Representation . 74 4.4 The Classification of Some Coxeter Diagrams . 77 4.5 AffineReflectionGroups. 86 4.6 Crystallography. .. .. .. .. .. .. .. 92 5 Hyperbolic Reflection Groups 97 5.1 HyperbolicSpace......................... 97 5.2 Hyperbolic Coxeter Groups . 100 5.3 Examples of Hyperbolic Coxeter Diagrams . 108 5.4 Hyperbolic reflection groups . 114 5.5 Lorentzian Lattices . 116 3 6 The Leech Lattice 125 6.1 ModularForms ..........................125 6.2 ATheoremofVenkov . 129 6.3 The Classification of Niemeier Lattices . 132 6.4 The Existence of the Leech Lattice . 133 6.5 ATheoremofConway . 135 6.6 TheCoveringRadiusofΛ . 137 6.7 Uniqueness of the Leech Lattice . 140 4 Preface Finite reflection groups are a central subject in mathematics with a long and rich history. The group of symmetries of a regular m-gon in the plane, that is the convex hull in the complex plane of the mth roots of unity, is the dihedral group of order 2m, which is the simplest example of a reflection Dm group.
    [Show full text]
  • 1 NANO 704-Crystallography & Structure of Nanomaterials 3
    1 NANO 704-Crystallography & Structure of Nanomaterials 3. Space Groups Space lattices Lattice points are all equivalent by translational symmetry. We start with a primitive lattice, having points at rabcuvw uvw, where uvw,, ¢ . So lattice points exist at (0,0,0) and all equivalent positions. If we have a lattice point at xyz,, , then we also have a lattice point at xuyvzw,, . Suppose two lattice points exist at xyz111,, and xyz222,, . If xyz,, is a lattice point, then xyz,, x212121 x , y y , z z is also a lattice point. But this does not imply that for all xyz,, representing lattice points, the values of xyz,, are integers. In particular, it is often useful to represent some of them by half integers. A primitive cell has lattice points at 0,0,0 . Centered cells have additional lattice points. 11 An A-centered cell also has points at 0,22 , . (Center of the A face.) 11 A B-centered cell also has points at 22,0, . (Center of the B face.) 11 A C-centered cell also has points at 22,,0. (Center of the C face.) 11 11 11 An F (face)-centered cell also has points at 0,22 , , 22,0, , 22,,0. (Centers of all three faces.) 111 An I (body)-centered cell also has points at 222,, . (Center point of the unit cell.) Observations I. Suppose a cell is both A- and B-centered. The lattice points exist at 11 11 P1 : 0,0,0 , P2 : 0,22 , , and P3 : 22,0, and equivalent positions. P1 and P2 form a lattice row.
    [Show full text]
  • Crystallographic Symmetry Operations
    CRYSTALLOGRAPHIC SYMMETRY OPERATIONS Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain miércoles, 9 de octubre de 13 Bilbao Crystallographic Server http://www.cryst.ehu.es C´esar Capillas, UPV/EHU 1 SYMMETRY OPERATIONS AND THEIR MATRIX-COLUMN PRESENTATION miércoles, 9 de octubre de 13 Mappings and symmetry operations Definition: A mapping of a set A into a set B is a relation such that for each element a ∈ A there is a unique element b ∈ B which is assigned to a. The element b is called the image of a. ! ! The relation of the point X to the points X 1 and X 2 is not a mapping because the image point is not uniquely defined (there are two image points). The five regions of the set A (the triangle) are mapped onto the five separated regions of the set B. No point of A is mapped onto more than one image point. Region 2 is mapped on a line, the points of the line are the images of more than one point of A. Such a mapping is called a projection. miércoles, 9 de octubre de 13 Mappings and symmetry operations Definition: A mapping of a set A into a set B is a relation such that for each element a ∈ A there is a unique element b ∈ B which is assigned to a. The element b is called the image of a. An isometry leaves all distances and angles invariant. An ‘isometry of the first kind’, preserving the counter–clockwise sequence of the edges ‘short–middle–long’ of the triangle is displayed in the upper mapping.
    [Show full text]
  • Symmetry in Reciprocal Space
    Symmetry in Reciprocal Space The diffraction pattern is always centrosymmetric (at least in good approximation). Friedel’s law: Ihkl = I-h-k-l. Fourfold symmetry in the diffraction pattern corresponds to a fourfold axis in the space group (4, 4, 41, 42 or 43), threefold to a threefold, etc. If you take away the translational part of the space group symmetry and add an inversion center, you end up with the Laue group. The Laue group describes the symmetry of the diffraction pattern. The Laue symmetry can be lower than the metric symmetry of the unit cell, but never higher. That means: A monoclinic crystal with β = 90° is still monoclinic. The diffraction pattern from such a crystal will have monoclinic symmetry, even though the metric symmetry of the unit cell looks orthorhombic. There are 11 Laue groups: -1, 2/m, mmm, 4/m, 4/mmm, -3, -3/m, 6/m, 6/mmm, m3, m3m Laue Symmetry Crystal System Laue Group Point Group Triclinic -1 1, -1 Monoclinic 2/m 2, m, 2/m Orthorhombic mmm 222, mm2, mmm 4/m 4, -4, 4/m Tetragonal 4/mmm 422, 4mm, -42m, 4/mmm -3 3, -3 Trigonal/ Rhombohedral -3/m 32, 3m, -3m 6/m 6, -6, 6/m Hexagonal 6/mmm 622, 6mm, -6m2, 6/mmm m3 23, m3 Cubic m3m 432, -43m, m3m Space Group Determination The first step in the determination of a crystal structure is the determination of the unit cell from the diffraction pattern. Second step: Space group determination. From the symmetry of the diffraction pattern, we can determine the Laue group, which narrows down the choice quite considerably.
    [Show full text]
  • Group Theory 1 – Basic Principles
    Topological and Symmetry-Broken Phases in Physics and Chemistry – International Theoretical Basics and Phenomena Ranging from Crystals and Molecules Summer School to Majorana Fermions, Neutrinos and Cosmic Phase Transitions 2017 Group Theory 1 – Basic Principles Group Theory 2 & 3 – Group Theory in Crystallography TUTORIAL: Apply Crystallographic Group Theory to a Phase Transition Group Theory 4 – Applications in Crystallography and Solid State Chemistry Prof. Dr. Holger Kohlmann Inorganic Chemistry – Functional Materials University Leipzig, Germany [email protected] ©Holger Kohlmann, Leipzig University 1 Topological and Symmetry-Broken Phases in Physics and Chemistry – International Theoretical Basics and Phenomena Ranging from Crystals and Molecules Summer School to Majorana Fermions, Neutrinos and Cosmic Phase Transitions 2017 Group Theory 1 – Basic principles 1.1 Basic notions, group axioms and examples of groups 1.2 Classification of the group elements and subgroups Group Theory 2 & 3 – Group theory in crystallography 2 From point groups to space groups – a brief introduction to crystallography 3.1 Crystallographic group-subgroup relationships 3.2 Examples of phase transitions in chemistry TUTORIAL: Apply crystallographic group theory to a phase transition Group Theory 4 – Applications in crystallography and solid state chemistry 4.1 The relation between crystal structures and family trees 4.2 Complex cases of phase transitions and topotactic reactions ©Holger Kohlmann, Leipzig University 2 Topological and Symmetry-Broken Phases in Physics and Chemistry – International Theoretical Basics and Phenomena Ranging from Crystals and Molecules Summer School to Majorana Fermions, Neutrinos and Cosmic Phase Transitions 2017 Ressources • T. Hahn, H. Wondratschek, Symmetry of Crystals, Heron Press, Sofia, Bulgaria, 1994 • International Tables for Crystallography, Vol.
    [Show full text]
  • Crystallography: Symmetry Groups and Group Representations B
    EPJ Web of Conferences 22, 00006 (2012) DOI: 10.1051/epjconf/20122200006 C Owned by the authors, published by EDP Sciences, 2012 Crystallography: Symmetry groups and group representations B. Grenier1 and R. Ballou2 1SPSMS, UMR-E 9001, CEA-INAC / UJF-Grenoble, MDN, 38054 Grenoble, France 2Institut Néel, CNRS / UJF, 25 rue des Martyrs, BP. 166, 38042 Grenoble Cedex 9, France Abstract. This lecture is aimed at giving a sufficient background on crystallography, as a reminder to ease the reading of the forthcoming chapters. It more precisely recalls the crystallographic restrictions on the space isometries, enumerates the point groups and the crystal lattices consistent with these, examines the structure of the space group, which gathers all the spatial invariances of a crystal, and describes a few dual notions. It next attempts to familiarize us with the representation analysis of physical states and excitations of crystals. 1. INTRODUCTION Crystallography covers a wide spectrum of investigations: i- it aspires to get an insight into crystallization phenomena and develops methods of crystal growths, which generally pertains to the physics of non linear irreversible processes; ii- it geometrically describes the natural shapes and the internal structures of the crystals, which is carried out most conveniently by borrowing mathematical tools from group theory; iii- it investigates the crystallized matter at the atomic scale by means of diffraction techniques using X-rays, electrons or neutrons, which are interpreted in the dual context of the reciprocal space and transposition therein of the crystal symmetries; iv- it analyzes the imperfections of the crystals, often directly visualized in scanning electron, tunneling or force microscopies, which in some instances find a meaning by handling unfamiliar concepts from homotopy theory; v- it aims at providing means for discerning the influences of the crystal structure on the physical properties of the materials, which requires to make use of mathematical methods from representation theory.
    [Show full text]
  • Structure and Symmetry of Cus, (Pyrite Structure)
    American Mineralogist, Volume 64, pages 1265-1271, 1979 Structure and symmetryof CuS, (pyrite structure) Husnnt E. KING, JR.' eNo Cnenres T. PREWITT Departmentof Earth and SpaceSciences State Universityof New York StonyBrook, New York 11794 Abstract X-ray diffraction data collectedon a single-crystalspecimen of CuS2show that despiteits optical anisotropyCuS, apparentlyhas the cubic pyrite structure,with a: 5.7891(6)A.pre- cessionand Weissenbergphotographs fail to reveal any reflections which violate the require- ments for space group Pa3. Such reflections, however, Wereobserved in four-circle di-ffrac- tometer measurements,but they are shown to result from multiple di-ffraction,effects. Reflement of the structurein spacegroup Pa3 using 209 intensity data givesa weightedre- sidual of 0.014and x(S) : 0.39878(5).A comparisonof the refined structurewith other pyrite structuressuggests that copper in CuSz has a formal valenceof 2+ and three antibonding electrons.Also, the CuSeoctahedron is only slightly distorted,which is in contrastwith the square-planarcoordination usually found for Cu2*. Introduction spect to the X-ray diffraction studies on FeS'. Fin- Disulfides of the transition elementsMn through klea et al. (1976) found no deviations from cubic Zn crystalllz,ein the pyrite structure. The Mn, Fe, symmetry,but Bayliss (1977)concluded that at least Co, and Ni membersof this group occur as minerals, sone pyrite crystalsare triclinic. Becauseoptical ani- and their structures have been refined. CuS, and sotropy has always been observedfor CuS, we de- ZnS.' are not found in nature, but they have been cided to investigate its crystal structure to provide synthesizedat high temperaturesand pressures.This further information on this intriguing problem.
    [Show full text]
  • 2.3 Band Structure and Lattice Symmetries: Example of Diamond
    2.2.9 Product of representaitons Besides the sums of representations, one can also define their products. Consider two groups G and H and their direct product G × H. If we have two representations D1 and D2 of G and H respectively, we may define their product as D(g · h) = D1(g) ⊗ D2(h) ; (1) where ⊗ is the tensor product of matrices: (A ⊗ B)ij;kl = AikBjl. The dimension of such a representation equals the product of the dimensions of D1 and D2, and its character is given by the product of the two characters. Note that if both D1 and D2 are irreducible, then their product is also irreducible (as a representation of G × H). In other words, if a group is a direct product of two groups, then its table of irreducible representations can be obtained as the product of the tables of irreducible representations of its factors. One can also encounter a situation, where the two groups G and H are equal, and their product is also viewed as a representation of the same group: D(g) = D1(g) ⊗ D2(g) : (2) In this case, the product of two irreducible representations is not generally irreducible. For example, the product of two spin-1/2 representations of the rotation group is decomposed into a singlet and a triplet (which can be symbolically written as 2⊗2 = 1⊕3, if we mean by 1, 2, and 3 irreducible representations of SU(2) with the corresponding dimensions). 2.3 Band structure and lattice symmetries: example of diamond We now apply the general formalism developed in the last lecture to the example of the crystal structure of diamond.
    [Show full text]
  • Part 1: Supplementary Material Lectures 1-4
    Crystal Structure and Dynamics Paolo G. Radaelli, Michaelmas Term 2013 Part 1: Supplementary Material Lectures 1-4 Web Site: http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option Contents 1 Frieze patterns and frieze groups 2 2 Symbols for frieze groups 3 2.1 A few new concepts from frieze groups . .4 2.2 Frieze groups in the ITC . .6 3 Wallpaper groups 8 3.1 A few new concepts for Wallpaper Groups . .8 3.2 Lattices and the “translation set” . .8 3.3 Bravais lattices in 2D . .9 3.3.1 Oblique system . .9 3.3.2 Rectangular system . .9 3.3.3 Square system . 10 3.3.4 Hexagonal system . 10 3.4 Primitive, asymmetric and conventional Unit cells in 2D . 10 3.5 The 17 wallpaper groups . 10 3.6 Analyzing wallpaper and other 2D art using wallpaper groups . 10 1 4 Point groups in 3D 12 4.1 The new generalized (proper & improper) rotations in 3D . 13 4.2 The 3D point groups with a 2D projection . 13 4.3 The other 3D point groups: the 5 cubic groups . 15 5 The 14 Bravais lattices in 3D 17 6 Notation for 3D point groups 19 6.0.1 Notation for ”projective” 3D point groups . 19 7 Glide planes in 3D 21 8 “Real” crystal structures 21 8.1 Cohesive forces in crystals — atomic radii . 21 8.2 Close-packed structures . 22 8.3 Packing spheres of different radii . 23 8.4 Framework structures . 24 8.5 Layered structures . 25 8.6 Molecular structures .
    [Show full text]
  • Symmetry in 2D
    Symmetry in 2D 4/24/2013 L. Viciu| AC II | Symmetry in 2D 1 Outlook • Symmetry: definitions, unit cell choice • Symmetry operations in 2D • Symmetry combinations • Plane Point groups • Plane (space) groups • Finding the plane group: examples 4/24/2013 L. Viciu| AC II | Symmetry in 2D 2 Symmetry Symmetry is the preservation of form and configuration across a point, a line, or a plane. The techniques that are used to "take a shape and match it exactly to another” are called transformations Inorganic crystals usually have the shape which reflects their internal symmetry 4/24/2013 L. Viciu| AC II | Symmetry in 2D 3 Lattice = an array of points repeating periodically in space (2D or 3D). Motif/Basis = the repeating unit of a pattern (ex. an atom, a group of atoms, a molecule etc.) Unit cell = The smallest repetitive volume of the crystal, which when stacked together with replication reproduces the whole crystal 4/24/2013 L. Viciu| AC II | Symmetry in 2D 4 Unit cell convention By convention the unit cell is chosen so that it is as small as possible while reflecting the full symmetry of the lattice (b) to (e) correct unit cell: choice of origin is arbitrary but the cells should be identical; (f) incorrect unit cell: not permissible to isolate unit cells from each other (1 and 2 are not identical)4/24/2013 L. Viciu| AC II | Symmetry in 2D 5 A. West: Solid state chemistry and its applications Some Definitions • Symmetry element: An imaginary geometric entity (line, point, plane) about which a symmetry operation takes place • Symmetry Operation: a permutation of atoms such that an object (molecule or crystal) is transformed into a state indistinguishable from the starting state • Invariant point: point that maps onto itself • Asymmetric unit: The minimum unit from which the structure can be generated by symmetry operations 4/24/2013 L.
    [Show full text]