The Cubic Groups

Total Page:16

File Type:pdf, Size:1020Kb

The Cubic Groups The Cubic Groups Baccalaureate Thesis in Electrical Engineering Author: Supervisor: Sana Zunic Dr. Wolfgang Herfort 0627758 Vienna University of Technology May 13, 2010 Contents 1 Concepts from Algebra 4 1.1 Groups . 4 1.2 Subgroups . 4 1.3 Actions . 5 2 Concepts from Crystallography 6 2.1 Space Groups and their Classification . 6 2.2 Motions in R3 ............................. 8 2.3 Cubic Lattices . 9 2.4 Space Groups with a Cubic Lattice . 10 3 The Octahedral Symmetry Groups 11 3.1 The Elements of O and Oh ..................... 11 3.2 A Presentation of Oh ......................... 14 3.3 The Subgroups of Oh ......................... 14 2 Abstract After introducing basics from (mathematical) crystallography we turn to the description of the octahedral symmetry groups { the symmetry group(s) of a cube. Preface The intention of this account is to provide a description of the octahedral sym- metry groups { symmetry group(s) of the cube. We first give the basic idea (without proofs) of mathematical crystallography, namely that the 219 space groups correspond to the 7 crystal systems. After this we come to describing cubic lattices { such ones that are built from \cubic cells". Finally, among the cubic lattices, we discuss briefly the ones on which O and Oh act. After this we provide lists of the elements and the subgroups of Oh. A presentation of Oh in terms of generators and relations { using the Dynkin diagram B3 is also given. It is our hope that this account is accessible to both { the mathematician and the engineer. The picture on the title page reflects Ha¨uy'sidea of crystal structure [4]. 3 1 Concepts from Algebra 1.1 Groups Definition 1.1 A group G is an ordered pair (G; ·) where G is a set and `·' a binary operation on G satisfying the following axioms: Closure: 8a; b 2 G : a · b 2 G. Associativity: 8a; b; c 2 G :(a · b) · c = a · (b · c). Identity element: 9e 2 G 8a 2 G : a · e = e · a = a. Inverse element: 8a 2 G 9b 2 G : a · b = b · a = e. Example 1.2 Every vector space V is an abelian group with vector addition the group operation. In particular, (Rn; +), is an additive group. Example 1.3 Given a vector space V , the general linear group GL(V ) is the group of invertible linear transformations T : V ! V with composition the group operation. 1.2 Subgroups Definition 1.4 A subset H of a group G, where (H; ·) also forms a group is a subgroup of G. We denote it with H ≤ G. Example 1.5 Given a basis B of a finite dimensional real vector space V , P B L := hBiZ := f b2B z(b)b j z 2 Z g is a discrete subgroup of the additive group of V , called a lattice with basis B. Example 1.6 The orthogonal group O(V ) is defined as the set of all elements T in GL(V ) for which hT xjT yi = hxjyi is valid for any x; y 2 V . O(V ) is a compact subgroup of GL(V ). A subgroup G of O(V ) satisfies a crystallographic condition if gL ⊆ L holds 8g 2 G where L is a lattice in V . Proposition 1.7 Every subgroup G of O(V ) satisfying the crystallographic con- dition is finite. Proof: We can assume that G is a closed subgroup of O(V ) and hence is compact. The condition gL = L for g 2 G implies the existence of a matrix U(g) with integral coefficients and gB = BU(g) where B is a basis of the lattice L. Then U(g) = B−1gB holds for all g 2 G. Therefore the compact subgroup B−1GB can intersect the discrete set of all matrices with integral entries in a finite set only. Hence G is finite. Proposition 1.8 If R is a rotation in R3 that leaves a 3-dimensional lattice invariant then the angle of rotation is a multiple of either 60◦ or 90◦. 4 Proof: Similarly as in the proof of the preceding proposition we can find a regular 3 × 3-matrix B so that B−1RB is a matrix with integral entries. Now, comparing traces and observing that traceR = 2 cos φ + 1 where φ is the angle of rotation of R, we infer that 2 cos φ 2 Z. This is only possible if φ is a multiple ◦ ◦ of either 60 or 90 . Definition 1.9 When G is a group and there are subgroups H and N with N/G, G = NH and N \ H = 1 then we say that G is the semidirect product of H with N. As common, we denote the semidirect product by G = N×H. Example 1.10 For a nonsingular n × n matrix A and an element b in a fi- nite dimensional real vector space V define TA;b(x) := Ax + b. The set of all such transformations forms the affine group A(V ). There is a presentation by matrices of the form A b 0 1 Then the matrix presentation corresponding to composition TA;b ◦ TA0;b0 is ob- tained by multiplying the matrix presentations of TA;b and TA0;b0 . The trans- lations x 7! x + b constitute a normal subgroup T of G and we can present G = T ×GL(V ) as a semidirect product. Likewise the group of isometries is the semidirect product T ×O(V ) of the group of all translations x 7! x + b for b 2 V and the group of rotations. 1.3 Actions Definition 1.11 An action of a group G on a set X is a function µ : G×X ! X so that for all g; h 2 G and all x 2 X 1) µ(g; µ(h; x)) = µ(gh; x); 2) and µ(1G; x) = x. It will be convenient to write gx instead µ(g; x). A mor- phism of actions φ :(G; X) ! (H; Y ) consists of a homomorphism α : G ! H and a map β : X ! Y so that β(gx) = α(g)β(x). Example 1.12 With X := V and G := A(V ) the pair (A(V );V ) is an action. Example 1.13 The group of isometries Iso(V ) is the subgroup of all TA;b in the affine group A(V ) with hAx + bjAy + bi = hxjyi. Again, with X := V we find that (Iso(V );V ) is an action. Proposition 1.14 Let φ : V ! V be continuous and preserve length, i.e, for all x; y 2 V we have jφ(x) − φ(y)j = jx − yj. Then φ is a rigid motion. Conversely, every isometry is length preserving. Proof: Clearly, every isometry is length preserving since jOx+b−(Oy+b)j2 = jO(x − y)j2 = (x − y)T OT O(x − y) = jx − yj2. Suppose now that φ is length preserving. Then we can assume φ(0) = 0 by replacing φ by the map x 7! φ(x) − φ(0). In fact, jφ(x) − φ(0)j = jx − 0j = jxj 5 1 2 2 2 and so jφ(x)j = jxj. Since hxjyi = 2 (jx + yj − jxj − jyj ) we can deduce from this hφ(x)jφ(y)i = hxjyi to hold for all x; y 2 V . For z 2 V we have: hφ(x + y) − φ(x) − φ(y)jφ(z)i = hφ(x + y)jφ(z)i − hφ(x)jφ(z)i − hφ(y)jφ(z)i = hx + yjzi − hxjzi − hyjzi = 0: Since φ is surjective and since z 2 V can be chosen arbitrarily we conclude that φ(x + y) = φ(x) + φ(y). Then φ(mx) = mφ(x) follows by induction for all x 2 V and m 2 N. Then φ((−m)x) = φ(m(−x)) = mφ(−x) = −mφ(x) follows. 1 1 1 Replacing x by k y one can deduce φ( k y) = k φ(y). So φ(rx) = rφ(x) holds for every rational r and, by the continuity of φ it also holds for all r 2 R. Thus φ is linear and hence φ 2 O(V ). 2 Concepts from Crystallography 2.1 Space Groups and their Classification The classification of crystal symmetries amounts to classifying so-called space groups { groups of isometries of V that leave invariant a lattice in V . Definition 2.1 A discrete subgroup G of Iso(V ) is a space group provided that V=G is compact. Notation 2.2 For a space group G there is a maximal subgroup of translations x 7! x + l for l 2 L contained in it. They constitute a normal subgroup G \ TL of G. The factor group K := G=G \ TL is the point group of G. Example 2.3 Let G be generated by the symmetries of 2-dimensional space equipped with a pattern of the form ::: ∆r∆r :::. Then G \ TL would consist of all translations moving multiples of a unit ∆r. On the other hand the rotation by 180◦ around the midpoint of a unit gives rise to a subgroup of order 2 inside G. Here G can be understood as a semidirect product of its translation group and its point group. Let G be generated by a glide reflexion on 2-dimensional space with a pattern like ::: ΓLΓL ::: . Then G \ TL would consist of all translations a multiple of units ΓL. Obviously G=G \ TL is isomorphic to a group with 2 elements. Here the point group cannot be realized as a subgroup of G. Proposition 2.4 There is an induced action of the point group K on L.
Recommended publications
  • In Order for the Figure to Map Onto Itself, the Line of Reflection Must Go Through the Center Point
    3-5 Symmetry State whether the figure appears to have line symmetry. Write yes or no. If so, copy the figure, draw all lines of symmetry, and state their number. 1. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The figure has reflectional symmetry. In order for the figure to map onto itself, the line of reflection must go through the center point. Two lines of reflection go through the sides of the figure. Two lines of reflection go through the vertices of the figure. Thus, there are four possible lines that go through the center and are lines of reflections. Therefore, the figure has four lines of symmetry. eSolutionsANSWER: Manual - Powered by Cognero Page 1 yes; 4 2. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure does not have reflectional symmetry. There is no way to fold or reflect it onto itself. ANSWER: no 3. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure has reflectional symmetry. The figure has a vertical line of symmetry. It does not have a horizontal line of symmetry. The figure does not have a line of symmetry through the vertices. Thus, the figure has only one line of symmetry. ANSWER: yes; 1 State whether the figure has rotational symmetry. Write yes or no. If so, copy the figure, locate the center of symmetry, and state the order and magnitude of symmetry.
    [Show full text]
  • Symmetry of Fulleroids Stanislav Jendrol’, František Kardoš
    Symmetry of Fulleroids Stanislav Jendrol’, František Kardoš To cite this version: Stanislav Jendrol’, František Kardoš. Symmetry of Fulleroids. Klaus D. Sattler. Handbook of Nanophysics: Clusters and Fullerenes, CRC Press, pp.28-1 - 28-13, 2010, 9781420075557. hal- 00966781 HAL Id: hal-00966781 https://hal.archives-ouvertes.fr/hal-00966781 Submitted on 27 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Symmetry of Fulleroids Stanislav Jendrol’ and Frantiˇsek Kardoˇs Institute of Mathematics, Faculty of Science, P. J. Saf´arikˇ University, Koˇsice Jesenn´a5, 041 54 Koˇsice, Slovakia +421 908 175 621; +421 904 321 185 [email protected]; [email protected] Contents 1 Symmetry of Fulleroids 2 1.1 Convexpolyhedraandplanargraphs . .... 3 1.2 Polyhedral symmetries and graph automorphisms . ........ 4 1.3 Pointsymmetrygroups. 5 1.4 Localrestrictions ............................... .. 10 1.5 Symmetryoffullerenes . .. 11 1.6 Icosahedralfulleroids . .... 12 1.7 Subgroups of Ih ................................. 15 1.8 Fulleroids with multi-pentagonal faces . ......... 16 1.9 Fulleroids with octahedral, prismatic, or pyramidal symmetry ........ 19 1.10 (5, 7)-fulleroids .................................. 20 1 Chapter 1 Symmetry of Fulleroids One of the important features of the structure of molecules is the presence of symmetry elements.
    [Show full text]
  • Glide and Screw
    Space Groups •The 32 crystallographic point groups, whose operation have at least one point unchanged, are sufficient for the description of finite, macroscopic objects. •However since ideal crystals extend indefinitely in all directions, we must also include translations (the Bravais lattices) in our description of symmetry. Space groups: formed when combining a point symmetry group with a set of lattice translation vectors (the Bravais lattices), i.e. self-consistent set of symmetry operations acting on a Bravais lattice. (Space group lattice types and translations have no meaning in point group symmetry.) Space group numbers for all the crystal structures we have discussed this semester, and then some, are listed in DeGraef and Rohrer books and pdf. document on structures and AFLOW website, e.g. ZnS (zincblende) belongs to SG # 216: F43m) Class21/1 Screw Axes •The combination of point group symmetries and translations also leads to two additional operators known as glide and screw. •The screw operation is a combination of a rotation and a translation parallel to the rotation axis. •As for simple rotations, only diad, triad, tetrad and hexad axes, that are consistent with Bravais lattice translation vectors can be used for a screw operator. •In addition, the translation on each rotation must be a rational fraction of the entire translation. •There is no combination of rotations or translations that can transform the pattern produced by 31 to the pattern of 32 , and 41 to the pattern of 43, etc. •Thus, the screw operation results in handedness Class21/2 or chirality (can’t superimpose image on another, e.g., mirror image) to the pattern.
    [Show full text]
  • Origin of Icosahedral Symmetry in Viruses
    Origin of icosahedral symmetry in viruses Roya Zandi†‡, David Reguera†, Robijn F. Bruinsma§, William M. Gelbart†, and Joseph Rudnick§ Departments of †Chemistry and Biochemistry and §Physics and Astronomy, University of California, Los Angeles, CA 90095-1569 Communicated by Howard Reiss, University of California, Los Angeles, CA, August 11, 2004 (received for review February 2, 2004) With few exceptions, the shells (capsids) of sphere-like viruses (11). This problem is in turn related to one posed much earlier have the symmetry of an icosahedron and are composed of coat by Thomson (12), involving the optimal distribution of N proteins (subunits) assembled in special motifs, the T-number mutually repelling points on the surface of a sphere, and to the structures. Although the synthesis of artificial protein cages is a subsequently posed ‘‘covering’’ problem, where one deter- rapidly developing area of materials science, the design criteria for mines the arrangement of N overlapping disks of minimum self-assembled shells that can reproduce the remarkable properties diameter that allow complete coverage of the sphere surface of viral capsids are only beginning to be understood. We present (13). In a similar spirit, a self-assembly phase diagram has been here a minimal model for equilibrium capsid structure, introducing formulated for adhering hard disks (14). These models, which an explicit interaction between protein multimers (capsomers). all deal with identical capsomers, regularly produced capsid Using Monte Carlo simulation we show that the model reproduces symmetries lower than icosahedral. On the other hand, theo- the main structures of viruses in vivo (T-number icosahedra) and retical studies of viral assembly that assume icosahedral sym- important nonicosahedral structures (with octahedral and cubic metry are able to reproduce the CK motifs (15), and, most symmetry) observed in vitro.
    [Show full text]
  • Group Theory Applied to Crystallography
    International Union of Crystallography Commission on Mathematical and Theoretical Crystallography Summer School on Mathematical and Theoretical Crystallography 27 April - 2 May 2008, Gargnano, Italy Group theory applied to crystallography Bernd Souvignier Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen The Netherlands 29 April 2008 2 CONTENTS Contents 1 Introduction 3 2 Elements of space groups 5 2.1 Linearmappings .................................. 5 2.2 Affinemappings................................... 8 2.3 AffinegroupandEuclideangroup . .... 9 2.4 Matrixnotation .................................. 12 3 Analysis of space groups 14 3.1 Lattices ....................................... 14 3.2 Pointgroups..................................... 17 3.3 Transformationtoalatticebasis . ....... 19 3.4 Systemsofnonprimitivetranslations . ......... 22 4 Construction of space groups 25 4.1 Shiftoforigin................................... 25 4.2 Determining systems of nonprimitivetranslations . ............. 27 4.3 Normalizeraction................................ .. 31 5 Space group classification 35 5.1 Spacegrouptypes................................. 35 5.2 Arithmeticclasses............................... ... 36 5.3 Bravaisflocks.................................... 37 5.4 Geometricclasses................................ .. 39 5.5 Latticesystems .................................. 41 5.6 Crystalsystems .................................. 41 5.7 Crystalfamilies ................................. .. 42 6 Site-symmetry
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of F Orbitals
    molecules Article Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of f Orbitals R. Bruce King Department of Chemistry, University of Georgia, Athens, GA 30602, USA; [email protected] Academic Editor: Vito Lippolis Received: 4 June 2020; Accepted: 29 June 2020; Published: 8 July 2020 Abstract: The combination of atomic orbitals to form hybrid orbitals of special symmetries can be related to the individual orbital polynomials. Using this approach, 8-orbital cubic hybridization can be shown to be sp3d3f requiring an f orbital, and 12-orbital hexagonal prismatic hybridization can be shown to be sp3d5f2g requiring a g orbital. The twists to convert a cube to a square antiprism and a hexagonal prism to a hexagonal antiprism eliminate the need for the highest nodality orbitals in the resulting hybrids. A trigonal twist of an Oh octahedron into a D3h trigonal prism can involve a gradual change of the pair of d orbitals in the corresponding sp3d2 hybrids. A similar trigonal twist of an Oh cuboctahedron into a D3h anticuboctahedron can likewise involve a gradual change in the three f orbitals in the corresponding sp3d5f3 hybrids. Keywords: coordination polyhedra; hybridization; atomic orbitals; f-block elements 1. Introduction In a series of papers in the 1990s, the author focused on the most favorable coordination polyhedra for sp3dn hybrids, such as those found in transition metal complexes. Such studies included an investigation of distortions from ideal symmetries in relatively symmetrical systems with molecular orbital degeneracies [1] In the ensuing quarter century, interest in actinide chemistry has generated an increasing interest in the involvement of f orbitals in coordination chemistry [2–7].
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • COXETER GROUPS (Unfinished and Comments Are Welcome)
    COXETER GROUPS (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] October 10, 2018 1 2 Contents Preface 4 1 Regular Polytopes 7 1.1 ConvexSets............................ 7 1.2 Examples of Regular Polytopes . 12 1.3 Classification of Regular Polytopes . 16 2 Finite Reflection Groups 21 2.1 NormalizedRootSystems . 21 2.2 The Dihedral Normalized Root System . 24 2.3 TheBasisofSimpleRoots. 25 2.4 The Classification of Elliptic Coxeter Diagrams . 27 2.5 TheCoxeterElement. 35 2.6 A Dihedral Subgroup of W ................... 39 2.7 IntegralRootSystems . 42 2.8 The Poincar´eDodecahedral Space . 46 3 Invariant Theory for Reflection Groups 53 3.1 Polynomial Invariant Theory . 53 3.2 TheChevalleyTheorem . 56 3.3 Exponential Invariant Theory . 60 4 Coxeter Groups 65 4.1 Generators and Relations . 65 4.2 TheTitsTheorem ........................ 69 4.3 The Dual Geometric Representation . 74 4.4 The Classification of Some Coxeter Diagrams . 77 4.5 AffineReflectionGroups. 86 4.6 Crystallography. .. .. .. .. .. .. .. 92 5 Hyperbolic Reflection Groups 97 5.1 HyperbolicSpace......................... 97 5.2 Hyperbolic Coxeter Groups . 100 5.3 Examples of Hyperbolic Coxeter Diagrams . 108 5.4 Hyperbolic reflection groups . 114 5.5 Lorentzian Lattices . 116 3 6 The Leech Lattice 125 6.1 ModularForms ..........................125 6.2 ATheoremofVenkov . 129 6.3 The Classification of Niemeier Lattices . 132 6.4 The Existence of the Leech Lattice . 133 6.5 ATheoremofConway . 135 6.6 TheCoveringRadiusofΛ . 137 6.7 Uniqueness of the Leech Lattice . 140 4 Preface Finite reflection groups are a central subject in mathematics with a long and rich history. The group of symmetries of a regular m-gon in the plane, that is the convex hull in the complex plane of the mth roots of unity, is the dihedral group of order 2m, which is the simplest example of a reflection Dm group.
    [Show full text]
  • Can Every Face of a Polyhedron Have Many Sides ?
    Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1.
    [Show full text]
  • On Polyhedra with Transitivity Properties
    Discrete Comput Geom 1:195-199 (1986) iSCrete & Computathm~ ~) 1986 Springer-V©rlagometrvNew York Inc. IF On Polyhedra with Transitivity Properties J. M. Wills Mathematics Institute, University of Siegen, Hoelderlinstrasse 3, D-5900 Siegen, FRG Abstract. In a remarkable paper [4] Griinbaum and Shephard stated that there is no polyhedron of genus g > 0, such that its symmetry group acts transitively on its faces. If this condition is slightly weakened, one obtains" some interesting polyhedra with face-transitivity (resp. vertex-transitivity). In recent years several attempts have been/made to find polyhedral analogues for the Platonic solids in the Euclidean 3-space E 3 (cf. [1, 4, 5, 7-14]). By a polyhedron P we mean the union of a finite number of plane polygons in E 3 which form a 2-manifold without boundary and without self-intersections, where, as usual, a plane polygon is a plane set bounded by finitely many line segments. If the plane polygons are disjoint except for their edges, they are called the faces of P. We require adjacent faces to be non-coplanar. The vertices and edges of P are the vertices and edges of the faces of P. The genus of the underlying 2-manifold is the genus of P. A flag of P is a triplet consisting of one vertex, one edge incident with this vertex, and one face containing this edge. If, for given p- 3, q >- 3 all faces of P are p-gons and all vertices q-valent, we say that P is equivelar, i.e., has equal flags (cf.
    [Show full text]
  • Pose Estimation for Objects with Rotational Symmetry
    Pose Estimation for Objects with Rotational Symmetry Enric Corona, Kaustav Kundu, Sanja Fidler Abstract— Pose estimation is a widely explored problem, enabling many robotic tasks such as grasping and manipulation. In this paper, we tackle the problem of pose estimation for objects that exhibit rotational symmetry, which are common in man-made and industrial environments. In particular, our aim is to infer poses for objects not seen at training time, but for which their 3D CAD models are available at test time. Previous X 2 X 1 X 2 X 1 work has tackled this problem by learning to compare captured Y ∼ 2 Y ∼ 2 Y ∼ 2 Y ∼ 2 views of real objects with the rendered views of their 3D CAD Z ∼ 6 Z ∼ 1 Z ∼ Z ∼ 1 ∼ ∼ ∼ ∞ ∼ models, by embedding them in a joint latent space using neural Fig. 1. Many industrial objects such as various tools exhibit rotational networks. We show that sidestepping the issue of symmetry symmetries. In our work, we address pose estimation for such objects. in this scenario during training leads to poor performance at test time. We propose a model that reasons about rotational symmetry during training by having access to only a small set of that this is not a trivial task, as the rendered views may look symmetry-labeled objects, whereby exploiting a large collection very different from objects in real images, both because of of unlabeled CAD models. We demonstrate that our approach different background, lighting, and possible occlusion that significantly outperforms a naively trained neural network on arise in real scenes.
    [Show full text]