Symmetry in 2D

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry in 2D Symmetry in 2D 4/24/2013 L. Viciu| AC II | Symmetry in 2D 1 Outlook • Symmetry: definitions, unit cell choice • Symmetry operations in 2D • Symmetry combinations • Plane Point groups • Plane (space) groups • Finding the plane group: examples 4/24/2013 L. Viciu| AC II | Symmetry in 2D 2 Symmetry Symmetry is the preservation of form and configuration across a point, a line, or a plane. The techniques that are used to "take a shape and match it exactly to another” are called transformations Inorganic crystals usually have the shape which reflects their internal symmetry 4/24/2013 L. Viciu| AC II | Symmetry in 2D 3 Lattice = an array of points repeating periodically in space (2D or 3D). Motif/Basis = the repeating unit of a pattern (ex. an atom, a group of atoms, a molecule etc.) Unit cell = The smallest repetitive volume of the crystal, which when stacked together with replication reproduces the whole crystal 4/24/2013 L. Viciu| AC II | Symmetry in 2D 4 Unit cell convention By convention the unit cell is chosen so that it is as small as possible while reflecting the full symmetry of the lattice (b) to (e) correct unit cell: choice of origin is arbitrary but the cells should be identical; (f) incorrect unit cell: not permissible to isolate unit cells from each other (1 and 2 are not identical)4/24/2013 L. Viciu| AC II | Symmetry in 2D 5 A. West: Solid state chemistry and its applications Some Definitions • Symmetry element: An imaginary geometric entity (line, point, plane) about which a symmetry operation takes place • Symmetry Operation: a permutation of atoms such that an object (molecule or crystal) is transformed into a state indistinguishable from the starting state • Invariant point: point that maps onto itself • Asymmetric unit: The minimum unit from which the structure can be generated by symmetry operations 4/24/2013 L. Viciu| AC II | Symmetry in 2D 6 From molecular point group to space groups Complete consideration of all symmetry elements and translation yields to the space groups benzene graphene graphite D6h or 6/mmm p6mm P63/mmc Point group Plane group = point Space group = point group symmetry + group symmetry + in plane translation in 3D translation 4/24/2013 L. Viciu| AC II | Symmetry in 2D 7 • Symmetry operations in 2D*: 1. translation 2. rotations 3. reflections 4. glide reflections • Symmetry operations in 3D: the same as in 2D + inversion center, rotoinversions and screw axes * Besides identity 4/24/2013 L. Viciu| AC II | Symmetry in 2D 8 1. Translation (“move”) Translation moves all the points in the asymmetric unit the same distance in the same direction. There are no invariant points (points that map onto themselves) under a translation. Translation has no effect on the chirality of figures in the plane. 4/24/2013 L. Viciu| AC II | Symmetry in 2D 9 2. Rotations A rotation turns all the points in the asymmetric unit around one axis, the center of rotation. The center of rotation is the only invariant point. A rotation does not change the chirality of figures. 4/24/2013 L. Viciu| AC II | Symmetry in 2D 10 Symbols for symmetry axes Drawn symbol One fold rotation axis --- (monad) two fold rotation axis (diad) Axes perpendicular to the plane Axes parallel to the plane three fold rotation axis (triad) four fold rotation axis (Tetrad) six fold rotation axis (Hexad) CRYSTALS MOLECULES 4/24/2013 L. Viciu| AC II | Symmetry in 2D 11 3. Reflections A reflection flips all points in the asymmetric unit over a line called mirror. The points along the mirror line are all invariant points A reflection changes the chirality of any figures in the asymmetric unit • Symbol: m • Representation: a solid line 4/24/2013 L. Viciu| AC II | Symmetry in 2D 12 4. Glide Reflections Glide reflection reflects the asymmetric unit across a mirror and then translates it parallel to the mirror There are no invariant points under a glide reflection. A glide plane changes the chirality of figures in the asymmetric unit. • Symbol: g • Representation: a dashed line 4/24/2013 L. Viciu| AC II | Symmetry in 2D 13 Point group symmetry • Point group = the collection of symmetry elements of an isolated shape • Point group symmetry does not consider translation! • The symmetry operations must leave every point in the lattice identical therefore the lattice symmetry is also described as the lattice point symmetry • Plane symmetry group or plane crystallographic group is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetries in the pattern 4/24/2013 L. Viciu| AC II | Symmetry in 2D 14 Examples of plane symmetry in architecture 4/24/2013 L. Viciu| AC II | Symmetry in 2D 15 Crystallographic plane point groups = 10 1. 1 (one fold axis) 6. m (mirror line) 2. 2 (two fold axis) 7. 2 mm (two mirror lines and a 2-fold axis)* 3. 3 (three fold axis) 3 m (one 3-fold axis and 8. three mirror lines) 4. 4 (four fold axis) 9. 4 mm (4-fold axis and four mirror lines)* 6 mm (6-fold axis 10. and 6 mirror lines)* 5. 6 (six fold axis) 4/24/2013 L. Viciu| AC II | Symmetry in 2D 16 * Second “m” in the symbol refers to the second type of mirror line Non-periodic 2D patterns • 5-fold , 7-fold, etc. axes are not compatible with translation non-periodic two dimensional patterns Ex: Starfish Wikipedia.org 5m (five fold axis + mirror) A Penrose tiling Group of atoms or viruses can form “quasicrystals” (quasicristals = ordered structural forms that are non-periodic) Electron diffraction of a Al-Mn quasicrystal showing 5-fold symmetry by Dan Shechtman 4/24/2013 L. Viciu| AC II | Symmetry in 2D 17 http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2011/press.html 4/24/2013 L. Viciu| AC II | Symmetry in 2D 18 Combining symmetry operations Ten different plane point groups : 1, 2, 3, 4, 6, m, 2 mm, 3 m, 4 mm, 6 mm Five different cell lattice types: 1. oblique(parallelogram) (a ≠ b, ≠ 90°) 2. Rectangular (a b, 90ᵒ) 3. Square (a = b, 90ᵒ) 4. Centered rectangular or diamond (a b, 90ᵒ) 5. Rhombic or hexagonal (a = b, 120ᵒ) When point group symmetries are combined with the possible lattice cells 17 plane groups. 4/24/2013 L. Viciu| AC II | Symmetry in 2D 19 1. Combining rotation with translation 1. The rotations will always be to the plane (the space in 2D) 2. An -fold rotation followed by translation to it gives another rotation of the same angle (same order), in the same sense 3. The new rotation will be located at a distance x = T/2 x cotg /2 along perpendicular bisector of T (T=cell edge translation) Ex: 2-fold rotation followed by translation (=180) 1 The second rotation will be on T in the middle at B B T 180 A x Steps: 2 3 1. 2-fold rotation through A moves the motif from 1 to 2 2. translation by T moves the motif from 2 to 3 is the motif Or 1. 2-fold rotation through B moves the motif from 1 to 3 4/24/2013 L. Viciu| AC II | Symmetry in 2D 20 2-fold axis combined with translation 1 8 4 1 4 T2 T1 T1 T1+T2 Pair of motifs: 6 7 T2 2 9 3 2 3 •2-fold rotation at 1 combined with translation T 1 gives the rotation 6 (rotation 6 is translated to 7 by T2) •2-fold rotation at 1 combined with translation T 2 gives the rotation 8 (rotation 8 is translated to 9 by T1) •2-fold rotation at 1 combined with translation T 1+T2 gives the rotation in the middle The blue, red, green and yellow marked are independent 2-fold axes: they relate different objects pair-wise in the pattern no any pair of the blue and one of the red, green or yellow 2-fold axis describe the same4/24/2013 pair -wise relationship L. Viciu| AC II | Symmetry in 2D 21 6-fold axis combined with translation 6-fold axis contains 2/6, 2/3, 2/2 rotations All the operations of a 3-fold axis combined with translation and of a 2-fold axis combined with translation will be included for a p6 plane group 4/24/2013 L. Viciu| AC II | Symmetry in 2D 22 Combination of the rotation axes with a plane lattice = translation Two fold axis Three fold axis Four non-equivalent 2-fold axes to the plane Three non-equivalent 3-fold axes to the plane (0 0; ½ ½ , ½ 0, 0 ½ ) 2 1 1 2 00, /3 /3, /3 /3) Four fold axis Six fold axis Two non-equivalent 4-fold axes to the plane; One non-equivalent 6-fold axes to the plane; One non-equivalent 2-fold axis to the plane; One non-equivalent 3-fold axis to the plane; 2 1 1 2 (00, ½ ½) and ( ½ 0, 0 ½ ) (0 0) ; ( /3 /3 , /3 /3) and ( ½ 0) 4/24/2013 L. Viciu| AC II | Symmetry in 2D Martin Buerger: An introduction to fundamental geometric features of crystals 23 2. Combining a reflection with translation A reflection combined with a translation to it is another reflection at ½ of that perpendicular translation 1. A rectangular cell 11 2 Translation3 1 2 2 1 3 * 2 *the mirror 2 is situated at ½ distance of the translation - Pair of motifs The mirror 2 is independent from 1 because the position of the objects (1 and 2) relative to the mirror in the center (2)of the cell is distinct from the position of the same objects relative to the first mirror (1) 4/24/2013 L.
Recommended publications
  • Glide and Screw
    Space Groups •The 32 crystallographic point groups, whose operation have at least one point unchanged, are sufficient for the description of finite, macroscopic objects. •However since ideal crystals extend indefinitely in all directions, we must also include translations (the Bravais lattices) in our description of symmetry. Space groups: formed when combining a point symmetry group with a set of lattice translation vectors (the Bravais lattices), i.e. self-consistent set of symmetry operations acting on a Bravais lattice. (Space group lattice types and translations have no meaning in point group symmetry.) Space group numbers for all the crystal structures we have discussed this semester, and then some, are listed in DeGraef and Rohrer books and pdf. document on structures and AFLOW website, e.g. ZnS (zincblende) belongs to SG # 216: F43m) Class21/1 Screw Axes •The combination of point group symmetries and translations also leads to two additional operators known as glide and screw. •The screw operation is a combination of a rotation and a translation parallel to the rotation axis. •As for simple rotations, only diad, triad, tetrad and hexad axes, that are consistent with Bravais lattice translation vectors can be used for a screw operator. •In addition, the translation on each rotation must be a rational fraction of the entire translation. •There is no combination of rotations or translations that can transform the pattern produced by 31 to the pattern of 32 , and 41 to the pattern of 43, etc. •Thus, the screw operation results in handedness Class21/2 or chirality (can’t superimpose image on another, e.g., mirror image) to the pattern.
    [Show full text]
  • Crystal Symmetry Groups
    X-Ray and Neutron Crystallography rational numbers is a group under Crystal Symmetry Groups multiplication, and both it and the integer group already discussed are examples of infinite groups because they each contain an infinite number of elements. ymmetry plays an important role between the integers obey the rules of In the case of a symmetry group, in crystallography. The ways in group theory: an element is the operation needed to which atoms and molecules are ● There must be defined a procedure for produce one object from another. For arrangeds within a unit cell and unit cells example, a mirror operation takes an combining two elements of the group repeat within a crystal are governed by to form a third. For the integers one object in one location and produces symmetry rules. In ordinary life our can choose the addition operation so another of the opposite hand located first perception of symmetry is what that a + b = c is the operation to be such that the mirror doing the operation is known as mirror symmetry. Our performed and u, b, and c are always is equidistant between them (Fig. 1). bodies have, to a good approximation, elements of the group. These manipulations are usually called mirror symmetry in which our right side ● There exists an element of the group, symmetry operations. They are com- is matched by our left as if a mirror called the identity element and de- bined by applying them to an object se- passed along the central axis of our noted f, that combines with any other bodies.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • The Cubic Groups
    The Cubic Groups Baccalaureate Thesis in Electrical Engineering Author: Supervisor: Sana Zunic Dr. Wolfgang Herfort 0627758 Vienna University of Technology May 13, 2010 Contents 1 Concepts from Algebra 4 1.1 Groups . 4 1.2 Subgroups . 4 1.3 Actions . 5 2 Concepts from Crystallography 6 2.1 Space Groups and their Classification . 6 2.2 Motions in R3 ............................. 8 2.3 Cubic Lattices . 9 2.4 Space Groups with a Cubic Lattice . 10 3 The Octahedral Symmetry Groups 11 3.1 The Elements of O and Oh ..................... 11 3.2 A Presentation of Oh ......................... 14 3.3 The Subgroups of Oh ......................... 14 2 Abstract After introducing basics from (mathematical) crystallography we turn to the description of the octahedral symmetry groups { the symmetry group(s) of a cube. Preface The intention of this account is to provide a description of the octahedral sym- metry groups { symmetry group(s) of the cube. We first give the basic idea (without proofs) of mathematical crystallography, namely that the 219 space groups correspond to the 7 crystal systems. After this we come to describing cubic lattices { such ones that are built from \cubic cells". Finally, among the cubic lattices, we discuss briefly the ones on which O and Oh act. After this we provide lists of the elements and the subgroups of Oh. A presentation of Oh in terms of generators and relations { using the Dynkin diagram B3 is also given. It is our hope that this account is accessible to both { the mathematician and the engineer. The picture on the title page reflects Ha¨uy'sidea of crystal structure [4].
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • COXETER GROUPS (Unfinished and Comments Are Welcome)
    COXETER GROUPS (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] October 10, 2018 1 2 Contents Preface 4 1 Regular Polytopes 7 1.1 ConvexSets............................ 7 1.2 Examples of Regular Polytopes . 12 1.3 Classification of Regular Polytopes . 16 2 Finite Reflection Groups 21 2.1 NormalizedRootSystems . 21 2.2 The Dihedral Normalized Root System . 24 2.3 TheBasisofSimpleRoots. 25 2.4 The Classification of Elliptic Coxeter Diagrams . 27 2.5 TheCoxeterElement. 35 2.6 A Dihedral Subgroup of W ................... 39 2.7 IntegralRootSystems . 42 2.8 The Poincar´eDodecahedral Space . 46 3 Invariant Theory for Reflection Groups 53 3.1 Polynomial Invariant Theory . 53 3.2 TheChevalleyTheorem . 56 3.3 Exponential Invariant Theory . 60 4 Coxeter Groups 65 4.1 Generators and Relations . 65 4.2 TheTitsTheorem ........................ 69 4.3 The Dual Geometric Representation . 74 4.4 The Classification of Some Coxeter Diagrams . 77 4.5 AffineReflectionGroups. 86 4.6 Crystallography. .. .. .. .. .. .. .. 92 5 Hyperbolic Reflection Groups 97 5.1 HyperbolicSpace......................... 97 5.2 Hyperbolic Coxeter Groups . 100 5.3 Examples of Hyperbolic Coxeter Diagrams . 108 5.4 Hyperbolic reflection groups . 114 5.5 Lorentzian Lattices . 116 3 6 The Leech Lattice 125 6.1 ModularForms ..........................125 6.2 ATheoremofVenkov . 129 6.3 The Classification of Niemeier Lattices . 132 6.4 The Existence of the Leech Lattice . 133 6.5 ATheoremofConway . 135 6.6 TheCoveringRadiusofΛ . 137 6.7 Uniqueness of the Leech Lattice . 140 4 Preface Finite reflection groups are a central subject in mathematics with a long and rich history. The group of symmetries of a regular m-gon in the plane, that is the convex hull in the complex plane of the mth roots of unity, is the dihedral group of order 2m, which is the simplest example of a reflection Dm group.
    [Show full text]
  • 1 NANO 704-Crystallography & Structure of Nanomaterials 3
    1 NANO 704-Crystallography & Structure of Nanomaterials 3. Space Groups Space lattices Lattice points are all equivalent by translational symmetry. We start with a primitive lattice, having points at rabcuvw uvw, where uvw,, ¢ . So lattice points exist at (0,0,0) and all equivalent positions. If we have a lattice point at xyz,, , then we also have a lattice point at xuyvzw,, . Suppose two lattice points exist at xyz111,, and xyz222,, . If xyz,, is a lattice point, then xyz,, x212121 x , y y , z z is also a lattice point. But this does not imply that for all xyz,, representing lattice points, the values of xyz,, are integers. In particular, it is often useful to represent some of them by half integers. A primitive cell has lattice points at 0,0,0 . Centered cells have additional lattice points. 11 An A-centered cell also has points at 0,22 , . (Center of the A face.) 11 A B-centered cell also has points at 22,0, . (Center of the B face.) 11 A C-centered cell also has points at 22,,0. (Center of the C face.) 11 11 11 An F (face)-centered cell also has points at 0,22 , , 22,0, , 22,,0. (Centers of all three faces.) 111 An I (body)-centered cell also has points at 222,, . (Center point of the unit cell.) Observations I. Suppose a cell is both A- and B-centered. The lattice points exist at 11 11 P1 : 0,0,0 , P2 : 0,22 , , and P3 : 22,0, and equivalent positions. P1 and P2 form a lattice row.
    [Show full text]
  • Symmetry of Graphs. Circles
    Symmetry of graphs. Circles Symmetry of graphs. Circles 1 / 10 Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Reflection across y reflection across x reflection across (0; 0) Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Symmetry of graphs. Circles 2 / 10 Reflection across y reflection across x reflection across (0; 0) Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Symmetry of graphs. Circles 2 / 10 Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Reflection across y reflection across x reflection across (0; 0) Symmetry of graphs. Circles 2 / 10 Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry 1 I. WHAT IS SYMMETRY AND WHY IT IS IMPORTANT? Some object are ”more symmetrical” than others. A sphere is more symmetrical than a cube because it looks the same after rotation through any angle about the diameter. A cube looks the same only if it is rotated through certain angels about specific axes, such as 90o, 180o, or 270o about an axis passing through the centers of any of its opposite faces, or by 120o or 240o about an axis passing through any of the opposite corners. Here are also examples of different molecules which remain the same after certain symme- try operations: NH3, H2O, C6H6, CBrClF . In general, an action which leaves the object looking the same after a transformation is called a symmetry operation. Typical symme- try operations include rotations, reflections, and inversions. There is a corresponding symmetry element for each symmetry operation, which is the point, line, or plane with respect to which the symmetry operation is performed. For instance, a rotation is carried out around an axis, a reflection is carried out in a plane, while an inversion is carried our in a point. We shall see that we can classify molecules that possess the same set of symmetry ele- ments, and grouping together molecules that possess the same set of symmetry elements. This classification is very important, because it allows to make some general conclusions about molecular properties without calculation. Particularly, we will be able to decide if a molecule has a dipole moment, or not and to know in advance the degeneracy of molecular states.
    [Show full text]
  • Crystallographic Symmetry Operations
    CRYSTALLOGRAPHIC SYMMETRY OPERATIONS Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain miércoles, 9 de octubre de 13 Bilbao Crystallographic Server http://www.cryst.ehu.es C´esar Capillas, UPV/EHU 1 SYMMETRY OPERATIONS AND THEIR MATRIX-COLUMN PRESENTATION miércoles, 9 de octubre de 13 Mappings and symmetry operations Definition: A mapping of a set A into a set B is a relation such that for each element a ∈ A there is a unique element b ∈ B which is assigned to a. The element b is called the image of a. ! ! The relation of the point X to the points X 1 and X 2 is not a mapping because the image point is not uniquely defined (there are two image points). The five regions of the set A (the triangle) are mapped onto the five separated regions of the set B. No point of A is mapped onto more than one image point. Region 2 is mapped on a line, the points of the line are the images of more than one point of A. Such a mapping is called a projection. miércoles, 9 de octubre de 13 Mappings and symmetry operations Definition: A mapping of a set A into a set B is a relation such that for each element a ∈ A there is a unique element b ∈ B which is assigned to a. The element b is called the image of a. An isometry leaves all distances and angles invariant. An ‘isometry of the first kind’, preserving the counter–clockwise sequence of the edges ‘short–middle–long’ of the triangle is displayed in the upper mapping.
    [Show full text]
  • Chapter 3: Transformations Groups, Orbits, and Spaces of Orbits
    Preprint typeset in JHEP style - HYPER VERSION Chapter 3: Transformations Groups, Orbits, And Spaces Of Orbits Gregory W. Moore Abstract: This chapter focuses on of group actions on spaces, group orbits, and spaces of orbits. Then we discuss mathematical symmetric objects of various kinds. May 3, 2019 -TOC- Contents 1. Introduction 2 2. Definitions and the stabilizer-orbit theorem 2 2.0.1 The stabilizer-orbit theorem 6 2.1 First examples 7 2.1.1 The Case Of 1 + 1 Dimensions 11 3. Action of a topological group on a topological space 14 3.1 Left and right group actions of G on itself 19 4. Spaces of orbits 20 4.1 Simple examples 21 4.2 Fundamental domains 22 4.3 Algebras and double cosets 28 4.4 Orbifolds 28 4.5 Examples of quotients which are not manifolds 29 4.6 When is the quotient of a manifold by an equivalence relation another man- ifold? 33 5. Isometry groups 34 6. Symmetries of regular objects 36 6.1 Symmetries of polygons in the plane 39 3 6.2 Symmetry groups of some regular solids in R 42 6.3 The symmetry group of a baseball 43 7. The symmetries of the platonic solids 44 7.1 The cube (\hexahedron") and octahedron 45 7.2 Tetrahedron 47 7.3 The icosahedron 48 7.4 No more regular polyhedra 50 7.5 Remarks on the platonic solids 50 7.5.1 Mathematics 51 7.5.2 History of Physics 51 7.5.3 Molecular physics 51 7.5.4 Condensed Matter Physics 52 7.5.5 Mathematical Physics 52 7.5.6 Biology 52 7.5.7 Human culture: Architecture, art, music and sports 53 7.6 Regular polytopes in higher dimensions 53 { 1 { 8.
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]