Symmetry Groups

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry Groups Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example, invariance under rotation in space leads to angular momentum conservation and to the quantum numbers j, mj for the total angular momentum. Gauge symmetries: These are local symmetries that act differently at each space-time point xµ = (t,x) . They create particularly stringent constraints on the structure of a theory. For example, gauge symmetry automatically determines the interaction between particles by introducing bosons that mediate the interaction. All current models of elementary particles incorporate gauge symmetry. (Details on p. 4) Groups: A group G consists of elements a , inverse elements a−1, a unit element 1, and a multiplication rule “ ⋅ ” with the properties: 1. If a,b are in G, then c = a ⋅ b is in G. 2. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c 3. a ⋅ 1 = 1 ⋅ a = a 4. a ⋅ a−1 = a−1 ⋅ a = 1 The group is called Abelian if it obeys the additional commutation law: 5. a ⋅ b = b ⋅ a Product of Groups: The product group G×H of two groups G, H is defined by pairs of elements with the multiplication rule (g1,h1) ⋅ (g2,h2) = (g1 ⋅ g2 , h1 ⋅ h2) . A group is called simple if it cannot be decomposed into a product of two other groups. (Compare a prime number as analog.) If a group is not simple, consider the factor groups. Examples: n×n matrices of complex numbers with matrix multiplication. Hermitian: M† = M (M† = MT*, T = transpose, * = complex conjugate) Unitary: U† = U−1 Special: |S| = 1 (determinant = 1) 1 U(n) : The group of complex, unitary n×n matrices U(n) = SU(n) × U(1) for n>1 (not a simple group) U(1) The complex unit circle: U = z = exp[iϕ] , ϕ real U†U = z*z = |z|2 = 1 Gauge symmetry transformation: ψ′(x,t) = exp[−iϕ(x,t)] ⋅ ψ(x,t) Probability conserved: ψ′* ψ′ = ψ* ψ U(1)EM describes the electromagnetic interaction. 1 boson photon A 1 quantum number charge Q SU(n): The group of complex, unitary n×n matrices with determinant 1 Generate a unitary matrix U from a Hermitian matrix H: m U = exp[iH] = Σm H /m! Write all Hermitian matrices using a basis set Ji = generators : H = − Σi ϕi ⋅ Ji Use a basis set Ji that guarantees |U|=1: trace(Ji) = 0 2 2 i (n −1) matrices Ji → (n −1) gauge bosons A (n−1) diagonal Ji → (n−1) quantum numbers Gauge transformation: ψ′(x,t) = U ⋅ ψ(x,t) = exp[− Σi ϕi(x,t) ⋅ Ji] ⋅ ψ(x,t) Probability conserved: ψ′* ψ′ = (Uψ)* (Uψ) = ψ*U†Uψ = ψ* ψ SU(2) describes the (broken) Isospin symmetry of the Weak Interaction. 3 Pauli matrices σi Ji = σi / 2 3 bosons W+,W−,Z 1 diagonal Ji J3 (z-component of the isospin) SU(3) describes the (exact) Color symmetry of the Strong Interaction. 8 Gell-Mann matrices λi Ji = λi / 2 8 bosons Gluons G1,…G8 2 diagonal Ji J3, J8 (two independent colors) SU(5) is a “grand unification” group which contains the standard model. 2 SU(3)×SU(2)×U(1)Y Standard Model Color + Isospin + Hypercharge SU(2)×U(1)Y Electro-Weak Interaction Isospin + Hypercharge J3 Y = 2 (Q − J3) U(1)EM Electromagnetic Charge Q SU(2)×U(1)Y breaks down to the electromagnetic U(1)EM (see p. 4). Pauli Matrices: Gell-Mann Matrices: = Pauli matrices + rows and columns of zeros 0 1 0 1 0 0 0 1 0 0 0 σ1 = 1 0 λ1 = 1 0 0 λ4 = 0 0 0 λ6 = 0 0 1 0 0 0 1 0 0 0 1 0 0 -i 0 -i 0 0 0 -i 0 0 0 σ2 = i 0 λ2 = i 0 0 λ5 = 0 0 0 λ7 = 0 0 -i 0 0 0 i 0 0 0 i 0 1 0 1 0 0 1 0 0 0 0 0 σ3 = 0 -1 λ3 = 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 -1 Select two independent matrices from the last row. 1 0 0 λ8 = 0 1 0 / √3 0 0 -2 3 Gauge Bosons: Conceptually, all of today’s particle theories start out with a set of fermions, for example the electron in quantum electrodynamics. Fermions are represented by a wave function ψ. One then postulates gauge invariance, i.e., the gauge transformation ψ′ = exp[−iϕ(xµ)] ⋅ ψ should leave the theory invariant. That is fine for the probability density ψ*ψ but the wave equation is not invariant. An unwanted extra term is created by the derivative of the phase factor ϕ(xµ). Derivatives are related to the 2 2 momentum operator, for example p /2me = −∇ /2me in the Schrödinger equation and pµ = i ∂µ in the Dirac equation (448 quantum notes, p. 17). The theory can be made gauge invariant by adding the electromagnetic four-potential Aµ to the four-momentum pµ in order to cancel the phase derivative. The Aµ are the wave functions of the photon, the boson that describes the electromagnetic interaction. The complete gauge transformation of the wave function ψ for the electron and the Aµ for the photon becomes: ψ′ = exp[−iϕ] ⋅ ψ ћ,c = 1 −1 µ A′µ = Aµ + q ∂µ ϕ ∂µ = ∂/∂x q = electric charge = −e for the electron pµ = i ∂µ − q ⋅ Aµ pµ = momentum operator = generalized “covariant” derivative With these definitions one has gauge-invariance for the probability density ψ*ψ and for the Dirac equation: ψ′*ψ′ = ψ∗ψ µ µ γ p′µ ψ′ = me ψ′ ⇒ γ pµ ψ = me ψ In similar fashion one can incorporate the electromagnetic interaction into the Schrödinger equation using the energy and momentum operators E and p : 2 E = +i ∂/∂t − q ⋅ Φ E ψ = p /2me ψ µ p = −i ∂/∂x − q ⋅ A pµ = (Ε,−p), x = (t,x), Aµ = (Φ,−A) For larger groups the momentum operator and the gauge-invariant derivative involve a i product of several group generators Ji and the corresponding gauge bosons A µ : i 2 pµ = i ∂µ + g ⋅ Σi Ji ⋅ A µ g = generalized charge, g /4π = coupling constant There is a parallel to the definition of the covariant derivative Dµ in general relativity: ν ν ν λ Dµ A = ∂µ A + Γ µλ A 4 The first term describes the change of Aν, the second term the change of the coordinate system from one space-time point to the next. The wave equation for the gauge bosons, i.e.. the generalization of the Maxwell equations, can be derived by forming a gauge-invariant field tensor using the generalized derivative. For non-Abelian symmetry groups (e.g. SU(2), SU(3) ) the wave equations become more interesting because they imply interactions between the gauge bosons themselves, not just a mediation of the interaction between fermions. Symmetry Breaking: Gauge symmetries are often broken, but in a subtle way. The fundamental equations are symmetric, but the ground state wave function breaks the symmetry. An analog is a ferromagnetic ground state, where the rotational symmetry of the electromagnetic interaction is broken by a specific spin orientation of the ferromagnet (“spontaneous symmetry breaking”). When a gauge symmetry is broken the gauge bosons are able to acquire an effective mass, even though gauge symmetry does not allow a boson mass in the fundamental equations. The breakdown of the electro-weak symmetry SU(2)×U(1)Y converts the 4 massless gauge bosons A1,A2,A3, and B of the symmetric theory into the 3 massive bosons W+,W−,Z of the weak interaction and the massless photon A of the electromagnetic interaction (which represents the remaining symmetry). The conversion can be broken up into two steps. First, combinations with well-defined isospin J3 = ±1 are formed: − W + = (A1 ± i A2) /√2 3 Then, A is mixed with the gauge boson B of U(1)Y : 3 Z = cosϑW −sinϑW ⋅ A A sinϑW cosϑW B The resulting observed particles are the Z and photon A. The weak mixing angle ϑW is determined by the ratio of the coupling constants g for SU(2) and g′ for U(1)Y : tan ϑW = g′/g 5 SU(3) Color: 8 gauge bosons Gi are associated with the 8 generators Ji = λi / 2. The bosons are the 8 gluons that mediate the strong interaction. Define three color quantum numbers, plus three complementary colors for antiparticles: R = red G = green B = blue R = G+B = cyan G = R+B = magenta B = R+G = yellow The quark-gluon interaction transfers color from qG one quark to another (see the diagram). Therefore, GRG gluons carry two color indices, which can be assigned to rows and columns of the Gell-Mann matrices λi : RGB R * * * 0 1 0 qR G * * * for example GRG : 0 0 0 = (λ1 + i λ2)/2 B * * * 0 0 0 The SU(3) color symmetry forces all hadrons to be white, i.e., all color quantum numbers are zero . That can be achieved with the following combinations of quarks q and anti-quarksq: ik qq = 1/√3 [qRqR + qGqG + qBqB] = 1/√3 Σik δ qi qk meson, symmetric ijk qqq = 1/√6 [ +qRqGqB − qBqGqR = 1/√6 Σijk ε qi qj qk baryon, antisymmetric +qBqRqG − qGqRqB when exchanging color indices of +q q q − q q q ] G B R R B G two particles. even odd permutation SU(3) “Eightfold Way”: This is a SU(3) symmetry completely different from color SU(3), and it is only approximate.
Recommended publications
  • In Order for the Figure to Map Onto Itself, the Line of Reflection Must Go Through the Center Point
    3-5 Symmetry State whether the figure appears to have line symmetry. Write yes or no. If so, copy the figure, draw all lines of symmetry, and state their number. 1. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The figure has reflectional symmetry. In order for the figure to map onto itself, the line of reflection must go through the center point. Two lines of reflection go through the sides of the figure. Two lines of reflection go through the vertices of the figure. Thus, there are four possible lines that go through the center and are lines of reflections. Therefore, the figure has four lines of symmetry. eSolutionsANSWER: Manual - Powered by Cognero Page 1 yes; 4 2. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure does not have reflectional symmetry. There is no way to fold or reflect it onto itself. ANSWER: no 3. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure has reflectional symmetry. The figure has a vertical line of symmetry. It does not have a horizontal line of symmetry. The figure does not have a line of symmetry through the vertices. Thus, the figure has only one line of symmetry. ANSWER: yes; 1 State whether the figure has rotational symmetry. Write yes or no. If so, copy the figure, locate the center of symmetry, and state the order and magnitude of symmetry.
    [Show full text]
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Quantum Phase Space in Relativistic Theory: the Case of Charge-Invariant Observables
    Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 3, 1448–1453 Quantum Phase Space in Relativistic Theory: the Case of Charge-Invariant Observables A.A. SEMENOV †, B.I. LEV † and C.V. USENKO ‡ † Institute of Physics of NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine E-mail: [email protected], [email protected] ‡ Physics Department, Taras Shevchenko Kyiv University, 6 Academician Glushkov Ave., 03127 Kyiv, Ukraine E-mail: [email protected] Mathematical method of quantum phase space is very useful in physical applications like quantum optics and non-relativistic quantum mechanics. However, attempts to generalize it for the relativistic case lead to some difficulties. One of problems is band structure of energy spectrum for a relativistic particle. This corresponds to an internal degree of freedom, so- called charge variable. In physical problems we often deal with such dynamical variables that do not depend on this degree of freedom. These are position, momentum, and any combination of them. Restricting our consideration to this kind of observables we propose the relativistic Weyl–Wigner–Moyal formalism that contains some surprising differences from its non-relativistic counterpart. This paper is devoted to the phase space formalism that is specific representation of quan- tum mechanics. This representation is very close to classical mechanics and its basic idea is a description of quantum observables by means of functions in phase space (symbols) instead of operators in the Hilbert space of states. The first idea about this representation has been proposed in the early days of quantum mechanics in the well-known Weyl work [1].
    [Show full text]
  • Spacetime Diagrams(1D in Space)
    PH300 Modern Physics SP11 Last time: • Time dilation and length contraction Today: • Spacetime • Addition of velocities • Lorentz transformations Thursday: • Relativistic momentum and energy “The only reason for time is so that HW03 due, beginning of class; HW04 assigned everything doesn’t happen at once.” 2/1 Day 6: Next week: - Albert Einstein Questions? Intro to quantum Spacetime Thursday: Exam I (in class) Addition of Velocities Relativistic Momentum & Energy Lorentz Transformations 1 2 Spacetime Diagrams (1D in space) Spacetime Diagrams (1D in space) c · t In PHYS I: v In PH300: x x x x Δx Δx v = /Δt Δt t t Recall: Lucy plays with a fire cracker in the train. (1D in space) Spacetime Diagrams Ricky watches the scene from the track. c· t In PH300: object moving with 0<v<c. ‘Worldline’ of the object L R -2 -1 0 1 2 x object moving with 0>v>-c v c·t c·t Lucy object at rest object moving with v = -c. at x=1 x=0 at time t=0 -2 -1 0 1 2 x -2 -1 0 1 2 x Ricky 1 Example: Ricky on the tracks Example: Lucy in the train ct ct Light reaches both walls at the same time. Light travels to both walls Ricky concludes: Light reaches left side first. x x L R L R Lucy concludes: Light reaches both sides at the same time In Ricky’s frame: Walls are in motion In Lucy’s frame: Walls are at rest S Frame S’ as viewed from S ... -3 -2 -1 0 1 2 3 ..
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Reflection Invariant and Symmetry Detection
    1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes.
    [Show full text]
  • Crystal Symmetry Groups
    X-Ray and Neutron Crystallography rational numbers is a group under Crystal Symmetry Groups multiplication, and both it and the integer group already discussed are examples of infinite groups because they each contain an infinite number of elements. ymmetry plays an important role between the integers obey the rules of In the case of a symmetry group, in crystallography. The ways in group theory: an element is the operation needed to which atoms and molecules are ● There must be defined a procedure for produce one object from another. For arrangeds within a unit cell and unit cells example, a mirror operation takes an combining two elements of the group repeat within a crystal are governed by to form a third. For the integers one object in one location and produces symmetry rules. In ordinary life our can choose the addition operation so another of the opposite hand located first perception of symmetry is what that a + b = c is the operation to be such that the mirror doing the operation is known as mirror symmetry. Our performed and u, b, and c are always is equidistant between them (Fig. 1). bodies have, to a good approximation, elements of the group. These manipulations are usually called mirror symmetry in which our right side ● There exists an element of the group, symmetry operations. They are com- is matched by our left as if a mirror called the identity element and de- bined by applying them to an object se- passed along the central axis of our noted f, that combines with any other bodies.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • Arxiv:1910.10745V1 [Cond-Mat.Str-El] 23 Oct 2019 2.2 Symmetry-Protected Time Crystals
    A Brief History of Time Crystals Vedika Khemania,b,∗, Roderich Moessnerc, S. L. Sondhid aDepartment of Physics, Harvard University, Cambridge, Massachusetts 02138, USA bDepartment of Physics, Stanford University, Stanford, California 94305, USA cMax-Planck-Institut f¨urPhysik komplexer Systeme, 01187 Dresden, Germany dDepartment of Physics, Princeton University, Princeton, New Jersey 08544, USA Abstract The idea of breaking time-translation symmetry has fascinated humanity at least since ancient proposals of the per- petuum mobile. Unlike the breaking of other symmetries, such as spatial translation in a crystal or spin rotation in a magnet, time translation symmetry breaking (TTSB) has been tantalisingly elusive. We review this history up to recent developments which have shown that discrete TTSB does takes place in periodically driven (Floquet) systems in the presence of many-body localization (MBL). Such Floquet time-crystals represent a new paradigm in quantum statistical mechanics — that of an intrinsically out-of-equilibrium many-body phase of matter with no equilibrium counterpart. We include a compendium of the necessary background on the statistical mechanics of phase structure in many- body systems, before specializing to a detailed discussion of the nature, and diagnostics, of TTSB. In particular, we provide precise definitions that formalize the notion of a time-crystal as a stable, macroscopic, conservative clock — explaining both the need for a many-body system in the infinite volume limit, and for a lack of net energy absorption or dissipation. Our discussion emphasizes that TTSB in a time-crystal is accompanied by the breaking of a spatial symmetry — so that time-crystals exhibit a novel form of spatiotemporal order.
    [Show full text]
  • The Cubic Groups
    The Cubic Groups Baccalaureate Thesis in Electrical Engineering Author: Supervisor: Sana Zunic Dr. Wolfgang Herfort 0627758 Vienna University of Technology May 13, 2010 Contents 1 Concepts from Algebra 4 1.1 Groups . 4 1.2 Subgroups . 4 1.3 Actions . 5 2 Concepts from Crystallography 6 2.1 Space Groups and their Classification . 6 2.2 Motions in R3 ............................. 8 2.3 Cubic Lattices . 9 2.4 Space Groups with a Cubic Lattice . 10 3 The Octahedral Symmetry Groups 11 3.1 The Elements of O and Oh ..................... 11 3.2 A Presentation of Oh ......................... 14 3.3 The Subgroups of Oh ......................... 14 2 Abstract After introducing basics from (mathematical) crystallography we turn to the description of the octahedral symmetry groups { the symmetry group(s) of a cube. Preface The intention of this account is to provide a description of the octahedral sym- metry groups { symmetry group(s) of the cube. We first give the basic idea (without proofs) of mathematical crystallography, namely that the 219 space groups correspond to the 7 crystal systems. After this we come to describing cubic lattices { such ones that are built from \cubic cells". Finally, among the cubic lattices, we discuss briefly the ones on which O and Oh act. After this we provide lists of the elements and the subgroups of Oh. A presentation of Oh in terms of generators and relations { using the Dynkin diagram B3 is also given. It is our hope that this account is accessible to both { the mathematician and the engineer. The picture on the title page reflects Ha¨uy'sidea of crystal structure [4].
    [Show full text]
  • First Determination of the Electric Charge of the Top Quark
    First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge.
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]