Quantum Field Theory*

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory* Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. QCD has supp orted, and rewarded with exp erimental con rmation, b oth heroic calculations of multi-lo op diagrams and massivenumerical simulations of (a discretized version of ) the complete theory. Quantum eld theory also provides p owerful to ols for condensed matter physics, esp ecially in connection with the quantum many-b o dy problem as it arises in the theory of metals, sup erconductivity,thelow-temp erature b ehavior 3 4 of the quantum liquids He and He , and the quantum Hall e ect, among others. Although for reasons of space and fo cus I will not attempt to do justice to this asp ect here, the continuing interchange of ideas b etween condensed matter and high energy theory, through the medium of quantum eld theory, is a remarkable phenomenon in itself. A partial list of historically imp ortant examples includes global and lo cal sp ontaneous symmetry breaking, the renormalization group, e ective eld theory, solitons, instantons, and fractional charge and statistics. It is clear, from all these examples, that quantum eld theory o ccupies a central p osition in our description of Nature. It provides b oth our b est working description of fundamental physical laws, and a fruitful to ol for investigating the b ehavior of complex systems. But the enumeration of examples, however triumphal, serves more to p ose than to answer more basic questions: What are the essential features of quantum eld theory? What do es quantum eld theory add to our understanding of the world, that was not already presentinquantum mechanics and classical eld theory separately? The rst question has no sharp answer. Theoretical physicists are very exible in adapting their to ols, and no axiomization can keep up with them. However I think it is fair to say that the characteristic, core ideas of quantum eld theory are twofold. First, that the basic dynamical degrees of freedom are op erator functions of space and time { quantum elds, ob eying appropriate commutation relations. Second, that the interactions of these elds are lo cal. Thus the equations of motion and commutation relations governing the evolution of a given quantum eld at a given p oint in space-time should dep end only on the b ehavior of elds and their derivatives at that p oint. One might nd it convenienttouseothervariables, whose equations are not lo cal, but in the spirit of quantum eld theory there must always b e some underlying fundamental, lo cal variables. These ideas, combined with p ostulates of symmetry (e.g., in To app ear in the American Physical So cietyCentenary issue of Reviews of Mo dern Physics, March 1999. y [email protected] IASSNS-HEP 98/20 1 the context of the standard mo del, Lorentz and gauge invariance) turn out to b e amazingly p owerful, as will emerge from our further discussion b elow. The eld concept came to dominate physics starting with the work of Faraday in the mid-nineteenth century.Its conceptual advantage over the earlier Newtonian program of physics, to formulate the fundamental laws in terms of forces among atomic particles, emerges when we takeinto account the circumstance, unknown to Newton (or, for that matter, Faraday) but fundamental in sp ecial relativity, that in uences travel no farther than a nite limiting sp eed. For then the force on a given particle at a given time cannot b e deduced from the p ositions of other particles at that time, but must b e deduced in a complicated way from their previous p ositions. Faraday's intuition that the fundamental laws of electromagnetism could b e expressed most simply in terms of elds lling space and time was of course brilliantly vindicated byMaxwell's mathematical theory. The concept of lo cality, in the crude form that one can predict the b ehavior of nearby ob jects without reference to distant ones, is basic to scienti c practice. Practical exp erimenters { if not astrologers { con dently exp ect, on the basis of much successful exp erience, that after reasonable (generally quite mo dest) precautions to isolate their exp eriments they will obtain repro ducible results. Direct quantitative tests of lo cality, or rather of its close cousin causality, are a orded by disp ersion relations. The deep and ancient historic ro ots of the eld and lo cality concepts provide no guarantee that these concepts remain relevantorvalid when extrap olated far b eyond their origins in exp erience, into the subatomic and quantum domain. This extrap olation must b e judged by its fruits. That brings us, naturally, to our second question. Undoubtedly the single most profound fact ab out Nature that quantum eld theory uniquely explains is the existence of di erent, yet indistinguishable, copies of elementary particles.Two electrons anywhere in the Universe, whatever their origin or history, are observed to have exactly the same prop erties. We understand this as a consequence of the fact that b oth are excitations of the same underlying ur-stu , the electron eld. The electron eld is thus the primary reality. The same logic, of course, applies to photons or quarks, or even to comp osite ob jects such as atomic nuclei, atoms, or molecules. The indistinguishability of particles is so familiar, and so fundamental to all of mo dern physical science, that we could easily take it for granted. Yet it is by no means obvious. For example, it directly contradicts one of the pillars of Leibniz' metaphysics, his \principle of the identity of indiscernables," according to whichtwo ob jects cannot di er solely in numb er. And Maxwell thought the similarity of di erent molecules so remarkable that he devoted the last part of his Encyclopedia Brittanica entry on Atoms { well over a thousand words { to discussing it. He concluded that \the formation of a molecule is therefore an event not b elonging to that order of nature in whichwe live ... it must b e referred to the ep o ch, not of the formation of the earth or the solar system ... but of the establishment of the existing order of nature ..." The existence of classes of indistinguishable particles is the necessary logical prerequisite to a second profound insight from quantum eld theory: the assignment of unique quantum statistics to each class. Given the indistinguishabilityof a class of elementary particles, and complete invariance of their interactions under interchange, the general principles of quantum mechanics teach us that solutions forming any representation of the p ermutation symmetry group retain that prop erty in time, but do not constrain which representations are realized. Quantum eld theory not only explains the existence of indistinguishable particles and the invariance of their interactions under interchange, but also constrains the symmetry of the solutions. For b osons only the identity representation is physical (symmetric wave functions), for fermions only the one-dimensional o dd representation is physical (antisymmetric wave functions). One also has the spin-statistics theorem, according to which ob jects with integer spin are b osons, whereas ob jects with half o dd integer spin are fermions. Of course, these general predictions have b een veri ed in many exp eriments. The fermion character of electrons, in particular, underlies the stability of matter and the structure of the p erio dic table. A third profound general insight from quantum eld theory is the existenceofantiparticles. This was rst inferred by Dirac on the basis of a brilliant but obsolete interpretation of his equation for the electron eld, whose elucidation was a crucial step in the formulation of quantum eld theory. In quantum eld theory,were-interpret the Dirac wave function as a p osition (and time) dep endent op erator. It can b e expanded in terms of the solutions of the Dirac equation, with op erator co ecients. The co ecients of p ositive-energy solutions are op erators that destroy electrons, and the co ecients of the negative-energy solutions are op erators that create p ositrons (with p ositive energy). With this interpretation, an improved version of Dirac's hole theory emerges in a straightforward way.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Fundamentals of Particle Physics
    Fundamentals of Par0cle Physics Particle Physics Masterclass Emmanuel Olaiya 1 The Universe u The universe is 15 billion years old u Around 150 billion galaxies (150,000,000,000) u Each galaxy has around 300 billion stars (300,000,000,000) u 150 billion x 300 billion stars (that is a lot of stars!) u That is a huge amount of material u That is an unimaginable amount of particles u How do we even begin to understand all of matter? 2 How many elementary particles does it take to describe the matter around us? 3 We can describe the material around us using just 3 particles . 3 Matter Particles +2/3 U Point like elementary particles that protons and neutrons are made from. Quarks Hence we can construct all nuclei using these two particles -1/3 d -1 Electrons orbit the nuclei and are help to e form molecules. These are also point like elementary particles Leptons We can build the world around us with these 3 particles. But how do they interact. To understand their interactions we have to introduce forces! Force carriers g1 g2 g3 g4 g5 g6 g7 g8 The gluon, of which there are 8 is the force carrier for nuclear forces Consider 2 forces: nuclear forces, and electromagnetism The photon, ie light is the force carrier when experiencing forces such and electricity and magnetism γ SOME FAMILAR THE ATOM PARTICLES ≈10-10m electron (-) 0.511 MeV A Fundamental (“pointlike”) Particle THE NUCLEUS proton (+) 938.3 MeV neutron (0) 939.6 MeV E=mc2. Einstein’s equation tells us mass and energy are equivalent Wave/Particle Duality (Quantum Mechanics) Einstein E
    [Show full text]
  • Introduction to Particle Physics
    SFB 676 – Projekt B2 Introduction to Particle Physics Christian Sander (Universität Hamburg) DESY Summer Student Lectures – Hamburg – 20th July '11 Outline ● Introduction ● History: From Democrit to Thomson ● The Standard Model ● Gauge Invariance ● The Higgs Mechanism ● Symmetries … Break ● Shortcomings of the Standard Model ● Physics Beyond the Standard Model ● Recent Results from the LHC ● Outlook Disclaimer: Very personal selection of topics and for sure many important things are left out! 20th July '11 Introduction to Particle Physics 2 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 233 … für Chester war das nur ein Weg das Geld für das eigentlich theoretische Zeugs aufzubringen, was ihn interessierte … die Erforschung Dunkler Materie, …ähm… Quantenpartikel, Neutrinos, Gluonen, Mesonen und Quarks. Subatomare Teilchen Die Geheimnisse des Universums! Theoretisch gesehen sind sie sogar die Bausteine der Wirklichkeit ! Aber niemand weiß, ob sie wirklich existieren !? 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 234 The First Particle Physicist? By convention ['nomos'] sweet is sweet, bitter is bitter, hot is hot, cold is cold, color is color; but in truth there are only atoms and the void. Democrit, * ~460 BC, †~360 BC in Abdera Hypothesis: ● Atoms have same constituents ● Atoms different in shape (assumption: geometrical shapes) ● Iron atoms are solid and strong with hooks that lock them into a solid ● Water atoms are smooth and slippery ● Salt atoms, because of their taste, are sharp and pointed ● Air atoms are light and whirling, pervading all other materials 20th July '11 Introduction to Particle Physics 5 Corpuscular Theory of Light Light consist out of particles (Newton et al.) ↕ Light is a wave (Huygens et al.) ● Mainly because of Newtons prestige, the corpuscle theory was widely accepted (more than 100 years) Sir Isaac Newton ● Failing to describe interference, diffraction, and *1643, †1727 polarization (e.g.
    [Show full text]
  • Configuration Interaction Study of the Ground State of the Carbon Atom
    Configuration Interaction Study of the Ground State of the Carbon Atom María Belén Ruiz* and Robert Tröger Department of Theoretical Chemistry Friedrich-Alexander-University Erlangen-Nürnberg Egerlandstraße 3, 91054 Erlangen, Germany In print in Advances Quantum Chemistry Vol. 76: Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems 30th July 2017 Abstract Configuration Interaction (CI) calculations on the ground state of the C atom are carried out using a small basis set of Slater orbitals [7s6p5d4f3g]. The configurations are selected according to their contribution to the total energy. One set of exponents is optimized for the whole expansion. Using some computational techniques to increase efficiency, our computer program is able to perform partially-parallelized runs of 1000 configuration term functions within a few minutes. With the optimized computer programme we were able to test a large number of configuration types and chose the most important ones. The energy of the 3P ground state of carbon atom with a wave function of angular momentum L=1 and ML=0 and spin eigenfunction with S=1 and MS=0 leads to -37.83526523 h, which is millihartree accurate. We discuss the state of the art in the determination of the ground state of the carbon atom and give an outlook about the complex spectra of this atom and its low-lying states. Keywords: Carbon atom; Configuration Interaction; Slater orbitals; Ground state *Corresponding author: e-mail address: [email protected] 1 1. Introduction The spectrum of the isolated carbon atom is the most complex one among the light atoms. The ground state of carbon atom is a triplet 3P state and its low-lying excited states are singlet 1D, 1S and 1P states, more stable than the corresponding triplet excited ones 3D and 3S, against the Hund’s rule of maximal multiplicity.
    [Show full text]
  • Feynman Diagrams, Momentum Space Feynman Rules, Disconnected Diagrams, Higher Correlation Functions
    PHY646 - Quantum Field Theory and the Standard Model Even Term 2020 Dr. Anosh Joseph, IISER Mohali LECTURE 05 Tuesday, January 14, 2020 Topics: Feynman Diagrams, Momentum Space Feynman Rules, Disconnected Diagrams, Higher Correlation Functions. Feynman Diagrams We can use the Wick’s theorem to express the n-point function h0jT fφ(x1)φ(x2) ··· φ(xn)gj0i as a sum of products of Feynman propagators. We will be interested in developing a diagrammatic interpretation of such expressions. Let us look at the expression containing four fields. We have h0jT fφ1φ2φ3φ4g j0i = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3): (1) We can interpret Eq. (1) as the sum of three diagrams, if we represent each of the points, x1 through x4 by a dot, and each factor DF (x − y) by a line joining x to y. These diagrams are called Feynman diagrams. In Fig. 1 we provide the diagrammatic interpretation of Eq. (1). The interpretation of the diagrams is the following: particles are created at two spacetime points, each propagates to one of the other points, and then they are annihilated. This process can happen in three different ways, and they correspond to the three ways to connect the points in pairs, as shown in the three diagrams in Fig. 1. Thus the total amplitude for the process is the sum of these three diagrams. PHY646 - Quantum Field Theory and the Standard Model Even Term 2020 ⟨0|T {ϕ1ϕ2ϕ3ϕ4}|0⟩ = DF(x1 − x2)DF(x3 − x4) + DF(x1 − x3)DF(x2 − x4) +DF(x1 − x4)DF(x2 − x3) 1 2 1 2 1 2 + + 3 4 3 4 3 4 Figure 1: Diagrammatic interpretation of Eq.
    [Show full text]
  • Effective Field Theories, Reductionism and Scientific Explanation Stephan
    To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics.
    [Show full text]
  • Electromagnetic Field Theory
    Electromagnetic Field Theory BO THIDÉ Υ UPSILON BOOKS ELECTROMAGNETIC FIELD THEORY Electromagnetic Field Theory BO THIDÉ Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden and School of Mathematics and Systems Engineering Växjö University, Sweden Υ UPSILON BOOKS COMMUNA AB UPPSALA SWEDEN · · · Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik Freely downloadable from www.plasma.uu.se/CED This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.4.2) on an HP Visualize 9000⁄360 workstation running HP-UX 11.11. Copyright c 1997, 1998, 1999, 2000, 2001, 2002, 2003 and 2004 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Preface The current book is an outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Classical Electrodynamics in 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced undergradu- ate or beginning graduate level, it is hoped that the present book may be useful for research workers
    [Show full text]
  • Coupling Constant Unification in Extensions of Standard Model
    Coupling Constant Unification in Extensions of Standard Model Ling-Fong Li, and Feng Wu Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 May 28, 2018 Abstract Unification of electromagnetic, weak, and strong coupling con- stants is studied in the extension of standard model with additional fermions and scalars. It is remarkable that this unification in the su- persymmetric extension of standard model yields a value of Weinberg angle which agrees very well with experiments. We discuss the other possibilities which can also give same result. One of the attractive features of the Grand Unified Theory is the con- arXiv:hep-ph/0304238v2 3 Jun 2003 vergence of the electromagnetic, weak and strong coupling constants at high energies and the prediction of the Weinberg angle[1],[3]. This lends a strong support to the supersymmetric extension of the Standard Model. This is because the Standard Model without the supersymmetry, the extrapolation of 3 coupling constants from the values measured at low energies to unifi- cation scale do not intercept at a single point while in the supersymmetric extension, the presence of additional particles, produces the convergence of coupling constants elegantly[4], or equivalently the prediction of the Wein- berg angle agrees with the experimental measurement very well[5]. This has become one of the cornerstone for believing the supersymmetric Standard 1 Model and the experimental search for the supersymmetry will be one of the main focus in the next round of new accelerators. In this paper we will explore the general possibilities of getting coupling constants unification by adding extra particles to the Standard Model[2] to see how unique is the Supersymmetric Standard Model in this respect[?].
    [Show full text]
  • Lo Algebras for Extended Geometry from Borcherds Superalgebras
    Commun. Math. Phys. 369, 721–760 (2019) Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-019-03451-2 Mathematical Physics L∞ Algebras for Extended Geometry from Borcherds Superalgebras Martin Cederwall, Jakob Palmkvist Division for Theoretical Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden. E-mail: [email protected]; [email protected] Received: 24 May 2018 / Accepted: 15 March 2019 Published online: 26 April 2019 – © The Author(s) 2019 Abstract: We examine the structure of gauge transformations in extended geometry, the framework unifying double geometry, exceptional geometry, etc. This is done by giving the variations of the ghosts in a Batalin–Vilkovisky framework, or equivalently, an L∞ algebra. The L∞ brackets are given as derived brackets constructed using an underlying Borcherds superalgebra B(gr+1), which is a double extension of the structure algebra gr . The construction includes a set of “ancillary” ghosts. All brackets involving the infinite sequence of ghosts are given explicitly. All even brackets above the 2-brackets vanish, and the coefficients appearing in the brackets are given by Bernoulli numbers. The results are valid in the absence of ancillary transformations at ghost number 1. We present evidence that in order to go further, the underlying algebra should be the corresponding tensor hierarchy algebra. Contents 1. Introduction ................................. 722 2. The Borcherds Superalgebra ......................... 723 3. Section Constraint and Generalised Lie Derivatives ............. 728 4. Derivatives, Generalised Lie Derivatives and Other Operators ....... 730 4.1 The derivative .............................. 730 4.2 Generalised Lie derivative from “almost derivation” .......... 731 4.3 “Almost covariance” and related operators ..............
    [Show full text]
  • 1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
    1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s.
    [Show full text]