Electromagnetic Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Electromagnetic Field Theory Electromagnetic Field Theory BO THIDÉ Υ UPSILON BOOKS ELECTROMAGNETIC FIELD THEORY Electromagnetic Field Theory BO THIDÉ Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden and School of Mathematics and Systems Engineering Växjö University, Sweden Υ UPSILON BOOKS COMMUNA AB UPPSALA SWEDEN · · · Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik Freely downloadable from www.plasma.uu.se/CED This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.4.2) on an HP Visualize 9000⁄360 workstation running HP-UX 11.11. Copyright c 1997, 1998, 1999, 2000, 2001, 2002, 2003 and 2004 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Preface The current book is an outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Classical Electrodynamics in 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced undergradu- ate or beginning graduate level, it is hoped that the present book may be useful for research workers too. It provides a thorough treatment of the theory of electrodynam- ics, mainly from a classical field theoretical point of view, and includes such things as formal electrostatics and magnetostatics and their unification into electrodynam- ics, the electromagnetic potentials, gauge transformations, covariant formulation of classical electrodynamics, force, momentum and energy of the electromagnetic field, radiation and scattering phenomena, electromagnetic waves and their propagation in vacuum and in media, and covariant Lagrangian/Hamiltonian field theoretical meth- ods for electromagnetic fields, particles and interactions. The aim has been to write a book that can serve both as an advanced text in Classical Electrodynamics and as a preparation for studies in Quantum Electrodynamics and related subjects. In an attempt to encourage participation by other scientists and students in the authoring of this book, and to ensure its quality and scope to make it useful in higher university education anywhere in the world, it was produced within a World-Wide Web (WWW) project. This turned out to be a rather successful move. By making an electronic version of the book freely down-loadable on the net, comments have been only received from fellow Internet physicists around the world and from WWW ‘hit’ statistics it seems that the book serves as a frequently used Internet resource. This way it is hoped that it will be particularly useful for students and researchers working under financial or other circumstances that make it difficult to procure a printed copy of the book. Thanks are due not only to Bengt Lundborg for providing the inspiration to write this book, but also to professor CHRISTER WAHLBERG and professor GÖRAN FÄLDT, Uppsala University, and professor YAKOV ISTOMIN, Lebedev Institute, Moscow, for interesting discussions on electrodynamics and relativity in general and on this book in particular. Comments from former graduate students MATTIAS WALDENVIK, TOBIA CAROZZI and ROGER KARLSSON as well as ANDERS ERIKSSON, all at the Swedish Institute of Space Physics in Uppsala and who all have participated in the teaching, vii PREFACE on the material covered in the course and in this book are gratefully acknowledged. Thanks are also due to my long-term space physics colleague HELMUT KOPKA of the Max-Planck-Institut für Aeronomie, Lindau, Germany, who not only taught me about the practical aspects of the of high-power radio wave transmitters and trans- mission lines, but also about the more delicate aspects of typesetting a book in TEX and LATEX. I am particularly indebted to Academician professor VITALIY LAZAREV- ICH GINZBURG, 2003 Nobel Laureate in Physics, for his many fascinating and very elucidating lectures, comments and historical footnotes on electromagnetic radiation while cruising on the Volga river at our joint Russian-Swedish summer schools during the 1990s and for numerous private discussions. Finally, I would like to thank all students and Internet users who have downloaded and commented on the book during its life on the World-Wide Web. Uppsala, Sweden BO THIDÉ January, 2004 viii Version released 19th June 2004 at 21:47. Downloaded from http://www.plasma.uu.se/CED/Book Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Contents Preface vii Contents ix List of Figures xiii 1 Classical Electrodynamics 1 1.1 Electrostatics 2 1.1.1 Coulomb’s law 2 1.1.2 The electrostatic field 3 1.2 Magnetostatics 6 1.2.1 Ampère’s law 6 1.2.2 The magnetostatic field 7 1.3 Electrodynamics 9 1.3.1 Equation of continuity for electric charge 9 1.3.2 Maxwell’s displacement current 10 1.3.3 Electromotive force 10 1.3.4 Faraday’s law of induction 11 1.3.5 Maxwell’s microscopic equations 14 1.3.6 Maxwell’s macroscopic equations 14 1.4 Electromagnetic duality 15 1.5 Bibliography 22 2 Electromagnetic Waves 25 2.1 The wave equations 26 2.1.1 The wave equation for E 26 2.1.2 The wave equation for B 26 2.1.3 The time-independent wave equation for E 27 2.2 Plane waves 30 2.2.1 Telegrapher’s equation 31 2.2.2 Waves in conductive media 32 2.3 Observables and averages 33 ix CONTENTS 2.4 Bibliography 34 3 Electromagnetic Potentials 35 3.1 The electrostatic scalar potential 35 3.2 The magnetostatic vector potential 36 3.3 The electrodynamic potentials 36 3.3.1 Lorenz-Lorentz gauge 38 3.3.2 Coulomb gauge 42 3.3.3 Gauge transformations 42 3.4 Bibliography 45 4 Relativistic Electrodynamics 47 4.1 The special theory of relativity 47 4.1.1 The Lorentz transformation 48 4.1.2 Lorentz space 49 4.1.3 Minkowski space 54 4.2 Covariant classical mechanics 57 4.3 Covariant classical electrodynamics 58 4.3.1 The four-potential 58 4.3.2 The Liénard-Wiechert potentials 59 4.3.3 The electromagnetic field tensor 61 4.4 Bibliography 64 5 Electromagnetic Fields and Particles 67 5.1 Charged particles in an electromagnetic field 67 5.1.1 Covariant equations of motion 67 5.2 Covariant field theory 73 5.2.1 Lagrange-Hamilton formalism for fields and interactions 73 5.3 Bibliography 81 6 Electromagnetic Fields and Matter 83 6.1 Electric polarisation and displacement 83 6.1.1 Electric multipole moments 83 6.2 Magnetisation and the magnetising field 86 6.3 Energy and momentum 88 6.3.1 The energy theorem in Maxwell’s theory 88 6.3.2 The momentum theorem in Maxwell’s theory 89 6.4 Bibliography 91 7 Electromagnetic Fields from Arbitrary Source Distributions 93 7.1 The magnetic field 95 7.2 The electric field 96 7.3 The radiation fields 99 x Version released 19th June 2004 at 21:47. Downloaded from http://www.plasma.uu.se/CED/Book 7.4 Radiated energy 101 7.4.1 Monochromatic signals 101 7.4.2 Finite bandwidth signals 102 7.5 Bibliography 103 8 Electromagnetic Radiation and Radiating Systems 105 8.1 Radiation from extended sources 105 8.1.1 Radiation from a one-dimensional current distribution 106 8.1.2 Radiation from a two-dimensional current distribution 108 8.2 Multipole radiation 112 8.2.1 The Hertz potential 112 8.2.2 Electric dipole radiation 115 8.2.3 Magnetic dipole radiation 117 8.2.4 Electric quadrupole radiation 118 8.3 Radiation from a localised charge in arbitrary motion 119 8.3.1 The Liénard-Wiechert potentials 120 8.3.2 Radiation from an accelerated point charge 122 8.3.3 Bremsstrahlung 133 8.3.4 Cyclotron and synchrotron radiation 138 8.3.5 Radiation from charges moving in matter 145 8.4 Bibliography 152 F Formulae 155 F.1 The electromagnetic field 155 F.1.1 Maxwell’s equations 155 F.1.2 Fields and potentials 155 F.1.3 Force and energy 156 F.2 Electromagnetic radiation 156 F.2.1 Relationship between the field vectors in a plane wave 156 F.2.2 The far fields from an extended source distribution 156 F.2.3 The far fields from an electric dipole 156 F.2.4 The far fields from a magnetic dipole 157 F.2.5 The far fields from an electric quadrupole 157 F.2.6 The fields from a point charge in arbitrary motion 157 F.3 Special relativity 157 F.3.1 Metric tensor 157 F.3.2 Covariant and contravariant four-vectors 157 F.3.3 Lorentz transformation of a four-vector 158 F.3.4 Invariant line element 158 F.3.5 Four-velocity 158 F.3.6 Four-momentum 158 F.3.7 Four-current density 158 Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. xi CONTENTS F.3.8 Four-potential 158 F.3.9 Field tensor 158 F.4 Vector relations 159 F.4.1 Spherical polar coordinates 159 F.4.2 Vector formulae 160 F.5 Bibliography 161 M Mathematical Methods 163 M.1 Scalars, vectors and tensors 163 M.1.1 Vectors 163 M.1.2 Fields 165 M.1.3 Vector algebra 171 M.1.4 Vector analysis 174 M.2 Analytical mechanics 180 M.2.1 Lagrange’s equations 180 M.2.2 Hamilton’s equations 180 M.3 Bibliography 181 Index 183 xii Version released 19th June 2004 at 21:47.
Recommended publications
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • Lo Algebras for Extended Geometry from Borcherds Superalgebras
    Commun. Math. Phys. 369, 721–760 (2019) Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-019-03451-2 Mathematical Physics L∞ Algebras for Extended Geometry from Borcherds Superalgebras Martin Cederwall, Jakob Palmkvist Division for Theoretical Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden. E-mail: [email protected]; [email protected] Received: 24 May 2018 / Accepted: 15 March 2019 Published online: 26 April 2019 – © The Author(s) 2019 Abstract: We examine the structure of gauge transformations in extended geometry, the framework unifying double geometry, exceptional geometry, etc. This is done by giving the variations of the ghosts in a Batalin–Vilkovisky framework, or equivalently, an L∞ algebra. The L∞ brackets are given as derived brackets constructed using an underlying Borcherds superalgebra B(gr+1), which is a double extension of the structure algebra gr . The construction includes a set of “ancillary” ghosts. All brackets involving the infinite sequence of ghosts are given explicitly. All even brackets above the 2-brackets vanish, and the coefficients appearing in the brackets are given by Bernoulli numbers. The results are valid in the absence of ancillary transformations at ghost number 1. We present evidence that in order to go further, the underlying algebra should be the corresponding tensor hierarchy algebra. Contents 1. Introduction ................................. 722 2. The Borcherds Superalgebra ......................... 723 3. Section Constraint and Generalised Lie Derivatives ............. 728 4. Derivatives, Generalised Lie Derivatives and Other Operators ....... 730 4.1 The derivative .............................. 730 4.2 Generalised Lie derivative from “almost derivation” .......... 731 4.3 “Almost covariance” and related operators ..............
    [Show full text]
  • Perturbative Algebraic Quantum Field Theory
    Perturbative algebraic quantum field theory Klaus Fredenhagen Katarzyna Rejzner II Inst. f. Theoretische Physik, Department of Mathematics, Universität Hamburg, University of Rome Tor Vergata Luruper Chaussee 149, Via della Ricerca Scientifica 1, D-22761 Hamburg, Germany I-00133, Rome, Italy [email protected] [email protected] arXiv:1208.1428v2 [math-ph] 27 Feb 2013 2012 These notes are based on the course given by Klaus Fredenhagen at the Les Houches Win- ter School in Mathematical Physics (January 29 - February 3, 2012) and the course QFT for mathematicians given by Katarzyna Rejzner in Hamburg for the Research Training Group 1670 (February 6 -11, 2012). Both courses were meant as an introduction to mod- ern approach to perturbative quantum field theory and are aimed both at mathematicians and physicists. Contents 1 Introduction 3 2 Algebraic quantum mechanics 5 3 Locally covariant field theory 9 4 Classical field theory 14 5 Deformation quantization of free field theories 21 6 Interacting theories and the time ordered product 26 7 Renormalization 26 A Distributions and wavefront sets 35 1 Introduction Quantum field theory (QFT) is at present, by far, the most successful description of fundamental physics. Elementary physics , to a large extent, explained by a specific quantum field theory, the so-called Standard Model. All the essential structures of the standard model are nowadays experimentally verified. Outside of particle physics, quan- tum field theoretical concepts have been successfully applied also to condensed matter physics. In spite of its great achievements, quantum field theory also suffers from several longstanding open problems. The most serious problem is the incorporation of gravity.
    [Show full text]
  • (Aka Second Quantization) 1 Quantum Field Theory
    221B Lecture Notes Quantum Field Theory (a.k.a. Second Quantization) 1 Quantum Field Theory Why quantum field theory? We know quantum mechanics works perfectly well for many systems we had looked at already. Then why go to a new formalism? The following few sections describe motivation for the quantum field theory, which I introduce as a re-formulation of multi-body quantum mechanics with identical physics content. 1.1 Limitations of Multi-body Schr¨odinger Wave Func- tion We used totally anti-symmetrized Slater determinants for the study of atoms, molecules, nuclei. Already with the number of particles in these systems, say, about 100, the use of multi-body wave function is quite cumbersome. Mention a wave function of an Avogardro number of particles! Not only it is completely impractical to talk about a wave function with 6 × 1023 coordinates for each particle, we even do not know if it is supposed to have 6 × 1023 or 6 × 1023 + 1 coordinates, and the property of the system of our interest shouldn’t be concerned with such a tiny (?) difference. Another limitation of the multi-body wave functions is that it is incapable of describing processes where the number of particles changes. For instance, think about the emission of a photon from the excited state of an atom. The wave function would contain coordinates for the electrons in the atom and the nucleus in the initial state. The final state contains yet another particle, photon in this case. But the Schr¨odinger equation is a differential equation acting on the arguments of the Schr¨odingerwave function, and can never change the number of arguments.
    [Show full text]
  • Harmonic Oscillator: Motion in a Magnetic Field
    Harmonic Oscillator: Motion in a Magnetic Field * The Schrödinger equation in a magnetic field The vector potential * Quantized electron motion in a magnetic field Landau levels * The Shubnikov-de Haas effect Landau-level degeneracy & depopulation The Schrödinger Equation in a Magnetic Field An important example of harmonic motion is provided by electrons that move under the influence of the LORENTZ FORCE generated by an applied MAGNETIC FIELD F ev B (16.1) * From CLASSICAL physics we know that this force causes the electron to undergo CIRCULAR motion in the plane PERPENDICULAR to the direction of the magnetic field * To develop a QUANTUM-MECHANICAL description of this problem we need to know how to include the magnetic field into the Schrödinger equation In this regard we recall that according to FARADAY’S LAW a time- varying magnetic field gives rise to an associated ELECTRIC FIELD B E (16.2) t The Schrödinger Equation in a Magnetic Field To simplify Equation 16.2 we define a VECTOR POTENTIAL A associated with the magnetic field B A (16.3) * With this definition Equation 16.2 reduces to B A E A E (16.4) t t t * Now the EQUATION OF MOTION for the electron can be written as p k A eE e 1k(B) 2k o eA (16.5) t t t 1. MOMENTUM IN THE PRESENCE OF THE MAGNETIC FIELD 2. MOMENTUM PRIOR TO THE APPLICATION OF THE MAGNETIC FIELD The Schrödinger Equation in a Magnetic Field Inspection of Equation 16.5 suggests that in the presence of a magnetic field we REPLACE the momentum operator in the Schrödinger equation
    [Show full text]
  • Formulation of Einstein Field Equation Through Curved Newtonian Space-Time
    Formulation of Einstein Field Equation Through Curved Newtonian Space-Time Austen Berlet Lord Dorchester Secondary School Dorchester, Ontario, Canada Abstract This paper discusses a possible derivation of Einstein’s field equations of general relativity through Newtonian mechanics. It shows that taking the proper perspective on Newton’s equations will start to lead to a curved space time which is basis of the general theory of relativity. It is important to note that this approach is dependent upon a knowledge of general relativity, with out that, the vital assumptions would not be realized. Note: A number inside of a double square bracket, for example [[1]], denotes an endnote found on the last page. 1. Introduction The purpose of this paper is to show a way to rediscover Einstein’s General Relativity. It is done through analyzing Newton’s equations and making the conclusion that space-time must not only be realized, but also that it must have curvature in the presence of matter and energy. 2. Principal of Least Action We want to show here the Lagrangian action of limiting motion of Newton’s second law (F=ma). We start with a function q mapping to n space of n dimensions and we equip it with a standard inner product. q : → (n ,(⋅,⋅)) (1) We take a function (q) between q0 and q1 and look at the ds of a section of the curve. We then look at some properties of this function (q). We see that the classical action of the functional (L) of q is equal to ∫ds, L denotes the systems Lagrangian.
    [Show full text]
  • Lecture Notes in Mathematics
    Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann 1251 Differential Geometric Methods in Mathematical Physics Proceedings of the 14th International Conference held in Salamanca, Spain, June 24-29, 1985 Edited by P. L. Garda and A. Perez-Rendon Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Editors Pedro Luis Garda Antonio Perez-Rendon Departamento de Matematicas, Universidad de Salamanca Plaza de la Merced, 1-4, 37008 Salamanca, Spain Mathematics Subject Classification (1980): 17B65, 17B80, 58A 10, 58A50, 58F06, 81-02, 83E80, 83F05 ISBN 3-540-17816-3 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-17816-3 Springer-Verlag New York Berlin Heidelberg Library of Congress Cataloging-in-Publication Data. Differential geometric methods in mathematical physics. (Lecture notes in mathematics; 1251) Papers presented at the 14th International Conference on Differential Geometric Methods in Mathematical Physics. Bibliography: p. 1.Geometry, Differential-Congresses. 2. Mathematical physics-Congresses. I. Gracia Perez, Pedro Luis. II. Perez-Rendon, A., 1936-. III. International Conference on Differential Geometric Methods in Mathematical Physics (14th: 1985: Salamanca, Spain) IV. Series. Lecture notes in mathematics (Springer-Verlag); 1251. OA3.L28no. 1251510s 87-9557 [OC20.7.D52) [530.1 '5636) ISBN 0-387-17816-3 (U.S.) This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid.
    [Show full text]
  • General Relativity 2020–2021 1 Overview
    N I V E R U S E I T H Y T PHYS11010: General Relativity 2020–2021 O H F G E R D John Peacock I N B U Room C20, Royal Observatory; [email protected] http://www.roe.ac.uk/japwww/teaching/gr.html Textbooks These notes are intended to be self-contained, but there are many excellent textbooks on the subject. The following are especially recommended for background reading: Hobson, Efstathiou & Lasenby (Cambridge): General Relativity: An introduction for Physi- • cists. This is fairly close in level and approach to this course. Ohanian & Ruffini (Cambridge): Gravitation and Spacetime (3rd edition). A similar level • to Hobson et al. with some interesting insights on the electromagnetic analogy. Cheng (Oxford): Relativity, Gravitation and Cosmology: A Basic Introduction. Not that • ‘basic’, but another good match to this course. D’Inverno (Oxford): Introducing Einstein’s Relativity. A more mathematical approach, • without being intimidating. Weinberg (Wiley): Gravitation and Cosmology. A classic advanced textbook with some • unique insights. Downplays the geometrical aspect of GR. Misner, Thorne & Wheeler (Princeton): Gravitation. The classic antiparticle to Weinberg: • heavily geometrical and full of deep insights. Rather overwhelming until you have a reason- able grasp of the material. It may also be useful to consult background reading on some mathematical aspects, especially tensors and the variational principle. Two good references for mathematical methods are: Riley, Hobson and Bence (Cambridge; RHB): Mathematical Methods for Physics and Engi- • neering Arfken (Academic Press): Mathematical Methods for Physicists • 1 Overview General Relativity (GR) has an unfortunate reputation as a difficult subject, going back to the early days when the media liked to claim that only three people in the world understood Einstein’s theory.
    [Show full text]
  • Introduction to Gauge Theories and the Standard Model*
    INTRODUCTION TO GAUGE THEORIES AND THE STANDARD MODEL* B. de Wit Institute for Theoretical Physics P.O.B. 80.006, 3508 TA Utrecht The Netherlands Contents The action Feynman rules Photons Annihilation of spinless particles by electromagnetic interaction Gauge theory of U(1) Current conservation Conserved charges Nonabelian gauge fields Gauge invariant Lagrangians for spin-0 and spin-g Helds 10. The gauge field Lagrangian 11. Spontaneously broken symmetry 12. The Brout—Englert-Higgs mechanism 13. Massive SU (2) gauge Helds 14. The prototype model for SU (2) ® U(1) electroweak interactions The purpose of these lectures is to give an introduction to gauge theories and the standard model. Much of this material has also been covered in previous Cem Academic Training courses. This time I intend to start from section 5 and develop the conceptual basis of gauge theories in order to enable the construction of generic models. Subsequently spontaneous symmetry breaking is discussed and its relevance is explained for the renormalizability of theories with massive vector fields. Then we discuss the derivation of the standard model and its most conspicuous features. When time permits we will address some of the more practical questions that arise in the evaluation of quantum corrections to particle scattering and decay reactions. That material is not covered by these notes. CERN Academic Training Programme — 23-27 October 1995 OCR Output 1. The action Field theories are usually defined in terms of a Lagrangian, or an action. The action, which has the dimension of Planck’s constant 7i, and the Lagrangian are well-known concepts in classical mechanics.
    [Show full text]
  • Frequency Domain Analysis of Lightning Protection Using Four Lightning Protection Rods
    SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 5, No. 1, May 2008, 109-120 Frequency Domain Analysis of Lightning Protection Using Four Lightning Protection Rods Vesna Javor1, Predrag Rancic2 Abstract: In this paper the lightning discharge channel is modelled as a vertical monopole antenna excited by a pulse generator at its base. The lightning electromagnetic field of a nearby lightning discharge in the case of lightning protection using four vertical lightning protection rods was determined in the fre- quency domain. Unknown current distributions were determined by numerical solving of a system of integral equations of two potentials using the Point Match- ing Method and polynomial approximation of the current distributions. The influ- ence of the real ground, treated as homogeneous loss half-space of known elec- trical parameters, expressed through a Sommerfeld integral kernel, was modeled using a new Two-image approximation which gives good results in both near and far fields. Keywords: Lightning electromagnetic field, Vertical monopole antenna, Light- ning protection rod, Sommerfeld integral. 1 Introduction A vertical mast antenna (VMA), excited by a pulse generator at its base, is often used for calculating the lightning radiated electromagnetic field as a model of lightning discharge channel of the return stroke [1] with the supposed channel base current at the striking point (e.g. [2] and [3]). The lightning electromagnetic field (LEMF) from the current distribution along the channel is determined in the time domain using the antenna theory whereas the ground is usually treated as a perfectly conducting half-space [4]. Real ground influence is included in calculations in the frequency domain (e.g.
    [Show full text]
  • Mathematical Aspects of Classical Field Theory
    Mathematical Aspects of Classical Field Theory http://dx.doi.org/10.1090/conm/132 Mathematical Aspects of Classical Field Theory Recent Titles in This Series 132 Mark Gotay, Jerrold Marsden, and Vincent Moncrief, Mathematical aspects of classical field theory, 1992 131 L. A. Bokut', Yu. L. Ershov, and A. I. Kostrikin, Editors, Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal' cev, Part 1, 2, and 3, 1992 130 L. Fuchs, K. R. Goodearl, J. T. Stafford, and C. Vinsonhaler, Editors, Abelian groups and noncommutative rings, 1992 129 John R. Graef and Jack K. Hale, Oscillation and dynamics in delay equations, 1992 128 Ridgley Lange and Shengwang Wang, New approaches in spectral decomposition, 1992 127 Vladimir Oliker and Andrejs Treibergs, Editors, Geometry and nonlinear partial differential equations, 1992 126 R. Keith Dennis, Claudio Pedrini, and Michael R. Stein, Editors, Algebraic K-theory, commutative algebra, and algebraic geometry, 1992 125 F. Thomas Bruss, Thomas S. Ferguson, and Stephen M. Samuels, Editors, Strategies for sequential search and selection in real time, 1992 124 Darrell Haile and James Osterburg, Editors, Azumaya algebras, actions, and modules, 1992 123 Steven L. Kleiman and Anders Thorup, Editors, Enumerative algebraic geometry, 1991 122 D. H. Sattinger, C. A. Tracy, and S. Venakides, Editors, Inverse scattering and applications, 1991 121 Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and E~ 1 J, 1991 120 Robert S. Doran, Editor, Selfadjoint and nonselfadjoint operator algebras and operator theory, 1991 119 Robert A. Melter, Azriel Rosenfeld, and Prabir Bhattacharya, Editors, Vision geometry, 1991 118 Yan Shi-Jian, Wang Jiagang, and Yang Chung-chun, Editors, Probability theory and its applications in China, 1991 117 Morton Brown, Editor, Continuum theory and dynamical systems, 1991 116 Brian Harboume and Robert Speiser, Editors, Algebraic geometry: Sundance 1988, 1991 115 Nancy Flournoy and Robert K.
    [Show full text]