Introduction to Crystals Symmetry

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Crystals Symmetry Introduction to crystals symmetry Symmetry in 3D 5/1/2013 L. Viciu| AC II | Symmetry in 3D 1 Outlook • Symmetry elements in 3D: rotoinversion, screw axes • Combining symmetry elements with the lattice • Space group symbols/representation • Wyckoff positions • Crystallographic conventions • Symmetry in crystal systems 5/1/2013 L. Viciu| AC II | Symmetry in 3D 2 Definitions - a remainder • Unit cell: The smallest volume that can generate the entire crystal structure only by means of translation in three dimensions. • Lattice: A rule of translation. 5/1/2013 L. Viciu| AC II | Symmetry in 3D 3 Bravais Basis/ Crystal + lattice Motif structure 1. single atom: Au, Al, Cu, Pt 1. FCC 2. molecule: solidCH4 2. FCC + - + 3. ion pairs: Na /Cl 3. Rock salt 4. atom pairs: Carbon, Si, Ge 4. diamond •A crystal system is described only in terms of the unit cell geometry, i.e. cubic, tetragonal, etc •A crystal structure is described by both the geometry of, and atomic arrangements within, the unit cell, i.e. face centered cubic, body centered5/1/2013 cubic, etc. L. Viciu| AC II | Symmetry in 3D 4 The Bravais lattices 5/1/2013 L. Viciu| AC II | Symmetry in 3D 5 From 2D to 3D • Bravais lattices may be seen as build up layers of the five plane lattices: cubic and tetragonal stacking of square lattice layers orthorhombic P and I stacking of rectangular layers orthorhombic C and F stacking of rectangular centered layers rhombohedral stacking of hexagonal layers hexagonal stacking of hexagonal layers monoclinic stacking of oblique layers triclinic stacking of oblique layers 5/1/2013 L. Viciu| AC II | Symmetry in 3D 6 Combining symmetry elements For two dimensions – 5 lattices – 10 point groups – 17 plane groups For three dimensions – 14 Bravais lattices – 32 point groups – 230 space groups 5/1/2013 L. Viciu| AC II | Symmetry in 3D 7 • Symmetry operations in 2D*: 1. translation 2. rotations 3. reflections 4. glide reflections • Symmetry operations in 3D: the same as in 2D + inversion center, rotoinversions and screw axes * Besides identity 5/1/2013 L. Viciu| AC II | Symmetry in 3D 8 Symmetry elements in 3D • In three dimensions we have additional symmetry operators: 1. inversion center = symmetry center 2. inversion axis = rotoinversion or improper rotation axis 3. screw axes • In addition, the mirror line becomes a mirror plane, and the glides become glide planes. 5/1/2013 L. Viciu| AC II | Symmetry in 3D 9 1. The center of symmetry/inversion center Symbol: 1 “one bar”; Graphical: • The symmetry center: the intersection point of a mirror plane and a 2-fold axis Inversion center (x,y,z) (x, y, z) • It is always present in one of the situations: a rotation axis with even multiplicity and a if an inversion axis with odd multiplicity reflection to it is present is present P3 P2/m 5/1/2013 L. Viciu| AC II | Symmetry in 3D 10 • An inversion center requires a 2-fold axis and a mirror plane to it. • Therefore, an even rotation with a reflection perpendicular to it will give an inversion center. A A= inversion, 1 2 1 i 1rotationby1802 reflection3 3 inversion *The order of 1 has the coordinates (x y z) the operation is not important 2 has the coordinates ( x y z ) 3 has the coordinates ( x y z ) 5/1/2013 L. Viciu| AC II | Symmetry in 3D 11 • The point groups that contain an inversion center are called Laue groups. • If you take away the translational part of the space group symmetry and add an inversion center, you end up with the Laue group. • The Laue groups are used in diffraction: describe the symmetry of the diffraction pattern. 5/1/2013 L. Viciu| AC II | Symmetry in 3D 12 5/1/2013 L. Viciu| AC II | Symmetry in 3D 13 Centrosymmetric structures • If an inversion center is present then the structure is centrosymmetric • In a centrosymmetric structure, the unit cell is chosen so that the origin lays on the inversion center 82% of inorganic crystals are centrosymmetric because Inversion center leads to equal forces in opposing directions favoring stability George M. Sheldrick. • In a non-centrosymmetric space group, the origin is chosen at a highest symmetry point. 5/1/2013 L. Viciu| AC II | Symmetry in 3D 14 32 point groups 11 centrosymmetric point group 20 non-centrosymmetric point groups: + piezoelectrics 432 class* *432 class has a polar axis but no piezoelectricity 10 point groups 10 point groups with unique polar with no unique axis: polar axis Pyroelectric + ferroelectrics • Polar direction = a crystal direction that is not related by symmetry to the opposed direction 5/1/2013 L. Viciu| AC II | Symmetry in 3D 15 Space groups and enantiomorphous molecules Enantiomorphous molecules crystallise in space groups without inversion centre , i, and without reflection planes, m. Altogether there are 11 Point groups possible for enantiomorphous molecules. (“Biological Point Groups”) Enantiomorphous crystals of tartaric acid (monoclinic structure, space group P21) The most common chiral space groups are P212121, P21, P1 and C2221. 15%5/1/2013 of all crystals are enantiomorphicL. Viciu| AC II | Symmetry and in 3D potentially optically active16 Klockmanns Lehrbuch der Mineralogie, 16. Auflage, Enke VerlagStuttgart 1978 2. Axes of inversion/rotoinversion • Rotation + center of symmetry = inversion axis, n , pronounced n bar • It is also called improper rotation axes (Schoenflies symbols, Sn) • Two objects related by an operation of inversion axis are enantiomorphous 2 m Symbol/graphic 1. inversion 2. 180ᵒ 1 axis atom 2 m 3 3. 4. 4 6 m 5/1/2013 L. Viciu| AC II | Symmetry in 3D 17 if 3 31, 4 41 Therefore 4 bar is a distinct operation Spinoid (like a squashed Td) 5/1/2013 L. Viciu| AC II | Symmetry in 3D 18 3. Screw axes: nm Rotation + Translation in axial direction The rotation is combined with a translation in a defined crystallographic direction by a defined step (half a unit cell for twofold screw axes, a third of a unit cell for threefold screw axes, etc counter clockwise rotation with 360ᵒ/n + Translation with m/n (m<n) c. Hammond, the basics of crystallography and diffraction Srew axis nm 5/1/2013 L. Viciu| AC II | Symmetry in 3D 19 3. Screw axes: nm Rotation + Translation in axial direction: 21: ½ displacement on c 1 2 31: /3 displacemnt on c; 32: /3 displacement on c; 2 41: ¼ displacemnt on c; 42 /4 = ½ displacement on c; 43: ¾ displacement on c 1 2 1 3 61: /6 displacement on c; 62: /6= /3 displacement on c; 63: /6= ½ displacement on c, etc 5/1/2013 NotL. shownViciu| AC II | Symmetry in 3D 20 (Fig. 140) Inorganic structural chemistry, U. Mueller Screw axis of order 3: 31; 32 31 32 rotation by a 3-fold axis and rotation by a 3-fold axis and then translation by 1/3 then translation by 2/3 T T is translation periodicity Red color is used only to Is translation component = 1/3 show the objects obtained by translation periodicity 5/1/2013 L. Viciu| AC II | Symmetry in 3D 21 Screw axis of order 3: 31; 32 31 32 rotation by a 3-fold axis and rotation by a 3-fold axis and then translation by 1/3 then translation by 2/3 T 3 gives a clockwise spiral 31 gives an anticlockwise spiral 2 5/1/2013 L. Viciu| AC II | Symmetry in 3D 22 41 4 43 2 T T T 4 gives an 1 4 gives a anticlockwise spiral 3 clockwise spiral Color is used only to show the objects obtained by translation periodicity; otherwise the color represent the same 5/1/2013 L. Viciu| AC II | Symmetry motifin 3D 23 42 42 gives two motifs at every level and they are 180 away from each other 42 gives two spirals - one left handed (anticlockwise) and one right handed (clockwise) – in the same pattern T 5/1/2013 L. Viciu| AC II | Symmetry in 3D 24 Quartz symmetry View along c axis - quartz (hexagonal) 573C - quartz (trigonal) 5/1/2013 L. Viciu| AC II | Symmetry in 3D 25 P6221 and P6421 P3121 and P3221 Glide planes in Space Groups • In 2D the gliding (translation) is in the direction of the dashes: g1 g2 2 3 1 • In 3D we can look at a glide from 4 different directions: Down from the top (1) Edge on and to the gliding direction (2) Edge on and to the gliding direction (3) Edge on and in between normal to and parallel to the gliding direction (4) (1) (3) * * - gliding direction 5/1/2013 (2)L. Viciu| AC II | Symmetry in 3D 26 (4) (1) Looking down from top of a glide use or or a glide b glide n glide = diagonal glide b b a a a = ½ of a axis = ½ of b axis = ½ (a+b) axis Ex: n-glide b a c glide is represented in plane as well and the translation is ½ of c axis 5/1/2013 L. Viciu| AC II | Symmetry in 3D 27 (2) Looking normal to the gliding direction use a dashed line b Ex: b glide a (3) Looking in the direction of gliding use a dotted line b Ex: b glide a (4) Looking not parallel not perpendicular to the direction of gliding use a mixed line b Ex: b glide a 5/1/2013 L. Viciu| AC II | Symmetry in 3D 28 d-glide = diamond glide • Found in centered cells only (not in primitive lattices) • It originates from the diamond structure where the diamond glide has been first observed. • The translation is ½ of the ½(a+b) axis ½ (a+b) a+b ½ (½ (a+b)) 5/1/2013 L.
Recommended publications
  • Screw and Lie Group Theory in Multibody Dynamics Recursive Algorithms and Equations of Motion of Tree-Topology Systems
    Multibody Syst Dyn DOI 10.1007/s11044-017-9583-6 Screw and Lie group theory in multibody dynamics Recursive algorithms and equations of motion of tree-topology systems Andreas Müller1 Received: 12 November 2016 / Accepted: 16 June 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Screw and Lie group theory allows for user-friendly modeling of multibody sys- tems (MBS), and at the same they give rise to computationally efficient recursive algo- rithms. The inherent frame invariance of such formulations allows to use arbitrary reference frames within the kinematics modeling (rather than obeying modeling conventions such as the Denavit–Hartenberg convention) and to avoid introduction of joint frames. The com- putational efficiency is owed to a representation of twists, accelerations, and wrenches that minimizes the computational effort. This can be directly carried over to dynamics formula- tions. In this paper, recursive O(n) Newton–Euler algorithms are derived for the four most frequently used representations of twists, and their specific features are discussed. These for- mulations are related to the corresponding algorithms that were presented in the literature. Two forms of MBS motion equations are derived in closed form using the Lie group formu- lation: the so-called Euler–Jourdain or “projection” equations, of which Kane’s equations are a special case, and the Lagrange equations. The recursive kinematics formulations are readily extended to higher orders in order to compute derivatives of the motions equations. To this end, recursive formulations for the acceleration and jerk are derived. It is briefly discussed how this can be employed for derivation of the linearized motion equations and their time derivatives.
    [Show full text]
  • Nanocrystalline Nanowires: I. Structure
    Nanocrystalline Nanowires: I. Structure Philip B. Allen Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800∗ and Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973-5000 (Dated: September 7, 2006) Geometric constructions of possible atomic arrangements are suggested for inorganic nanowires. These are fragments of bulk crystals, and can be called \nanocrystalline" nanowires (NCNW). To minimize surface polarity, nearly one-dimensional formula units, oriented along the growth axis, generate NCNW's by translation and rotation. PACS numbers: 61.46.-w, 68.65.La, 68.70.+w Introduction. Periodic one-dimensional (1D) motifs twinned16; \core-shell" (COHN)4,17; and longitudinally are common in nature. The study of single-walled car- heterogeneous (LOHN) NCNW's. bon nanotubes (SWNT)1,2 is maturing rapidly, but other Design principle. The remainder of this note is about 1D systems are at an earlier stage. Inorganic nanowires NCNW's. It offers a possible design principle, which as- are the topic of the present two papers. There is much sists visualization of candidate atomic structures, and optimism in this field3{6. Imaging gives insight into provides a template for arrangements that can be tested self-assembled nanostructures, and incentives to improve theoretically, for example by density functional theory growth protocols. Electron microscopy, diffraction, and (DFT). The basic idea is (1) choose a maximally linear, optical spectroscopy on individual wires7 provide detailed charge-neutral, and (if possible) dipole-free atomic clus- information. Device applications are expected. These ter containing a single formula unit, and (2) using if possi- systems offer great opportunities for atomistic modelling.
    [Show full text]
  • Glide and Screw
    Space Groups •The 32 crystallographic point groups, whose operation have at least one point unchanged, are sufficient for the description of finite, macroscopic objects. •However since ideal crystals extend indefinitely in all directions, we must also include translations (the Bravais lattices) in our description of symmetry. Space groups: formed when combining a point symmetry group with a set of lattice translation vectors (the Bravais lattices), i.e. self-consistent set of symmetry operations acting on a Bravais lattice. (Space group lattice types and translations have no meaning in point group symmetry.) Space group numbers for all the crystal structures we have discussed this semester, and then some, are listed in DeGraef and Rohrer books and pdf. document on structures and AFLOW website, e.g. ZnS (zincblende) belongs to SG # 216: F43m) Class21/1 Screw Axes •The combination of point group symmetries and translations also leads to two additional operators known as glide and screw. •The screw operation is a combination of a rotation and a translation parallel to the rotation axis. •As for simple rotations, only diad, triad, tetrad and hexad axes, that are consistent with Bravais lattice translation vectors can be used for a screw operator. •In addition, the translation on each rotation must be a rational fraction of the entire translation. •There is no combination of rotations or translations that can transform the pattern produced by 31 to the pattern of 32 , and 41 to the pattern of 43, etc. •Thus, the screw operation results in handedness Class21/2 or chirality (can’t superimpose image on another, e.g., mirror image) to the pattern.
    [Show full text]
  • Quartz Crystal Division of Seiko Instruments Inc
    (1) Quartz Crystal Division of Seiko Instruments Inc. and affiliates, which is responsible for manufacturing the products described in this catalogue, holds ISO 9001 and ISO 14001 certification. (2) SII Crystal Technology Inc. Tochigi site holds IATF 16949 certification. Quartz Crystal Product Catalogue Electronic Components Sales Head Office 1-8, Nakase, Mihamaku, Chiba-shi, Chiba 261-8507, Japan Telephone:+81-43-211-1207 Facsimile:+81-43-211-8030 E-mail:[email protected] <Manufacturer> SII Crystal Technology Inc. 1110, Hirai-cho, Tochigi-shi, Tochigi 328-0054, Japan Released in February 2019 No.QTC2019EJ-02C1604 Creating Time - Optimizing Time - Enriching Time Seiko Instruments Inc. (SII), founded in 1937 as a member of the Seiko Group specializing in the manufacture of watches, has leveraged its core competency in high precision watches to create a wide range of new products and technologies. Over the years SII has developed high-precision processed parts and machine tools that pride themselves on their sub-micron processing capability, quartz crystals that came about as a result of our quartz watch R&D, and electronic components such as micro batteries. Optimizing our extensive experience and expertise, we have since diversified into such new fields as compact, lightweight, exceedingly quiet thermal printers, and inkjet printheads, a key component in wide format inkjet printers for corporate use. SII, in the years to come, will maintain an uncompromised dedication to its time-honored technologies and innovations of craftsmanship, miniaturization, and efficiency that meet the needs of our changing society and enrich the lives of those around us. SEIKO HOLDINGS GROUP 1881 1917 1983 1997 2007 K.
    [Show full text]
  • WHAT IS...A Quasicrystal?, Volume 53, Number 8
    ?WHAT IS... a Quasicrystal? Marjorie Senechal The long answer is: no one is sure. But the short an- diagrams? The set of vertices of a Penrose tiling does— swer is straightforward: a quasicrystal is a crystal that was known before Shechtman’s discovery. But with forbidden symmetry. Forbidden, that is, by “The what other objects do, and how can we tell? The ques- Crystallographic Restriction”, a theorem that confines tion was wide open at that time, and I thought it un- the rotational symmetries of translation lattices in two- wise to replace one inadequate definition (the lattice) and three-dimensional Euclidean space to orders 2, 3, with another. That the commission still retains this 4, and 6. This bedrock of theoretical solid-state sci- definition today suggests the difficulty of the ques- ence—the impossibility of five-fold symmetry in crys- tion we deliberately but implicitly posed. By now a tals can be traced, in the mineralogical literature, back great many kinds of aperiodic crystals have been to 1801—crumbled in 1984 when Dany Shechtman, a grown in laboratories around the world; most of them materials scientist working at what is now the National are metals, alloys of two or three kinds of atoms—bi- Institute of Standards and Technology, synthesized nary or ternary metallic phases. None of their struc- aluminium-manganese crystals with icosahedral sym- tures has been “solved”. (For a survey of current re- metry. The term “quasicrystal”, hastily coined to label search on real aperiodic crystals see, for example, the such theretofore unthinkable objects, suggests the website of the international conference ICQ9, confusions that Shechtman’s discovery sowed.
    [Show full text]
  • Bubble Raft Model for a Paraboloidal Crystal
    Syracuse University SURFACE Physics College of Arts and Sciences 9-17-2007 Bubble Raft Model for a Paraboloidal Crystal Mark Bowick Department of Physics, Syracuse University, Syracuse, NY Luca Giomi Syracuse University Homin Shin Syracuse University Creighton K. Thomas Syracuse University Follow this and additional works at: https://surface.syr.edu/phy Part of the Physics Commons Recommended Citation Bowick, Mark; Giomi, Luca; Shin, Homin; and Thomas, Creighton K., "Bubble Raft Model for a Paraboloidal Crystal" (2007). Physics. 144. https://surface.syr.edu/phy/144 This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact [email protected]. Bubble Raft Model for a Paraboloidal Crystal Mark J. Bowick, Luca Giomi, Homin Shin, and Creighton K. Thomas Department of Physics, Syracuse University, Syracuse New York, 13244-1130 We investigate crystalline order on a two-dimensional paraboloid of revolution by assembling a single layer of millimeter-sized soap bubbles on the surface of a rotating liquid, thus extending the classic work of Bragg and Nye on planar soap bubble rafts. Topological constraints require crystalline configurations to contain a certain minimum number of topological defects such as disclinations or grain boundary scars whose structure is analyzed as a function of the aspect ratio of the paraboloid. We find the defect structure to agree with theoretical predictions and propose a mechanism for scar nucleation in the presence of large Gaussian curvature. Soft materials such as amphiphilic membranes, diblock any triangulation of M reads copolymers and colloidal emulsions can form ordered structures with a wide range of complex geometries and Q = X(6 ci)+ X (4 ci)=6χ , (1) − − topologies.
    [Show full text]
  • Crystal Structures and Symmetry 1 Crystal Structures and Symmetry
    PHYS 624: Crystal Structures and Symmetry 1 Crystal Structures and Symmetry Introduction to Solid State Physics http://www.physics.udel.edu/∼bnikolic/teaching/phys624/phys624.html PHYS 624: Crystal Structures and Symmetry 2 Translational Invariance • The translationally invariant nature of the periodic solid and the fact that the core electrons are very tightly bound at each site (so we may ignore their dynamics) makes approximate solutions to many-body problem ≈ 1021 atoms/cm3 (essentially, a thermodynamic limit) possible. Figure 1: The simplest model of a solid is a periodic array of valance orbitals embedded in a matrix of atomic cores. Solving the problem in one of the irreducible elements of the periodic solid (e.g., one of the spheres in the Figure), is often equivalent to solving the whole system. PHYS 624: Crystal Structures and Symmetry 3 From atomic orbitals to solid-state bands • If two orbitals are far apart, each orbital has a Hamiltonian H0 = εn, where n is the orbital occupancy ⇐ Ignoring the effects of electronic corre- lations (which would contribute terms proportional to n↑n↓). + +++ ... = Band E Figure 2: If we bring many orbitals into proximity so that they may exchange electrons (hybridize), then a band is formed centered around the location of the isolated orbital, and with width proportional to the strength of the hybridization PHYS 624: Crystal Structures and Symmetry 4 From atomic orbitals to solid-state bands • Real Life: Solids are composed of elements with multiple orbitals that produce multiple bonds. Now imagine what happens if we have several orbitals on each site (ie s,p, etc.), as we reduce the separation between the orbitals and increase their overlap, these bonds increase in width and may eventually overlap, forming bands.
    [Show full text]
  • Crystal Symmetry Groups
    X-Ray and Neutron Crystallography rational numbers is a group under Crystal Symmetry Groups multiplication, and both it and the integer group already discussed are examples of infinite groups because they each contain an infinite number of elements. ymmetry plays an important role between the integers obey the rules of In the case of a symmetry group, in crystallography. The ways in group theory: an element is the operation needed to which atoms and molecules are ● There must be defined a procedure for produce one object from another. For arrangeds within a unit cell and unit cells example, a mirror operation takes an combining two elements of the group repeat within a crystal are governed by to form a third. For the integers one object in one location and produces symmetry rules. In ordinary life our can choose the addition operation so another of the opposite hand located first perception of symmetry is what that a + b = c is the operation to be such that the mirror doing the operation is known as mirror symmetry. Our performed and u, b, and c are always is equidistant between them (Fig. 1). bodies have, to a good approximation, elements of the group. These manipulations are usually called mirror symmetry in which our right side ● There exists an element of the group, symmetry operations. They are com- is matched by our left as if a mirror called the identity element and de- bined by applying them to an object se- passed along the central axis of our noted f, that combines with any other bodies.
    [Show full text]
  • Quasicrystals a New Kind of Symmetry Sandra Nair First, Definitions
    Quasicrystals A new kind of symmetry Sandra Nair First, definitions ● A lattice is a poset in which every element has a unique infimum and supremum. For example, the set of natural numbers with the notion of ordering by magnitude (1<2). For our purposes, we can think of an array of atoms/molecules with a clear sense of assignment. ● A Bravais lattice is a discrete infinite array of points generated by linear integer combinations of 3 independent primitive vectors: {n1a1 + n2a2 + n3a3 | n1, n2, n3 ∈ Z}. ● Crystal structures = info of lattice points + info of the basis (primitive) vectors. ● Upto isomorphism of point groups (group of isometries leaving at least 1 fixed point), 14 different Bravais lattice structures possible in 3D. Now, crystals... ● Loosely speaking, crystals are molecular arrangements built out of multiple unit cells of one (or more) Bravais lattice structures. ● Crystallographic restriction theorem: The rotational symmetries of a discrete lattice are limited to 2-, 3-, 4-, and 6-fold. ● This leads us to propose a “functional” definition: A crystal is a material that has a discrete diffraction pattern, displaying rotational symmetries of orders 2, 3, 4 and 6. ● Note: Order 5 is a strictly forbidden symmetry → important for us. Tessellations aka tilings Now that we have diffraction patterns to work with, we consider the question of whether a lattice structure tiles or tessellates the plane. This is where the order of the symmetry plays a role. The crystals are special, as they display translational symmetries. As such, the tiling of their lattice structures (which we could see thanks to diffraction patterns) are periodic- they repeat at regular intervals.
    [Show full text]
  • Symmetry Indicators and Anomalous Surface States of Topological Crystalline Insulators
    PHYSICAL REVIEW X 8, 031070 (2018) Symmetry Indicators and Anomalous Surface States of Topological Crystalline Insulators Eslam Khalaf,1,2 Hoi Chun Po,2 Ashvin Vishwanath,2 and Haruki Watanabe3 1Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany 2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 3Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan (Received 15 February 2018; published 14 September 2018) The rich variety of crystalline symmetries in solids leads to a plethora of topological crystalline insulators (TCIs), featuring distinct physical properties, which are conventionally understood in terms of bulk invariants specialized to the symmetries at hand. While isolated examples of TCI have been identified and studied, the same variety demands a unified theoretical framework. In this work, we show how the surfaces of TCIs can be analyzed within a general surface theory with multiple flavors of Dirac fermions, whose mass terms transform in specific ways under crystalline symmetries. We identify global obstructions to achieving a fully gapped surface, which typically lead to gapless domain walls on suitably chosen surface geometries. We perform this analysis for all 32 point groups, and subsequently for all 230 space groups, for spin-orbit-coupled electrons. We recover all previously discussed TCIs in this symmetry class, including those with “hinge” surface states. Finally, we make connections to the bulk band topology as diagnosed through symmetry-based indicators. We show that spin-orbit-coupled band insulators with nontrivial symmetry indicators are always accompanied by surface states that must be gapless somewhere on suitably chosen surfaces. We provide an explicit mapping between symmetry indicators, which can be readily calculated, and the characteristic surface states of the resulting TCIs.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • 1 NANO 704-Crystallography & Structure of Nanomaterials 3
    1 NANO 704-Crystallography & Structure of Nanomaterials 3. Space Groups Space lattices Lattice points are all equivalent by translational symmetry. We start with a primitive lattice, having points at rabcuvw uvw, where uvw,, ¢ . So lattice points exist at (0,0,0) and all equivalent positions. If we have a lattice point at xyz,, , then we also have a lattice point at xuyvzw,, . Suppose two lattice points exist at xyz111,, and xyz222,, . If xyz,, is a lattice point, then xyz,, x212121 x , y y , z z is also a lattice point. But this does not imply that for all xyz,, representing lattice points, the values of xyz,, are integers. In particular, it is often useful to represent some of them by half integers. A primitive cell has lattice points at 0,0,0 . Centered cells have additional lattice points. 11 An A-centered cell also has points at 0,22 , . (Center of the A face.) 11 A B-centered cell also has points at 22,0, . (Center of the B face.) 11 A C-centered cell also has points at 22,,0. (Center of the C face.) 11 11 11 An F (face)-centered cell also has points at 0,22 , , 22,0, , 22,,0. (Centers of all three faces.) 111 An I (body)-centered cell also has points at 222,, . (Center point of the unit cell.) Observations I. Suppose a cell is both A- and B-centered. The lattice points exist at 11 11 P1 : 0,0,0 , P2 : 0,22 , , and P3 : 22,0, and equivalent positions. P1 and P2 form a lattice row.
    [Show full text]