Quasicrystals

Total Page:16

File Type:pdf, Size:1020Kb

Quasicrystals Volume 106, Number 6, November–December 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 975–982 (2001)] Quasicrystals Volume 106 Number 6 November–December 2001 John W. Cahn The discretely diffracting aperiodic crystals Key words: aperiodic crystals; new termed quasicrystals, discovered at NBS branch of crystallography; quasicrystals. National Institute of Standards and in the early 1980s, have led to much inter- Technology, disciplinary activity involving mainly Gaithersburg, MD 20899-8555 materials science, physics, mathematics, and crystallography. It led to a new un- Accepted: August 22, 2001 derstanding of how atoms can arrange [email protected] themselves, the role of periodicity in na- ture, and has created a new branch of crys- tallography. Available online: http://www.nist.gov/jres 1. Introduction The discovery of quasicrystals at NBS in the early Crystal periodicity has been an enormously important 1980s was a surprise [1]. By rapid solidification we had concept in the development of crystallography. Hau¨y’s made a solid that was discretely diffracting like a peri- hypothesis that crystals were periodic structures led to odic crystal, but with icosahedral symmetry. It had long great advances in mathematical and experimental crys- been known that icosahedral symmetry is not allowed tallography in the 19th century. The foundation of crys- for a periodic object [2]. tallography in the early nineteenth century was based on Periodic solids give discrete diffraction, but we did the restrictions that periodicity imposes. Periodic struc- not know then that certain kinds of aperiodic objects can tures in two or three dimensions can only have 1,2,3,4, also give discrete diffraction; these objects conform to a and 6 fold symmetry axes. With no exceptions, each mathematical concept called almost-1 or quasi-periodic- crystal was found to conform to one of only 32 ways of ity [3]. By definition all quasi-periodic objects diffract combining these symmetry axes, the so-called discretely, even though they are not periodic. Quasiperi- “crystallographic” point group symmetries. External odic objects can have any of the infinite set of point forms of periodic crystals were found to be limited to group symmetries listed as non-crystallographic in the combinations of only 47 forms (32 general and 15 spe- International Tables for Crystallography [4]; because cial) made of symmetrically arranged bounding planes they have a single rotation axis of order 5, or one greater [5]. Cubes, octahedra, and tetrahedra, for instance, are than or equal to 7, or have icosahedral symmetry with its examples of special forms belonging to the cubic point six intersecting 5-fold axes. groups, octahedra to point groups 432, m3, and m3m, tetrahedra to 23 and 43m, and cubes to all five. In the nineteenth century each known crystal could be fit into 1 For reason discussed below we need not be concerned with almost periodicity. one (or more) of these 32 point groups by the examina- tion of its external form. That no additional 975 Volume 106, Number 6, November–December 2001 Journal of Research of the National Institute of Standards and Technology form was found could be taken as proof that all crystals Interim Commission on Aperiodic Crystals wrote “by are periodic. Regular icosahedra and dodecahedra are ‘crystal’ we mean any solid having an essentially dis- special forms of both icosahedral point groups, 235 and crete diffraction pattern, and by ‘aperiodic crystal’ we m35. All icosahedral forms have fifteen intersecting 2- mean any crystal in which three-dimensional lattice pe- and ten intersecting 3-fold axes, as well as six intersect- riodicity can be considered to be absent” [9]. By this ing non-crystallographic 5-fold axes. latest definition, our solid is a crystal, albeit an aperiodic With the assumption of periodicity, the mathematical one. It is a “quasiperiodic crystal” or quasicrystal for aspects of crystallography were set and completely short, a word coined by Levine and Steinhardt [10]. worked out in the 19th century; that aspect became an Our surprising discovery created quite a stir and has almost closed field. In two and three dimensions the influenced research in many fields, not just crystallogra- number of crystal systems, point groups, and plane or phy, but also materials science, physics, mathematics space groups were all enumerated. When the allowed [11,12], biology [13,14], and even art. There have been symmetry axes are combined with translations, it was about 10 000 papers in these fields and many conference shown that there are only 230 space groups in three proceedings [15]. Hundreds of quasicrystals have been dimensions. In two dimensions there are only ten point found since, some with non-crystallographic axial sym- groups and seventeen plane groups. An elementary metries, pentagonal, octagonal [16], decagonal [17], proof why this listing contains every case allowed by and dodecagonal [18]. The crystals with axial sym- periodicity and why no others are allowed has long been metries are usually periodic along the symmetry axis, available in popular mathematics books [6]. Such com- and quasiperiodic in the basal plane. plete listing are called catalogs. Each one of the seven- Quasiperiodicity is a form of aperiodicity that has teen are beautifully illustrated in etchings by M. Escher many of the attributes of periodicity. As one of their [7], as well as Moorish tilings and Turkish carpets. defining properties, Fourier transforms of quasiperiodic Extensions were developed for color groups and for functions are discrete sets of delta-functions; they can crystallography in higher dimensions. Magnetic struc- always be expressed as a series of sine and cosine terms, tures and their 1609 Shubnikov space groups are an but with incommensurate lengths, or a number of arith- example of such an extension in which spins, up or metically independent basis vectors that exceeds the down (or two colors), are treated as if in a fourth dimen- number of independent variables. Physically, a sion [8]. quasiperiodic object diffracts to give a pattern with With the advent of x-ray diffraction in 1912, external sharp Bragg spots. But whereas diffraction from a peri- form became less important. Crystals became defined as odic object forms a reciprocal lattice that can be indexed periodic arrangements of identical unit cells. The domi- with a set of d reciprocal basis vectors, where d is the nant work of crystallographers became structure deter- dimension, the diffraction pattern from a quasiperiodic minations by diffraction to find the atom content of one object requires a finite number, D > d, independent ba- unit cell. The method depends on an assumed periodic- sis vectors. An important consequence of this is that any ity, and the results usually confirmed it. quasiperiodic function can always be represented as a periodic function in D dimensions. The aperiodic func- tion then is a d-dimensional cut of this periodic function. 2. Discussion If D is infinite, the function is called almost periodic. We have so far not been concerned with almost periodicity, Had we found a crystal? Many definitions of crystals since in any experiment D is less than or equal to the are in use, some have changed over the centuries. Our number of observed reflections, and thus is finite. solid was metallic and thus not a “clear transparent As a simple example consider the one-dimensional mineral.” It can be grown to form “convex solids en- function f(x) = cos x + cos bx. The Fourier transform closed by symmetrically arranged plane surfaces, inter- consists of two delta functions. If b is rational, f is secting at definite and characteristic angles.” According periodic, the two delta functions can be indexed with a to the latter of these older definitions, quasicrystals are single reciprocal lattice vector. If b is irrational, f is crystals. The discovery in 1912 that crystals could dif- quasiperiodic; there are two incommensurate lengths in fract x-rays discretely implied either their periodicity or the Fourier transform; D = 2. The function f(x,y) = cos quasiperiodicity. But as noted above, the subsequent x + cos y is periodic in two dimensions; the quasiperi- structure determinations, seem to have led to the accep- odic one-dimensional f(x) is recovered by setting tance of a definition of crystals based on the periodicity y = bx. Note that there would be no diffuse scattering of their internal structure, and one which unnecessarily from a quasiperiodic object with f as its density func- ruled out quasiperiodicity. But by 1992 the IUCr Ad tion. 976 Volume 106, Number 6, November–December 2001 Journal of Research of the National Institute of Standards and Technology Figure 1 shows the first diffraction pattern taken from and each rhomb becomes a square with a unique orien- a quasicrystal oriented along the 5. Note first the discrete tation. A zigzag path along the lines of the tiling be- diffraction and the apparent 10-fold symmetry. Note that comes a Cartesian path in five dimensions, and a five- there are no systematic rows; spots twice or three times index coordinate system specifies each corner. In five as far as a bright spot are much weaker if seen at all. dimensions the Penrose tiling is confined to the set of all Note that the ratio of distances in any row is the “golden the lattice points within a slice bounded by two parallel mean” ␶,(␶ = 2 cos 360 =(1+͙5)/2 = 1.618034...), plane hypersurfaces with irrational orientations. and that ␶ occurs naturally in the ratios of the magni- Since the (111) plane of the primitive cubic lattice is tudes of vector sums of spots at 360 from one another. the two-dimensional hexagonal lattice, the three-dimen- Lastly note that it is impossible to index this pattern with sional hexagonal lattice can be considered as the (1110) just three reciprocal lattice vectors.
Recommended publications
  • The Reciprocal Lattice
    Appendix A THE RECIPROCAL LATTICE When the translations of a primitive space lattice are denoted by a, b and c, the vector p to any lattice point is given p = ua + vb + we. The definition of the reciprocal lattice is that the translations a*, b* and c*, which define the reciprocal lattice fulfil the following relationships: (A. I) a*.b = b*.c = c*.a = a.b* = b.c* =c. a*= 0 (A.2) It can then be easily shown that: (1) Ic* I = 1/c-spacing of primitive lattice and similarly forb* and a*. (2) a*= (b 1\ c)ja.(b 1\ c) b* = (c 1\ a)jb.(c 1\ a) c* =(a 1\ b)/c-(a 1\ b) These last three relations are often used as a definition of the reciprocal lattice. Two properties of the reciprocal lattice are particularly important: (a) The vector g* defined by g* = ha* + kb* + lc* (where h, k and I are integers to the point hkl in the reciprocal lattice) is normal to the plane of Miller indices (hkl) in the primary lattice. (b) The magnitude Ig* I of this vector is the reciprocal of the spacing of (hkl) in the primary lattice. AI ALLOWED REFLECTIONS The kinematical structure factor for reflections is given by Fhkl = I;J;exp[- 2ni(hu; + kv; + lw)] (A.3) where ui' v; and W; are the coordinates of the atoms and hkl the Miller indices of the reflection g. If there is only one atom at 0, 0, 0 in the unit cell then the structure factor will be independent of hkl since for all values of h, k and I we have Fhkl =f.
    [Show full text]
  • The 4 Reciprocal Lattice
    4 The Reciprocal Lattice by Andr~ Authier This electronic edition may be freely copied and redistributed for educational or research purposes only. It may not be sold for profit nor incorporated in any product sold for profit without the express pernfission of The Executive Secretary, International Union of Crystallography, 2 Abbey Square, Chester CIII 211[;, [;K Copyright in this electronic ectition (<.)2001 International l.Jnion of Crystallography Published for the International Union of Crystallography by University College Cardiff Press Cardiff, Wales © 1981 by the International Union of Crystallography. All rights reserved. Published by the University College Cardiff Press for the International Union of Crystallography with the financial assistance of Unesco Contract No. SC/RP 250.271 This pamphlet is one of a series prepared by the Commission on Crystallographic Teaching of the International Union of Crystallography, under the General Editorship of Professor C. A. Taylor. Copies of this pamphlet and other pamphlets in the series may be ordered direct from the University College Cardiff Press, P.O. Box 78, Cardiff CF1 1XL, U.K. ISBN 0 906449 08 I Printed in Wales by University College, Cardiff. Series Preface The long term aim of the Commission on Crystallographic Teaching in establishing this pamphlet programme is to produce a large collection of short statements each dealing with a specific topic at a specific level. The emphasis is on a particular teaching approach and there may well, in time, be pamphlets giving alternative teaching approaches to the same topic. It is not the function of the Commission to decide on the 'best' approach but to make all available so that teachers can make their own selection.
    [Show full text]
  • Quartz Crystal Division of Seiko Instruments Inc
    (1) Quartz Crystal Division of Seiko Instruments Inc. and affiliates, which is responsible for manufacturing the products described in this catalogue, holds ISO 9001 and ISO 14001 certification. (2) SII Crystal Technology Inc. Tochigi site holds IATF 16949 certification. Quartz Crystal Product Catalogue Electronic Components Sales Head Office 1-8, Nakase, Mihamaku, Chiba-shi, Chiba 261-8507, Japan Telephone:+81-43-211-1207 Facsimile:+81-43-211-8030 E-mail:[email protected] <Manufacturer> SII Crystal Technology Inc. 1110, Hirai-cho, Tochigi-shi, Tochigi 328-0054, Japan Released in February 2019 No.QTC2019EJ-02C1604 Creating Time - Optimizing Time - Enriching Time Seiko Instruments Inc. (SII), founded in 1937 as a member of the Seiko Group specializing in the manufacture of watches, has leveraged its core competency in high precision watches to create a wide range of new products and technologies. Over the years SII has developed high-precision processed parts and machine tools that pride themselves on their sub-micron processing capability, quartz crystals that came about as a result of our quartz watch R&D, and electronic components such as micro batteries. Optimizing our extensive experience and expertise, we have since diversified into such new fields as compact, lightweight, exceedingly quiet thermal printers, and inkjet printheads, a key component in wide format inkjet printers for corporate use. SII, in the years to come, will maintain an uncompromised dedication to its time-honored technologies and innovations of craftsmanship, miniaturization, and efficiency that meet the needs of our changing society and enrich the lives of those around us. SEIKO HOLDINGS GROUP 1881 1917 1983 1997 2007 K.
    [Show full text]
  • WHAT IS...A Quasicrystal?, Volume 53, Number 8
    ?WHAT IS... a Quasicrystal? Marjorie Senechal The long answer is: no one is sure. But the short an- diagrams? The set of vertices of a Penrose tiling does— swer is straightforward: a quasicrystal is a crystal that was known before Shechtman’s discovery. But with forbidden symmetry. Forbidden, that is, by “The what other objects do, and how can we tell? The ques- Crystallographic Restriction”, a theorem that confines tion was wide open at that time, and I thought it un- the rotational symmetries of translation lattices in two- wise to replace one inadequate definition (the lattice) and three-dimensional Euclidean space to orders 2, 3, with another. That the commission still retains this 4, and 6. This bedrock of theoretical solid-state sci- definition today suggests the difficulty of the ques- ence—the impossibility of five-fold symmetry in crys- tion we deliberately but implicitly posed. By now a tals can be traced, in the mineralogical literature, back great many kinds of aperiodic crystals have been to 1801—crumbled in 1984 when Dany Shechtman, a grown in laboratories around the world; most of them materials scientist working at what is now the National are metals, alloys of two or three kinds of atoms—bi- Institute of Standards and Technology, synthesized nary or ternary metallic phases. None of their struc- aluminium-manganese crystals with icosahedral sym- tures has been “solved”. (For a survey of current re- metry. The term “quasicrystal”, hastily coined to label search on real aperiodic crystals see, for example, the such theretofore unthinkable objects, suggests the website of the international conference ICQ9, confusions that Shechtman’s discovery sowed.
    [Show full text]
  • Bubble Raft Model for a Paraboloidal Crystal
    Syracuse University SURFACE Physics College of Arts and Sciences 9-17-2007 Bubble Raft Model for a Paraboloidal Crystal Mark Bowick Department of Physics, Syracuse University, Syracuse, NY Luca Giomi Syracuse University Homin Shin Syracuse University Creighton K. Thomas Syracuse University Follow this and additional works at: https://surface.syr.edu/phy Part of the Physics Commons Recommended Citation Bowick, Mark; Giomi, Luca; Shin, Homin; and Thomas, Creighton K., "Bubble Raft Model for a Paraboloidal Crystal" (2007). Physics. 144. https://surface.syr.edu/phy/144 This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact [email protected]. Bubble Raft Model for a Paraboloidal Crystal Mark J. Bowick, Luca Giomi, Homin Shin, and Creighton K. Thomas Department of Physics, Syracuse University, Syracuse New York, 13244-1130 We investigate crystalline order on a two-dimensional paraboloid of revolution by assembling a single layer of millimeter-sized soap bubbles on the surface of a rotating liquid, thus extending the classic work of Bragg and Nye on planar soap bubble rafts. Topological constraints require crystalline configurations to contain a certain minimum number of topological defects such as disclinations or grain boundary scars whose structure is analyzed as a function of the aspect ratio of the paraboloid. We find the defect structure to agree with theoretical predictions and propose a mechanism for scar nucleation in the presence of large Gaussian curvature. Soft materials such as amphiphilic membranes, diblock any triangulation of M reads copolymers and colloidal emulsions can form ordered structures with a wide range of complex geometries and Q = X(6 ci)+ X (4 ci)=6χ , (1) − − topologies.
    [Show full text]
  • Crystal Structures and Symmetry 1 Crystal Structures and Symmetry
    PHYS 624: Crystal Structures and Symmetry 1 Crystal Structures and Symmetry Introduction to Solid State Physics http://www.physics.udel.edu/∼bnikolic/teaching/phys624/phys624.html PHYS 624: Crystal Structures and Symmetry 2 Translational Invariance • The translationally invariant nature of the periodic solid and the fact that the core electrons are very tightly bound at each site (so we may ignore their dynamics) makes approximate solutions to many-body problem ≈ 1021 atoms/cm3 (essentially, a thermodynamic limit) possible. Figure 1: The simplest model of a solid is a periodic array of valance orbitals embedded in a matrix of atomic cores. Solving the problem in one of the irreducible elements of the periodic solid (e.g., one of the spheres in the Figure), is often equivalent to solving the whole system. PHYS 624: Crystal Structures and Symmetry 3 From atomic orbitals to solid-state bands • If two orbitals are far apart, each orbital has a Hamiltonian H0 = εn, where n is the orbital occupancy ⇐ Ignoring the effects of electronic corre- lations (which would contribute terms proportional to n↑n↓). + +++ ... = Band E Figure 2: If we bring many orbitals into proximity so that they may exchange electrons (hybridize), then a band is formed centered around the location of the isolated orbital, and with width proportional to the strength of the hybridization PHYS 624: Crystal Structures and Symmetry 4 From atomic orbitals to solid-state bands • Real Life: Solids are composed of elements with multiple orbitals that produce multiple bonds. Now imagine what happens if we have several orbitals on each site (ie s,p, etc.), as we reduce the separation between the orbitals and increase their overlap, these bonds increase in width and may eventually overlap, forming bands.
    [Show full text]
  • Crystal Symmetry Groups
    X-Ray and Neutron Crystallography rational numbers is a group under Crystal Symmetry Groups multiplication, and both it and the integer group already discussed are examples of infinite groups because they each contain an infinite number of elements. ymmetry plays an important role between the integers obey the rules of In the case of a symmetry group, in crystallography. The ways in group theory: an element is the operation needed to which atoms and molecules are ● There must be defined a procedure for produce one object from another. For arrangeds within a unit cell and unit cells example, a mirror operation takes an combining two elements of the group repeat within a crystal are governed by to form a third. For the integers one object in one location and produces symmetry rules. In ordinary life our can choose the addition operation so another of the opposite hand located first perception of symmetry is what that a + b = c is the operation to be such that the mirror doing the operation is known as mirror symmetry. Our performed and u, b, and c are always is equidistant between them (Fig. 1). bodies have, to a good approximation, elements of the group. These manipulations are usually called mirror symmetry in which our right side ● There exists an element of the group, symmetry operations. They are com- is matched by our left as if a mirror called the identity element and de- bined by applying them to an object se- passed along the central axis of our noted f, that combines with any other bodies.
    [Show full text]
  • Quasicrystals a New Kind of Symmetry Sandra Nair First, Definitions
    Quasicrystals A new kind of symmetry Sandra Nair First, definitions ● A lattice is a poset in which every element has a unique infimum and supremum. For example, the set of natural numbers with the notion of ordering by magnitude (1<2). For our purposes, we can think of an array of atoms/molecules with a clear sense of assignment. ● A Bravais lattice is a discrete infinite array of points generated by linear integer combinations of 3 independent primitive vectors: {n1a1 + n2a2 + n3a3 | n1, n2, n3 ∈ Z}. ● Crystal structures = info of lattice points + info of the basis (primitive) vectors. ● Upto isomorphism of point groups (group of isometries leaving at least 1 fixed point), 14 different Bravais lattice structures possible in 3D. Now, crystals... ● Loosely speaking, crystals are molecular arrangements built out of multiple unit cells of one (or more) Bravais lattice structures. ● Crystallographic restriction theorem: The rotational symmetries of a discrete lattice are limited to 2-, 3-, 4-, and 6-fold. ● This leads us to propose a “functional” definition: A crystal is a material that has a discrete diffraction pattern, displaying rotational symmetries of orders 2, 3, 4 and 6. ● Note: Order 5 is a strictly forbidden symmetry → important for us. Tessellations aka tilings Now that we have diffraction patterns to work with, we consider the question of whether a lattice structure tiles or tessellates the plane. This is where the order of the symmetry plays a role. The crystals are special, as they display translational symmetries. As such, the tiling of their lattice structures (which we could see thanks to diffraction patterns) are periodic- they repeat at regular intervals.
    [Show full text]
  • Chapter 2 X-Ray Diffraction and Reciprocal Lattice
    Chapter 2 X-ray diffraction and reciprocal lattice I. Waves 1. A plane wave is described as Ψ(x,t) = A ei(k⋅x-ωt) A is the amplitude, k is the wave vector, and ω=2πf is the angular frequency. 2. The wave is traveling along the k direction with a velocity c given by ω=c|k|. Wavelength along the traveling direction is given by |k|=2π/λ. 3. When a wave interacts with the crystal, the plane wave will be scattered by the atoms in a crystal and each atom will act like a point source (Huygens’ principle). 4. This formulation can be applied to any waves, like electromagnetic waves and crystal vibration waves; this also includes particles like electrons, photons, and neutrons. A particular case is X-ray. For this reason, what we learn in X-ray diffraction can be applied in a similar manner to other cases. II. X-ray diffraction in real space – Bragg’s Law 1. A crystal structure has lattice and a basis. X-ray diffraction is a convolution of two: diffraction by the lattice points and diffraction by the basis. We will consider diffraction by the lattice points first. The basis serves as a modification to the fact that the lattice point is not a perfect point source (because of the basis). 2. If each lattice point acts like a coherent point source, each lattice plane will act like a mirror. θ θ θ d d sin θ (hkl) -1- 2. The diffraction is elastic. In other words, the X-rays have the same frequency (hence wavelength and |k|) before and after the reflection.
    [Show full text]
  • Lecture Notes
    Solid State Physics PHYS 40352 by Mike Godfrey Spring 2012 Last changed on May 22, 2017 ii Contents Preface v 1 Crystal structure 1 1.1 Lattice and basis . .1 1.1.1 Unit cells . .2 1.1.2 Crystal symmetry . .3 1.1.3 Two-dimensional lattices . .4 1.1.4 Three-dimensional lattices . .7 1.1.5 Some cubic crystal structures ................................ 10 1.2 X-ray crystallography . 11 1.2.1 Diffraction by a crystal . 11 1.2.2 The reciprocal lattice . 12 1.2.3 Reciprocal lattice vectors and lattice planes . 13 1.2.4 The Bragg construction . 14 1.2.5 Structure factor . 15 1.2.6 Further geometry of diffraction . 17 2 Electrons in crystals 19 2.1 Summary of free-electron theory, etc. 19 2.2 Electrons in a periodic potential . 19 2.2.1 Bloch’s theorem . 19 2.2.2 Brillouin zones . 21 2.2.3 Schrodinger’s¨ equation in k-space . 22 2.2.4 Weak periodic potential: Nearly-free electrons . 23 2.2.5 Metals and insulators . 25 2.2.6 Band overlap in a nearly-free-electron divalent metal . 26 2.2.7 Tight-binding method . 29 2.3 Semiclassical dynamics of Bloch electrons . 32 2.3.1 Electron velocities . 33 2.3.2 Motion in an applied field . 33 2.3.3 Effective mass of an electron . 34 2.4 Free-electron bands and crystal structure . 35 2.4.1 Construction of the reciprocal lattice for FCC . 35 2.4.2 Group IV elements: Jones theory . 36 2.4.3 Binding energy of metals .
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • A Review of Transmission Electron Microscopy of Quasicrystals—How Are Atoms Arranged?
    crystals Review A Review of Transmission Electron Microscopy of Quasicrystals—How Are Atoms Arranged? Ruitao Li 1, Zhong Li 1, Zhili Dong 2,* and Khiam Aik Khor 1,* 1 School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; [email protected] (R.L.); [email protected] (Z.L.) 2 School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore * Correspondence: [email protected] (Z.D.); [email protected] (K.A.K.); Tel.: +65-6790-6727 (Z.D.); +65-6592-1816 (K.A.K.) Academic Editor: Enrique Maciá Barber Received: 30 June 2016; Accepted: 15 August 2016; Published: 26 August 2016 Abstract: Quasicrystals (QCs) possess rotational symmetries forbidden in the conventional crystallography and lack translational symmetries. Their atoms are arranged in an ordered but non-periodic way. Transmission electron microscopy (TEM) was the right tool to discover such exotic materials and has always been a main technique in their studies since then. It provides the morphological and crystallographic information and images of real atomic arrangements of QCs. In this review, we summarized the achievements of the study of QCs using TEM, providing intriguing structural details of QCs unveiled by TEM analyses. The main findings on the symmetry, local atomic arrangement and chemical order of QCs are illustrated. Keywords: quasicrystal; transmission electron microscopy; symmetry; atomic arrangement 1. Introduction The revolutionary discovery of an Al–Mn compound with 5-fold symmetry by Shechtman et al. [1] in 1982 unveiled a new family of materials—quasicrystals (QCs), which exhibit the forbidden rotational symmetries in the conventional crystallography.
    [Show full text]