Peltasperms in the Permian of India and Their Bearing on Gondwanaland Reconstruction and Climatic Interpretation
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Plant Fossils and Gondwana Flora
UNIT 12 PLANT FOSSILS AND GONDWANA FLORA Structure_____________________________________________________ 12.1 Introduction Vertebraria Expected Learning Outcomes Thinnfeldia 12.2 Plant Fossils Sigillaria Definition Nilssonia Classification Williamsonia Modes of Preservation Ptilophyllum Significance 12.5 Activity 12.3 Gondwana Flora of India 12.6 Summary 12.4 Descriptions of some Plant 12.7 Terminal Questions Fossils 12.8 References Glossopteris 12.9 Further/Suggested Readings Gangamopteris 12.10 Answers 12.1 INTRODUCTION The animals, plants and micro-organisms are the three main life forms surviving today. Even their fossilised remains are found in rocks that tell us about their past history. The animals comprise invertebrates and vertebrates. In Block 4, you will read about the invertebrates and their geological history that began in the latest Precambrian time. You also read about the microfossils in Unit 10 that too have a long geological record beginning from Precambrian onwards. In Unit 11, you read the evolutionary history of one of the vertebrate groups i.e., horse. In this unit, you will read the plant fossils and the Gondwana flora of India. Introduction to Palaeontology Block……………………………………………………………………………………………….….............….…........ 3 Like the kingdom Animalia, plants also form a separate kingdom known as the Plantae. It is thought that plants appeared first in the Precambrian, but their fossil record is poor. It is also proposed that earliest plants were aquatic and during the Ordovician period a transition from water to land took place that gave rise to non-vascular land plants. However, it was during the Silurian period, that the vascular plants appeared first on the land. The flowering plants emerged rather recently, during the Cretaceous period. -
Permophiles Issue #28 1996 1
Permophiles Issue #28 1996 1. SECRETARY’S NOTE I should like to thank all those who contributed to this issue of I have discussed the matter of financial support for Permophiles @Permophiles@. The next issue will be in November 1996 and with many of the members of the Permian Subcommission; the will be prepared by the new secretary, CIaude Spinosa. Please consensus is that we should request voluntary donations to offset send your contributions to him (see note below from Forthcoming processing, mailing and paper costs. We are asking for contribu- Secretary). tions of $10 to $25. However, Permophiles will be mailed to ev- I should like to express my gratitude to those of you who have eryone on the mailing list regardless of whether a contribution is submitted contributions during my eight year term of office. You made. have helped make =Permophiles@ a useful, informative, and timely We have established access to Permophiles via the Internet; the Newsletter of the Subcommission on Permian Stratigraphy. address will be: J. Utting http://earth.idbsu.edu/permian/permophiles Geological Survey of Canada (Calgary) 3303 - 33rd Street N.W. Our intention is to provide a version of Permophiles that is readily Calgary, Alberta, Canada T2L 2A7 available through the Internet. The Internet version of Permophiles Phone (404) 292-7093 FAX (403) 292-6014 will have multiple formats. Initially the format of the Internet ver- E-mail INTERNET address: [email protected] sion will be different from the official paper version. Because new taxonomic names can not be published in Permophiles, a hard copy, downloaded from the interned will suffice for many of us. -
Recast Project Report for Dhankasa U/G Mine Executive
RECAST P.R. FOR DHANKASA UG MINE-1.0 Mty (MAY-2016) CMPDI RECAST PROJECT REPORT FOR DHANKASA U/G MINE EXECUTIVE SUMMARY 1.0 INTRODUCTION 1.1 GENERAL The proposed Dhankasa UG Mine has been planned in the Geological blocks of Dhankasa and Naheriya (partly). These Geological Blocks are located in the north- eastern part of Pench-Kanhan Valley Coalfield, District Chhindwara, Madhya Pradesh. The area is covered in the Survey of India Topo-sheet No. 55 N/3 (RF 1:50,000) and is defined by Latitudes N 22o17'39" and N 22 o19'33" and Longitudes E 78o59'04" and E 79o01'13". The nearby operating mines are Naheriya UG & Urdhan OC. Naheriya U/G Mine is about 6 kms from proposed Dhankasa U/G Mine. Thesgora and Mathani mines are about 22 kms on the western side of Dhankasa Block. Dhankasa UG will be under the administrative control of Western Coalfields Limited. 1.2 HISTORY OF MINING Dhankasa geological block is a virgin block. Dhankasa U/G project is aimed at bridging the deficit in supply of coal partially from Pench Kanhan Coalfield as well as WCL. The report has proposed the deployment of mass production technology in order to generate higher production and productivity levels. Dhankasa block lies between Sonpur and Naheriya Blocks and Jamunia Block forms the south western boundary. North-south flowing Junapani nalla and east- west flowing Dhankasa nalla pass along the western and southern boundaries of the block. This Report has proposed to exploit proved reserves of 9 sectors in the Geological Block-i.e. -
Curriculum Vitae
CURRICULUM VITAE ORCID ID: 0000-0003-0186-6546 Gar W. Rothwell Edwin and Ruth Kennedy Distinguished Professor Emeritus Department of Environmental and Plant Biology Porter Hall 401E T: 740 593 1129 Ohio University F: 740 593 1130 Athens, OH 45701 E: [email protected] also Courtesy Professor Department of Botany and PlantPathology Oregon State University T: 541 737- 5252 Corvallis, OR 97331 E: [email protected] Education Ph.D.,1973 University of Alberta (Botany) M.S., 1969 University of Illinois, Chicago (Biology) B.A., 1966 Central Washington University (Biology) Academic Awards and Honors 2018 International Organisation of Palaeobotany lifetime Honorary Membership 2014 Fellow of the Paleontological Society 2009 Distinguished Fellow of the Botanical Society of America 2004 Ohio University Distinguished Professor 2002 Michael A. Cichan Award, Botanical Society of America 1999-2004 Ohio University Presidential Research Scholar in Biomedical and Life Sciences 1993 Edgar T. Wherry Award, Botanical Society of America 1991-1992 Outstanding Graduate Faculty Award, Ohio University 1982-1983 Chairman, Paleobotanical Section, Botanical Society of America 1972-1973 University of Alberta Dissertation Fellow 1971 Paleobotanical (Isabel Cookson) Award, Botanical Society of America Positions Held 2011-present Courtesy Professor of Botany and Plant Pathology, Oregon State University 2008-2009 Visiting Senior Researcher, University of Alberta 2004-present Edwin and Ruth Kennedy Distinguished Professor of Environmental and Plant Biology, Ohio -
Inventory of Geological Resource of Indian Coal I/ 1
Table-1 INVENTORY OF GEOLOGICAL RESOURCE OF INDIAN COAL (As on 01.04.2010) (Resource in million tonne) State/ Coalfield/ Type of coal Depth Proved Indicated Inferred Inferred Total (Exploration) (Mapping) 1 2 3 4 5 6 7 WEST BENGAL 1.RANIGANJ COALFIELD MEDIUM COKING 0-300 194.70 1.60 0.00 196.30 300-600 15.30 16.90 0.00 32.20 MEDIUM COKING Total 210.00 18.50 0.00 228.50 SEMI-COKING 0-300 45.75 14.19 0.00 59.94 300-600 109.51 113.23 23.48 246.22 600-1200 32.79 305.07 144.75 482.61 SEMI-COKING Total 188.05 432.49 168.23 788.77 NON-COKING COAL 0-300 9544.54 1865.79 260.99 11671.32 300-600 1682.46 3444.57 2345.87 7472.90 600-1200 13.22 1887.28 1668.82 3569.32 NON-COKING Total 11240.22 7197.64 4275.68 22713.54 TOTAL FOR RANIGANJ 11638.27 7648.63 4443.91 23730.81 2.BARJORA COALFIELD NON-COKING COAL 0-300 114.27 0.00 0.00 114.27 NON-COKING Total 114.27 0.00 0.00 114.27 TOTAL FOR BARJORA 114.27 0.00 0.00 114.27 3.BIRBHUM COALFIELD NON-COKING COAL 0-300 0.00 609.96 40.01 649.97 300-600 0.00 3597.38 523.19 4120.57 600-1200 0.00 1173.64 48.58 1222.22 NON-COKING Total 0.00 5380.98 611.78 5992.76 TOTAL FOR BIRBHUM 0.00 5380.98 611.78 5992.76 4.DARJEELING COALFIELD NON-COKING COAL 0-300 0.00 0.00 15.00 15.00 NON-COKING Total 0.00 0.00 15.00 15.00 TOTAL FOR DARJEELING 0.00 0.00 15.00 15.00 TOTAL FOR WEST BENGAL 11752.54 13029.61 5070.69 29852.84 JHARKHAND 5.RANIGANJ COALFIELD MEDIUM COKING 0-300 220.00 8.87 0.00 228.87 300-600 49.23 8.30 0.00 57.53 MEDIUM COKING Total 269.23 17.17 0.00 286.40 SEMI-COKING 0-300 51.40 0.00 0.00 51.40 300-600 0.00 40.00 -
Coal Industry's Contribution to Water- Ecosystem
Coal Industry’s Contribution to Water- Ecosystem Through Gainful Utilization of Mine-Water WESTERN COALFIELDS LIMITED (A subsidiary of Coal India Limited) Mine Water Utilisation - Process Aquifers in Indian coal bearing formations constitute of sandstone, while coal acts as aquitards allowing formation of unconfined & confined aquifers resulting in high water table; Also low sulphur content(<1%) means no Acid Mine Drainage(AMD) Mine Dewatering Percolated & logged water from mines is removed through Treatment in settling tanks pumps Extracted water is treated through a series of settling tanks Pipeline Transport Water is transported to desired location through HDPE pipelines Filtration Water is Treated through Pressure Filters, Sand Filters, Reverse Osmosis & Ozonisation Plants GAINFUL USE OF MINE WATER 380 120 160 LtrsMil/Da LtrsMil/Da LtrsMil/Da y y y Total Discharge of All Utilised for Internal use – To Be Utilized for Mines in WCL Spraying, Washing, Dust Community Distribution Suppression PROJECTS DRIKING WATER Boreholes, Checkdams, Pressure Filters IRRIGATION Desilting and Widening of RO Plants in Villages ponds GROUND WATER RECHARGE Creating Shared Value Reconceiving needs, Redefining Improving the local products, and customers productivity in the business environment Meeting societal needs value chain through products Using resources, Improving the suppliers, logistics, Addressing unserved or communities in which a and employees more underserved customers company operates productively RO Water Plants & Disposal of mine RO Water Plants & Coal Neer water into local Ground water Initiatives channels recharge • Creating new • Improves • Clean drinking customers livelihoods of water local populace • Products at • Irrigation lower price Water Supply for Drinking Water Hybrid Water Cooperatives •WCL has invested in setting up Water Treatment plants with 1000 liters per hour capacity in villages. -
Lsd 06 02 27-07-1977.Pdf
Wednesday, July 20 1977 WednesdayAsadha, July 29, 218997,1977 (Saka) Sravana 5, 1899 (Saka) LoK- SABHA DEBATES Vol V , [ July 16 to 28, 1977/Asadha as to SravJana 6, 189} r Saka)) I.... (Vol. V r.mrtainl NOi. 31-40) . · Lem IUBA llCJIBTAllAT MIA.' -- CONTENTS No. 39, Wednesday, July 27, 1977!Sravana 5, 1899 {Saka) C o l u m n s Oral Answers to Questions : ♦Starred Questions Nos. 646, 647 and 649 to 651 i —28 Short Notice Question No. 25 . 29 — 3 6 Written Answers to Questions : Starred Questions Nos. 648 and 652 to 664 . 37—48 Unstarred Questions Nos. 4944 to 5061, 5063 to 5065, 5067 to 5097, 5099 to 5110, 5112 to 5134 and 5136 to 5143 . 48—248 Pa,)ers laid on the Table . 249— 53 Co.mmittee on Private M^mb:rs’ Bills and Resolutions— Fourth Report . 254— 55 Matters under Rule 377— (i) Reported closure o f Jute Mills in Katihar, North Bihar re sulting in unemployment to 3,500 workers . 256— 58 (ii) Reported strike in Jute industry o f West Bengal from July 28, 1977 • • • 268— 60 PARL-AMEr'TT LIBRARY Tea (Amendment) Bill— JK:.2. i ' o ........ Motion to consider— t a 'e...... Shri Purna Sinha 26c— 64 Shri Hukam Chand Kachwai 265— 68 Shri Pius Tirkey 268— 71 Shri Mohan Dharia . 274— 82 Clauses 2 to 4 and i . 283 Motion to pass— Shri Mohan Dharia . 283 Business o f the House . 271—74 ♦The sign + marked above the name o f a Member indicates that the question was actually asked on the floor o f the House by that Member. -
The Seed Cone Eathiestrobus Gen. Nov.: Fossil Evidence for a Jurassic
American Journal of Botany 99(4): 708–720. 2012. T HE SEED CONE E ATHIESTROBUS GEN. NOV.: 1 F OSSIL EVIDENCE FOR A JURASSIC ORIGIN OF PINACEAE G AR W . R OTHWELL 2,3,6 , G ENE M APES 2 , R UTH A . S TOCKEY 3,4 AND J ASON H ILTON 5 2 Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701 USA; 3 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA; 4 Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada; and 5 School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK • Premise of the study: Pinaceae and nonpinoid species are sister groups within the conifer clade as inferred from molecular systematic comparisons of living species and therefore should have comparable geological ages. However, the fossil record for the nonpinoid lineage of extant conifer families is Triassic, nearly 100 million years older than the oldest widely accepted Lower Cretaceous record for Pinaceae. An anatomically preserved fossil conifer seed cone described here extends the strati- graphic range of Pinaceae nearly 30 million years, thus reducing the apparent discrepancy between evidence from the fossil record and inferences from systematic studies of living species. • Methods: Material was prepared as serial thin sections by the cellulose acetate peel technique, mounted on microscope slides, and viewed and photographed using transmitted light. • Key results: A large cylindrical cone consisting of bract-scale complexes that diverge from the cone axis in a helical phyllotaxis has bracts and scales that separate from each other in the midregion and are of equal length and of nearly equal width. -
LOK SABHA DEBA~S (English Version)
Thirteenth Series. Vol. XXIII. :'\0.18 ')olld'l~. April 15. 2002 Chaitra 25.1924 (Sak;l) LOK SABHA DEBA~S (English Version) Ninth Session (Thirteenth Lok Sabha) (Vol. XXIII cOlltains Nos. 11 to 20) LOK SABHA SECRETARIAT NEW DELHI Pnce R.\ 5{){){J EDITORIAL BOARD G.C. Malhotra Secretary-General Lok Sabha Dr. P.K. Sandhu Joint Secretary P.C. Chaudhary Principal Chief Editor Y.K. Abrol Chief Editor Vandna Trivedi Senior Editor P. Mohanty Editor (Onginal English Proceedings included in English Version and Original Hindi Proceedings included in Hindi Version will be treated as authoritative and not the translation thereof) CONTENTS (Thirteenth Series Vol. XXIII, Ninth Session, 200211924 ($aka) No. 18.IIonclay. Aprt115, 2OO2IC ....... 25,1124 (s.ka) SuBJECT COUJMHS WELCOME TO PARLIAMENTARY DELEGATION FROM GHANA OBITUARY REFERENCES 1-3 WRITTEN ANSWER TO QUESTIONS Starred Question Nos. 301 to 320 Unstarred Question Nos. 3240 to 3469 PAPERS LAID ON THE TABLE 401 BUSINESS ADVISORY COMMITTEE Thirty - fourth Report 401 COMMITTEE ON PETITIONS Fifteenth Report 402 STANDING COMMITTEE ON RAILWAYS Tenth Report 402 MOTION RE: JOINT COMMITTEE ON STOCK MARKET 402.403 SCAM AND MATTERS RELATING THERETO MATTERS UNDER RULE 3n 403-409 (i) Need to provide telephone facilities in Singhbhum Parliamentary Constituency, Jhaft(hand Shri Laxman Giluwa 483 (ii) Need to convert rail line between Rewari- Bikaner via Hissar and Ratangam-Degana into broadguage Shri Ram Singh Kaswan 403-404 (iii) Need to raise royally rate of Coal for Orissa Shri Ananta Nayak 404 (iv) Need for early construction of S.Y.L. Canal between Punjab and Haryana Shri Rattan Lal Kataria 404 (v) Need to provide stoppage of Navjeevan and Tapti Express trains at Vyara Railway station, Gujarat Shri Mansinh Patel 404-405 (i) SUBJECT COlUMNS (Vi) Need to provide financial assistance to the Government of Madhya Pradesh for providing relief to the people whose crops have been affected by hailstorms Shrl Virendra Kumar 405 (vii) Need for all-round development in Chanchal Sub-Division Headquarters in Maida District. -
Early Permian Palaeofloras from Southern Brazilian Gondwana: a Palaeoclimatic Approach
Revista Brasileira de Geociências 30(3):486-490, setembro de 2000 EARLY PERMIAN PALAEOFLORAS FROM SOUTHERN BRAZILIAN GONDWANA: A PALAEOCLIMATIC APPROACH MARGOT GUERRA-SOMMER AND MIRIAM CAZZULO-KLEPZIG ABSTRACT In evaluating the parameters supplied by the taphofloras from different sedimentary facies in the Early Permian sedimentary sequences of the southern part of the Paraná basin, Brazil, it has become evident that the palaeofloristic evolution was related to palaeoecological and palaeoclimatic evolution. The homogeneous composition of Early Permian floral assemblages, which are characterized mainly by herbaceous to shrub-like plants considered to be relicts from the rigorous climate of an ice age (e.g. Botrychiopsis plantiana) suggest the persistence of the cold climate. The dominance of Rubidgea and Gangamopteris leaves with palmate venation associated with glossopterids with penate venation seems to indicate a gradual warming of climate. In roof-shales of coalbearing strata pinnate glossopterids related to Glossopteris are common, while Gangamopteris and Rubidgea (palmate forms) are poorly represented. The sudden enrichment of herbaceous articulates and filicoids fronds is characteristic of this stage and trunks of arborescents lycophytes become important elements. These antrocophilic paleofloras are characterized by typical elements of the "Glossopteris flora" associated to tree lycophytes and ferns communities. Therefore, the cool seasonal climate of Early Permian changed into the moist seasonal interval during the Artinskian-Kungurian. This climatic change was significant to the meso-hygrophitic to hygrophitic vegetation registered in roof-shale ferns of the Gondwana Southern Brazilian coalbearing strata. Keywords: roof-shale floras, Gondwana, Southern Brazil, Paraná basin, Glossopteris Flora INTRODUCTION The intracratonic Paraná basin, with a total area proposed by Milani et al. -
Coal Petrographic Characteristics and Depositional Conditions of the Subsurface Barakar Formation (Early Permian) in Belampalli Coalfield, Godavari Valley, Telangana
The Palaeobotanist 66(2017): 71–80 0031–0174/2017 Coal petrographic characteristics and depositional conditions of the subsurface Barakar Formation (Early Permian) in Belampalli Coalfield, Godavari Valley, Telangana OMPRAKASH S. SARATE Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007, India. Email: [email protected] (Received 09 December, 2016; revised version accepted 01 March, 2017) ABSTRACT Sarate OS 2017. Coal petrographic characteristics and depositional conditions of the subsurface Barakar Formation (Early Permian) in Belampalli Coalfield, Godavari Valley, Telangana. The Palaeobotanist 66(1): 71–80. The coal analytical studies have been taken up, to ascertain the rank on the basis of maceral composition and depositional environment of different seams namely Index, Index below top, Index below bottom, IA, I and the lowermost II (top section) intersected in Bore–hole No. SBS–182, from Sravanapalli area. The random vitrinite reflectance (Ro mean %) study of coal from Index and Index below bottom seams ranges between 0.61% and 0.63%, whereas IA and Seam I have shown lower reflectance which ranges between 0.52% and 0.54%. Thus, all these seams have attained high volatile bituminous C stage of rank. However, III (top section) seam has shown low reflectance (0.45%–0.46%), which indicates attainment of Sub–bituminous B stage. The coal maceral study has revealed that the Index, Index below Top, Index below Bottom seams contain vitric type of coal, whereas IA seam has vitric, fusic and mixed type of coal constitution. The lowermost III top and I seam, however, are represented by both vitric and fusic coal types. -
A Regional Assessment of the Potential for Co2 Storage in the Indian Subcontinent
A REGIONAL ASSESSMENT OF THE POTENTIAL FOR CO2 STORAGE IN THE INDIAN SUBCONTINENT Technical Study Report No. 2008/2 May 2008 This document has been prepared for the Executive Committee of the IEA GHG Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat. INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 26 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under more than 40 Implementing Agreements. These agreements cover more than 200 individual items of research, development and demonstration. The IEA Greenhouse Gas R&D Programme is one of these Implementing Agreements. ACKNOWLEDGEMENTS AND CITATIONS This report was prepared as an account of the work sponsored by the IEA Greenhouse Gas R&D Programme. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEA Greenhouse Gas R&D Programme, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product of process disclosed or represents that its use would not infringe privately owned rights, including any parties intellectual property rights.