Cryptic Diversity of a Glossopteris Forest: the Permian Prince Charles Mountains Floras, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Cryptic Diversity of a Glossopteris Forest: the Permian Prince Charles Mountains Floras, Antarctica CRYPTIC DIVERSITY OF A GLOSSOPTERIS FOREST: THE PERMIAN PRINCE CHARLES MOUNTAINS FLORAS, ANTARCTICA by Ben James Slater A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Geography, Earth and Environmental Sciences College of Life and Environmental Sciences University of Birmingham September 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The Toploje Member chert is a Roadian to Wordian autochthonous– parautochthonous silicified peat preserved within the Lambert Graben, East Antarctica. It preserves a remarkable sample of terrestrial life from high-latitude central Gondwana prior to the Capitanian mass extinction event from both mega- and microfossil evidence that includes cryptic components rarely seen in other fossil assemblages. The peat layer is dominated by glossopterid and cordaitalean gymnosperms and contains sparse herbaceous lycophytes, together with a broad array of dispersed organs of ferns and other gymnosperms. The peat also hosts a wide range of fungal morphotypes, Peronosporomycetes, rare arthropod remains and a diverse coprolite assemblage. The fungal and invertebrate-plant interactions associated with various organs of the Glossopteris plant reveal the cryptic presence of a ‘component community’ of invertebrate herbivores and fungal saprotrophs centred around the Glossopteris organism, and demonstrate that a multitude of ecological interactions were well developed by the Middle Permian in high-latitude forest mires. Comparisons of coal maceral data from co-occurring coal seams with quantitative analyses of the silicified peat constituents reveals that while silicified peats provide an unparalleled sample of the organisms forming these coal deposits, they do not necessarily reflect the constituents that ultimately dominate the coal maceral volume. ACKNOWLEDGEMENTS I am deeply grateful to: Jason Hilton, my PhD supervisor for his years of support, encouragement, scientific guidance and the many invaluable discussions about the project in Staff House. Stephen McLoughlin, my PhD supervisor, for the years of guidance throughout every turn of the project, intellectual input, advice, great hospitality on visits to Stockholm and for the opportunity to work on such interesting material. All the staff, post-grads and students in Earth Sciences over the years who have made the whole post graduate experience so enjoyable. Special mention to the residents of the various post-grad offices over the last few years for all the welcome distractions, and to the former office 116 inhabitants whose many exploits have made the whole experience so memorable. Guy Harrington, Stephen Jones and Warren Eastwood for their constructive comments and ideas during panel meetings. All the staff in the Palaeobotany department at the Swedish Museum of Natural History who were a great help on visits to the museum. I am eternally grateful to my family for all their support and encouragement at every step of my studies. Thanks to Kristina for all her support throughout my final PhD year. Also thanks to Stella the dog for her relentless enthusiasm to play with a tennis-ball every waking hour which was a great distraction from thesis writing. On the funding and logistical side of things my thanks go to the School of Geography, Earth and Environmental Sciences and to the Natural Environment Research Council (NE/H5250381/1) for funding the project. Thanks also to the Synthesys programme of the EU for providing funding for a research visit to the NRM in Stockholm (SE-TAF-4827). Thanks also to Keiraville Konsultants Pty Ltd., Wollongong, Australia, who provided data on coal maceral proportions. Many thanks to Pollyanna von Knorring for the brilliant landscape illustration in Figure 6.9. Thanks to Else Marie Friis and Anna Lindström (NRM), Marco Stampanoni and Frederica Marone (Paul Sherrer Institute) for aid in the synchrotron tomography work (supported by the European Union FP6, project number 20100167, to P.C.J. Donoghue, S. Bengston and E.M. Friis and the European Community – Research Infrastructure Action under the FP7 ‘Capacities’ Specific Programme). The Australian Antarctic Division provided financial and logistical support for collection of the specimens via Antarctic Science Advisory Council Project 509. Thanks to Stephen McLoughlin, David Cantrill and Andrew Drinnan for making this research possible by collecting the material on two Antarctic expeditions in the early 1990s. CONTENTS Chapter 1: Introduction ............................................................................... Page 1 1.1 Terrestrial ecosystems of Permian Gondwana ................................................... 1 1.1.1 Gondwana and the Glossopteris flora ................................................. 1 1.1.2 Preservation of Gondwanan Permian terrestrial ecosystems .............. 2 1.1.3 Contents of the peats ........................................................................... 7 1.2 Aims of thesis .................................................................................................. 10 1.3 Structure of thesis ............................................................................................ 10 Chapter 2: Geological setting .............................................................................. 13 2.1 Palaeogeography .............................................................................................. 13 2.2 Lithostratigraphy and the Toploje Member chert ............................................ 16 2.3 Preservation ...................................................................................................... 18 Chapter 3: Guadalupian (Middle Permian) megaspores and sporangia from the Toploje Member chert, Bainmedart Coal Measures, Prince Charles Mountains, Antarctica .............. 20 3.1 Background ...................................................................................................... 20 3.2 Materials and methods ..................................................................................... 22 3.3 Systematic palaeobotany .................................................................................. 23 3.3.1 Duosporites lambertensis .................................................................. 23 3.3.2 Banksisporites antarcticus ................................................................ 27 3.3.3 Singhisporites hystrix ........................................................................ 31 3.3.4 Singhisporites mahanadiensis ........................................................... 46 3.3.5 Isolated fern sporangia ...................................................................... 46 3.4 Discussion ........................................................................................................ 53 3.4.1 Reproductive biology ........................................................................ 54 3.4.2 Fern sporangia ................................................................................... 55 3.4.3 Taphonomy ....................................................................................... 59 3.4.4 Palaeobiogeography .......................................................................... 62 3.5 Summary of findings ........................................................................................ 62 Chapter 4: Animal-plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica .............................................................. 64 4.1 Background ...................................................................................................... 64 4.2 Materials and methods ..................................................................................... 68 4.3 Results .............................................................................................................. 69 4.3.1 Coprolites in Vertebraria and Australoxylon .................................... 70 4.3.2 Coprolites in leaves ........................................................................... 72 4.3.3 Coprolite within sporangium ............................................................ 73 4.3.4 Isolated large coprolites .................................................................... 74 4.3.5 Isolated small coprolites ................................................................... 75 4.3.6 Fungi-rich coprolites ......................................................................... 76 4.3.7 Coprolites containing pollen ............................................................. 77 4.3.8 Coprolites with coarse constituents .................................................. 78 4.3.9 Isolated spiral-ornamented coprolite ................................................. 79 4.3.10 Other evidence of animals .............................................................. 79 4.4 Discussion .......................................................................................................
Recommended publications
  • Prepared in Cooperation with the Lllinois State Museum, Springfield
    Prepared in cooperation with the lllinois State Museum, Springfield Richard 1. Leary' and Hermann W. Pfefferkorn2 ABSTRACT The Spencer Farm Flora is a compression-impression flora of early Pennsylvanian age (Namurian B, or possibly Namurian C) from Brown County, west-central Illinois. The plant fossils occur in argillaceous siltstones and sand- stones of the Caseyville Formation that were deposited in a ravine eroded in Mississippian carbonate rocks. The plant-bearing beds are the oldest deposits of Pennsylva- nian age yet discovered in Illinois. They were formed be- fore extensive Pennsylvanian coal swamps developed. The flora consists of 29 species and a few prob- lematical forms. It represents an unusual biofacies, in which the generally rare genera Megalopteris, Lesleya, Palaeopteridium, and Lacoea are quite common. Noegger- athiales, which are seldom present in roof-shale floras, make up over 20 percent of the specimens. The Spencer Farm Flora is an extrabasinal (= "upland1') flora that was grow- ing on the calcareous soils in the vicinity of the ravine in which they were deposited. It is suggested here that the Noeggerathiales may belong to the Progymnosperms and that Noeggerathialian cones might be derived from Archaeopteris-like fructifica- tions. The cone genus Lacoea is intermediate between Noeggerathiostrobus and Discini tes in its morphology. Two new species, Lesleya cheimarosa and Rhodeop- teridi urn phillipsii , are described, and Gulpenia limbur- gensis is reported from North America for the first time. INTRODUCTION The Spencer Farm Flora (table 1) differs from other Pennsylvanian floras of the Illinois Basin. Many genera and species in the Spencer Farm Flora either have not been found elsewhere in the basin or are very l~uratorof Geology, Illinois State Museum, Springfield.
    [Show full text]
  • Re-Evaluation of the Genus Rubidgea in the Lower Permian of the Paraná Basin, Brazil, and Its Biostratigraphic Consequence
    Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/185 Comunicações Geológicas (2014) 101, Especial I, 455-457 IX CNG/2º CoGePLiP, Porto 2014 ISSN: 0873-948X; e-ISSN: 1647-581X Re-evaluation of the genus Rubidgea in the Lower Permian of the Paraná Basin, Brazil, and its biostratigraphic consequence Reavaliação do género Rubidgea, no Pérmico Inferior da Bacia do Paraná, Brasil, e suas consequências bioestratigráficas R. Iannuzzi1*, G. P. Tybusch1 Artigo Curto Short Article © 2014 LNEG – Laboratório Nacional de Geologia e Energia IP Abstract: The plant megafossil specimens revised in this study came *Corresponding author / Autor correspondente: [email protected] from the outcrops located in the São Paulo and Rio Grande do Sul states and positioned stratigraphically on top of the Itararé Group 1. Introduction and/or base of the Rio Bonito (= Tietê) Formation, Lower Permian of the Paraná Basin. The study material comprises leaves fragments The record of the genus Rubidgea in Brazil was first preserved as impressions, previously included in the morphogenus mentioned by Cazzulo-Klepzig et al. (1980) for the Itararé Rubidgea because of their supposed gangamopterid venation pattern, Group of the Rio Grande do Sul state, and it is represented lacking anastomoses. However, re-evaluation of this material showed by a specimen classified as Rubidgea sp. Later, Rubidgea that these leaves bear at some degree, rare anastomoses along the lamina. Based on this observation, we proposed that these leaves obovata Maithy (1965) and Rubidgea lanceolatus Maithy should be transferred to the morphogenus Gangamopteris, which (1965) were illustrated and reported for the outcrops displays this type of venation.
    [Show full text]
  • Multi- Hazard District Disaster Management Plan
    MULTI –HAZARD DISTRICT DISASTER MANAGEMENT PLAN, BIRBHUM 2018-2019 MULTI – HAZARD DISTRICT DISASTER MANAGEMENT PLAN BIRBHUM - DISTRICT 2018 – 2019 Prepared By District Disaster Management Section Birbhum 1 MULTI –HAZARD DISTRICT DISASTER MANAGEMENT PLAN, BIRBHUM 2018-2019 2 MULTI –HAZARD DISTRICT DISASTER MANAGEMENT PLAN, BIRBHUM 2018-2019 INDEX INFORMATION 1 District Profile (As per Census data) 8 2 District Overview 9 3 Some Urgent/Importat Contact No. of the District 13 4 Important Name and Telephone Numbers of Disaster 14 Management Deptt. 5 List of Hon'ble M.L.A.s under District District 15 6 BDO's Important Contact No. 16 7 Contact Number of D.D.M.O./S.D.M.O./B.D.M.O. 17 8 Staff of District Magistrate & Collector (DMD Sec.) 18 9 List of the Helipads in District Birbhum 18 10 Air Dropping Sites of Birbhum District 18 11 Irrigation & Waterways Department 21 12 Food & Supply Department 29 13 Health & Family Welfare Department 34 14 Animal Resources Development Deptt. 42 15 P.H.E. Deptt. Birbhum Division 44 16 Electricity Department, Suri, Birbhum 46 17 Fire & Emergency Services, Suri, Birbhum 48 18 Police Department, Suri, Birbhum 49 19 Civil Defence Department, Birbhum 51 20 Divers requirement, Barrckpur (Asansol) 52 21 National Disaster Response Force, Haringahata, Nadia 52 22 Army Requirement, Barrackpur, 52 23 Department of Agriculture 53 24 Horticulture 55 25 Sericulture 56 26 Fisheries 57 27 P.W. Directorate (Roads) 1 59 28 P.W. Directorate (Roads) 2 61 3 MULTI –HAZARD DISTRICT DISASTER MANAGEMENT PLAN, BIRBHUM 2018-2019 29 Labpur
    [Show full text]
  • Wec01's SSSS Fossils Test 2019
    wec01’s SSSS Fossils Test 2019 Team Name: _________________KEY________________ Team Number: ___KEY___ Team Members: ____________KEY____________, ____________KEY____________ This test consists of 18 stations with a total of 200 points. Each answer is worth one point except where specified otherwise. You are only given 2 ½ minutes with the specimens at each station, however you can work on any station’s questions at any time. Scoring Station 1: ___10___ / 10 Station 10: ___12___ / 12 Station 2: ___10___ / 10 Station 11: ____9___ / 9 Station 3: ___11___ / 11 Station 12: ___11___ / 11 Station 4: ___10___ / 10 Station 13: ___10___ / 10 Station 5: ___10___ / 10 Station 14: ___10___ / 10 Station 6: ____9___ / 9 Station 15: ___12___ / 12 Station 7: ____9___ / 9 Station 16: ____9___ / 9 Station 8: ___10___ / 10 Station 17: ___10___ / 10 Station 9: ____9___ / 9 Station 18: ___29___ / 29 Total: __200___ / 200 Team Number: _KEY_ Station 1: Dinosaurs (10 pt) 1. Identify the genus of specimen A Tyrannosaurus (1 pt) 2. Identify the genus of specimen B Stegosaurus (1 pt) 3. Identify the genus of specimen C Allosaurus (1 pt) 4. Which specimen(s) (A, B, or C) are A, C (1 pt) Saurischians? 5. Which two specimens (A, B, or C) lived at B, C (1 pt) the same time? 6. Identify the genus of specimen D Velociraptor (1 pt) 7. Identify the genus of specimen E Coelophysis (1 pt) 8. Which specimen (D or E) is commonly E (1 pt) found in Ghost Ranch, New Mexico? 9. Which specimen (A, B, C, D, or E) would D (1 pt) specimen F have been found on? 10.
    [Show full text]
  • Glacio-Lacustrine Aragonite Deposition, Meltwater Evolution And
    Antarctic Science 19 (3), 365–372 (2007) & Antarctic Science Ltd 2007 Printed in the UK DOI: 10.1017/S0954102007000466 Glacio-lacustrine aragonite deposition, meltwater evolution and glacial history during isotope stage 3 at Radok Lake, Amery Oasis, northern Prince Charles Mountains, East Antarctica IAN D. GOODWIN1 and JOHN HELLSTROM2 1Environmental and Climate Change Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia 2School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia [email protected] Abstract: The late Quaternary glacial history of the Amery Oasis, and Prince Charles Mountains is of significant interest because about 10% of the total modern Antarctic ice outflow is discharged via the adjacent Lambert Glacier system. A glacial thrust moraine sequence deposited along the northern shoreline of Radok Lake between 20–10 ka BP, overlies a layer of thin, aragonite crusts which provide important constraints on the glacial history of the Amery Oasis. The modern Radok Lake is fed by the terminal meltwaters of the alpine Battye Glacier. The aragonite crusts were deposited in shallow water of ancestral Radok Lake 53 ka BP,during the A3 warm event in Isotope Stage 3. Oxygen isotope (d18O) analysis of the last glacial-age aragonite crusts 18 indicates that they precipitated from freshwater with a d OSMOW composition of -36%, which is 8% more depleted than the present water (-28%) in Radok Lake. A regional oxygen isotope (d18O) and elevation relationship for snow is used to determine the source of meltwater and glacial ice in Radok Lake during the A3 warm event.
    [Show full text]
  • Boeckella Poppei and Gladioferens Antarcticus I.A.E
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Tasmania Open Access Repository Antarctic Science 15 (4): 439–448 (2003) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102003001548 Taxonomy, ecology and zoogeography of two East Antarctic freshwater calanoid copepod species: Boeckella poppei and Gladioferens antarcticus I.A.E. BAYLY1,2, J.A.E. GIBSON3,4*, B. WAGNER5 and K.M. SWADLING4 1School of Biological Sciences, Monash University, VIC 3800, Australia 2501 Killiecrankie Rd, Flinders Island, TAS 7255, Australia 3Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia 4School of Zoology, University of Tasmania, Private Bag 5, Hobart, TAS 7001, Australia 5Institute for Geophysics and Geology, Faculty for Physics and Geoscience, University Leipzig, Talstrasse 35, D-04103 Leipzig, Germany *corresponding author: [email protected] Abstract: New populations of the two species of calanoid copepods known to inhabit freshwater lakes in East Antarctica, Boeckella poppei (Mrázek, 1901) and Gladioferens antarcticus Bayly, 1994, have recently been discovered. The morphology of the populations of B. poppei showed significant differences, notably a reduction in the armature of the male fifth leg, when compared with typical specimens from the Antarctic Peninsula and South America. Gladioferens antarcticus had previously been recorded from a single lake in the Bunger Hills, but has now been recorded from three further lakes in this region. A recent review of Antarctic terrestrial and limnetic zooplankton suggested that neither of these species can be considered an East Antarctic endemic, with B.
    [Show full text]
  • Plant Fossils and Gondwana Flora
    UNIT 12 PLANT FOSSILS AND GONDWANA FLORA Structure_____________________________________________________ 12.1 Introduction Vertebraria Expected Learning Outcomes Thinnfeldia 12.2 Plant Fossils Sigillaria Definition Nilssonia Classification Williamsonia Modes of Preservation Ptilophyllum Significance 12.5 Activity 12.3 Gondwana Flora of India 12.6 Summary 12.4 Descriptions of some Plant 12.7 Terminal Questions Fossils 12.8 References Glossopteris 12.9 Further/Suggested Readings Gangamopteris 12.10 Answers 12.1 INTRODUCTION The animals, plants and micro-organisms are the three main life forms surviving today. Even their fossilised remains are found in rocks that tell us about their past history. The animals comprise invertebrates and vertebrates. In Block 4, you will read about the invertebrates and their geological history that began in the latest Precambrian time. You also read about the microfossils in Unit 10 that too have a long geological record beginning from Precambrian onwards. In Unit 11, you read the evolutionary history of one of the vertebrate groups i.e., horse. In this unit, you will read the plant fossils and the Gondwana flora of India. Introduction to Palaeontology Block……………………………………………………………………………………………….….............….…........ 3 Like the kingdom Animalia, plants also form a separate kingdom known as the Plantae. It is thought that plants appeared first in the Precambrian, but their fossil record is poor. It is also proposed that earliest plants were aquatic and during the Ordovician period a transition from water to land took place that gave rise to non-vascular land plants. However, it was during the Silurian period, that the vascular plants appeared first on the land. The flowering plants emerged rather recently, during the Cretaceous period.
    [Show full text]
  • The Largest Tropical Peat Mires in Earth History
    Geological Society of America Special Paper 370 2003 Desmoinesian coal beds of the Eastern Interior and surrounding basins: The largest tropical peat mires in Earth history Stephen F. Greb William M. Andrews Cortland F. Eble Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky 40506, USA William DiMichele Smithsonian Institution, National Museum of Natural History, Washington, D.C., USA C. Blaine Cecil U.S. Geological Survey, Reston, Virginia, USA James C. Hower Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky, USA ABSTRACT The Colchester, Springfield, and Herrin Coals of the Eastern Interior Basin are some of the most extensive coal beds in North America, if not the world. The Colchester covers an area of more than 100,000 km^, the Springfield covers 73,500-81,000 km^, and the Herrin spans 73,900 km^. Each has correlatives in the Western Interior Basin, such that their entire regional extent varies from 116,000 km^to 200,000 km^. Correlatives in the Appalachian Basin may indicate an even more widespread area of Desmoinesian peatland development, although possibly sUghtly younger in age. The Colchester Coal is thin, but the Springfield and Herrin Coals reach thicknesses in excess of 3 m. High ash yields, dominance of vitrinite macerals, and abundant lycopsids suggest that these Desmoinesian coals were deposited in topogenous (groundwater fed) to solige- nous (mixed-water source) mires. The only modern mire complexes that are as wide- spread are northern-latitude raised-bog mires, but Desmoinesian
    [Show full text]
  • Boeckella Poppei and Gladioferens Antarcticus I.A.E
    Antarctic Science 15 (4): 439–448 (2003) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102003001548 Taxonomy, ecology and zoogeography of two East Antarctic freshwater calanoid copepod species: Boeckella poppei and Gladioferens antarcticus I.A.E. BAYLY1,2, J.A.E. GIBSON3,4*, B. WAGNER5 and K.M. SWADLING4 1School of Biological Sciences, Monash University, VIC 3800, Australia 2501 Killiecrankie Rd, Flinders Island, TAS 7255, Australia 3Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia 4School of Zoology, University of Tasmania, Private Bag 5, Hobart, TAS 7001, Australia 5Institute for Geophysics and Geology, Faculty for Physics and Geoscience, University Leipzig, Talstrasse 35, D-04103 Leipzig, Germany *corresponding author: [email protected] Abstract: New populations of the two species of calanoid copepods known to inhabit freshwater lakes in East Antarctica, Boeckella poppei (Mrázek, 1901) and Gladioferens antarcticus Bayly, 1994, have recently been discovered. The morphology of the populations of B. poppei showed significant differences, notably a reduction in the armature of the male fifth leg, when compared with typical specimens from the Antarctic Peninsula and South America. Gladioferens antarcticus had previously been recorded from a single lake in the Bunger Hills, but has now been recorded from three further lakes in this region. A recent review of Antarctic terrestrial and limnetic zooplankton suggested that neither of these species can be considered an East Antarctic endemic, with B. poppei being listed as a recent anthropogenic introduction and G. antarcticus a ‘marine interloper’. We conclude differently: B. poppei has been present in isolated populations in East Antarctica for significant lengths of time, possibly predating the current interglacial, while G.
    [Show full text]
  • Paleontologia Em Destaque
    Paleontologia em Destaque Boletim Informativo da SBP Ano 34, n° 72, 2019 · ISSN 1807-2550 PALEO, SBPV e SBPI 2018 RELATOS E RESUMOS SOCIEDADE BRASILEIRA DE PALEONTOLOGIA Presidente: Dr. Renato Pirani Ghilardi (UNESP/Bauru) Vice-Presidente: Dr. Annie Schmaltz Hsiou (USP/Ribeirão Preto) 1ª Secretária: Dra. Taissa Rodrigues Marques da Silva (UFES) 2º Secretário: Dr. Rodrigo Miloni Santucci (UnB) 1º Tesoureiro: Me. Marcos César Bissaro Júnior (USP/Ribeirão Preto) 2º Tesoureiro: Dr. Átila Augusto Stock da Rosa (UFSM) Diretor de Publicações: Dr. Sandro Marcelo Scheffler (UFRJ) P a l e o n t o l o g i a e m D e s t a q u e Boletim Informativo da Sociedade Brasileira de Paleontologia Ano 34, n° 72, setembro/2019 · ISSN 1807-2550 Web: http://www.sbpbrasil.org/, Editores: Sandro Marcelo Scheffler, Maria Izabel Lima de Manes Agradecimentos: Aos organizadores dos eventos científicos Capa: Palácio do Museu Nacional após a instalação do telhado provisório. Foto: Sandro Scheffler. 1. Paleontologia 2. Paleobiologia 3. Geociências Distribuído sob a Licença de Atribuição Creative Commons. EDITORIAL As reuniões PALEO são encontros regionais chancelados pela Sociedade Brasileira de Paleontologia (SBP) que têm por objetivo a comunhão entre estudantes de graduação e pós- graduação, pesquisadores e interessados na área de Paleontologia. Estes eventos possuem periodicidade anual e ocorrem em várias regiões do Brasil. Iniciadas em 1999, como uma reunião informal da comunidade de paleontólogos, possuem desde então as seguintes distribuições, de acordo com a região de abrangência: Paleo RJ/ES, Paleo MG, Paleo SP, Paleo RS, Paleo PR/SC, Paleo Nordeste e Paleo Norte.
    [Show full text]
  • Permophiles Issue #28 1996 1
    Permophiles Issue #28 1996 1. SECRETARY’S NOTE I should like to thank all those who contributed to this issue of I have discussed the matter of financial support for Permophiles @Permophiles@. The next issue will be in November 1996 and with many of the members of the Permian Subcommission; the will be prepared by the new secretary, CIaude Spinosa. Please consensus is that we should request voluntary donations to offset send your contributions to him (see note below from Forthcoming processing, mailing and paper costs. We are asking for contribu- Secretary). tions of $10 to $25. However, Permophiles will be mailed to ev- I should like to express my gratitude to those of you who have eryone on the mailing list regardless of whether a contribution is submitted contributions during my eight year term of office. You made. have helped make =Permophiles@ a useful, informative, and timely We have established access to Permophiles via the Internet; the Newsletter of the Subcommission on Permian Stratigraphy. address will be: J. Utting http://earth.idbsu.edu/permian/permophiles Geological Survey of Canada (Calgary) 3303 - 33rd Street N.W. Our intention is to provide a version of Permophiles that is readily Calgary, Alberta, Canada T2L 2A7 available through the Internet. The Internet version of Permophiles Phone (404) 292-7093 FAX (403) 292-6014 will have multiple formats. Initially the format of the Internet ver- E-mail INTERNET address: [email protected] sion will be different from the official paper version. Because new taxonomic names can not be published in Permophiles, a hard copy, downloaded from the interned will suffice for many of us.
    [Show full text]
  • Desktop Study
    PALAEONTOLOGICAL IMPACT ASSESSMENT: DESKTOP STUDY PROPOSED BEZALEL ECO-ESTATE DEVELOPMENT ON PORTIONS 135 AND 136 OF THE FARM TOWNLANDS OF MARTHINUS WESSELSTROOM 121 HT NEAR WAKKERSTROOM, MPUMALANGA John E. Almond PhD (Cantab.) Natura Viva cc, PO Box 12410 Mill Street, Cape Town 8010, RSA [email protected] November 2013 1. SUMMARY Nulani Investments Pty Ltd is proposing to construct a residential development, known as the Bezalel Eco-estate, on portions 135 and 136 of the farm Townlands of Marthinus Wesselstroom 121HT, situated c. 6.5 km northwest of the small town of Wakkerstroom, Mpumalanga. The lower-lying, southern portion of the Bezalel Eco-estate study area is underlain by offshore mudrocks of the Middle to Late Permian Volksrust Formation (Ecca Group) that are extensively intruded by dolerite sills. The fossil record of the dark Volksrust mudrocks is generally poor, with locally abundant organic-walled microfossils and trace fossils (e.g. invertebrate burrows) plus rare records of both marine and freshwater bivalve molluscs. Richer plant and insect biotas may occur in nearshore, deltaic sediments high up within the succession, but the stratigraphic position of these fossiliferous beds is poorly-defined. Steeper escarpment slopes featuring prominent- weathering sandstones in the study area are assigned to the Normandien Formation (Lower Beaufort Group) of Latest Permian age. This fluvio-deltaic succession of interbedded mudrocks and sandstones (previously referred to the Estcourt Formation) is well-known in Kwazulu-Natal for its diverse, well-preserved fossil floras - predominantly ferns and glossopterid pteridosperms, with minor coniferophytes. These are sometimes associated with important insect faunas. The Normandien fossil assemblages are generally found within recessive-weathering laminated mudrock horizons that are not at all well-exposed in the study area and that may well have been baked by the dolerite sill that caps the higher ground in the study area.
    [Show full text]