Early Neoproterozoic Granulite Facies Metamorphism of Mafic Dykes From

Total Page:16

File Type:pdf, Size:1020Kb

Early Neoproterozoic Granulite Facies Metamorphism of Mafic Dykes From J. metamorphic Geol., 2014, 32, 1041–1062 doi:10.1111/jmg.12106 Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, east Antarctica X. C. LIU,1 W.-(R. Z.)WANG,1 Y. ZHAO,1 J. LIU1 AND B. SONG2 1Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Land and Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China ([email protected]) 2Beijing SHRIMP Centre, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China ABSTRACT Proterozoic mafic dykes from the southwestern Vestfold Block experienced heterogeneous granulite facies metamorphism, characterized by spotted or fractured garnet-bearing aggregates in garnet- absent groundmass. The garnet-absent groundmass typically preserves an ophitic texture composed of lathy plagioclase, intergranular clinopyroxene and Fe–Ti oxides. Garnet-bearing domains consist mainly of a metamorphic assemblage of garnet, clinopyroxene, orthopyroxene, hornblende, biotite, plagioclase, K-feldspar, quartz and Fe–Ti oxides. Chemical compositions and textural relationships suggest that these metamorphic minerals reached local equilibrium in the centre of the garnet-bearing domains. Pseudosection calculations in the model system NCFMASHTO (Na2O–CaO–FeO–MgO– Al2O3–SiO2–H2O–TiO2–Fe2O3) yield P–T estimates of 820–870 °C and 8.4–9.7 kbar. Ion microprobe U–Pb zircon dating reveals that the NW- and N-trending mafic dykes were emplaced at 1764 Æ 25 and 1232 Æ 12 Ma, respectively, whereas their metamorphic ages cluster between 957 Æ 7 and 938 Æ 9 Ma. The identification of granulite facies mineral inclusions in metamorphic zircon domains is also consistent with early Neoproterozoic metamorphism. Therefore, the southwestern margin of the Vestfold Block is inferred to have been buried to depths of ~30–35 km beneath the Rayner oro- gen during the late stage of the late Mesoproterozoic/early Neoproterozoic collision between the Indian craton and east Antarctica (i.e. the Lambert Terrane or the Ruker craton including the Lam- bert Terrane). The lack of penetrative deformation and intensive fluid–rock interaction in the rigid Vestfold Block prevented the nucleation and growth of garnet and resulted in the heterogeneous granulite facies metamorphism of the mafic dykes. Key words: early Neoproterozoic; east Antarctica; granulite facies metamorphism; mafic dykes; P–T conditions; Vestfold Block. supercontinents (Fitzsimons, 2003; Harley, 2003; INTRODUCTION Yoshida et al., 2003; Zhao et al., 2003). Therefore, Old cratonic blocks and/or continental marginal the detailed investigation of the reworking processes basements may experience relatively young orogenic and mechanisms of each cratonic block is essential processes. In and near the late Mesoproterozoic/early for understanding the nature and role of the Rayner Neoproterozoic (i.e. Grenvillian) Rayner orogen orogeny. exposed in Kemp Land, MacRobertson Land and The Vestfold Block is an Archean/Palaeoprotero- Princess Elizabeth Land of east Antarctica, there zoic cratonic fragment located 15 km northeast of exist four Archean/Palaeoproterozoic cratonic blocks the Rauer Group. One of the most important that preserve different crustal histories (Harley, 2003; features of the Vestfold Block is the occurrence of Boger, 2011), including the Lambert Terrane in the several mafic dyke swarms of Proterozoic age (Black southern Prince Charles Mountains, the Napier Com- et al., 1991a; Lanyon et al., 1993). Furthermore, plex in Kemp Land and the Rauer Group and Vest- some of these mafic dykes experienced amphibolite fold Block in Prydz Bay (Fig. 1). Given that much of facies recrystallization and deformation (Collerson & the Rayner orogen was affected by late Neoprotero- Sheraton, 1986; Kuehner & Green, 1991; Passchier zoic/Cambrian (i.e. Pan-African) high-grade meta- et al., 1991), although the metamorphic age remains morphism and deformation, it remains a matter of unconstrained. However, careful petrographic obser- debate as to when these cratonic blocks were assem- vations indicate that mafic dykes from the southwest- bled (Harley et al., 2013; Liu et al., 2013, and refer- ern Vestfold Block underwent heterogeneous ences therein). This has led to different formation granulite facies metamorphism (Liu et al., 2013). This models of the proposed Rodinia and Gondwana provides an opportunity to unravel the behaviour of © 2014 John Wiley & Sons Ltd 1041 1042 X. C. LIU ET AL. o o o o 50 E Napier Complex 60 E 70 E 80 E Gondwana Reworked o Napier Complex 66 S 66o S Mawson Coast Vestfold Block Rayner Complex 1000 km Prydz Bay Fig. 2 Kemp Land Shelf Rauer Group Reworked in the late Neoproterozoic/Cambrian ? Enderby Land Northern Prince o 70 S Charles Mountains Mesoproterozoic/early Neoproterozoic Amery Ice 70o S Archean/Palaeoproteroz oic Fisher Terrane Clemence 0 200 km t Massif n n e Grove o m s Ruker Terrane p Mountains r w a a c M s Southern Prince E Charles M ountains Lambert Terr ane Princess Elizabeth Land o East Antarctica MacRobertson Land 74 S o o o o 74o S 50 E 60 E 70 E 80 E Fig. 1. Geological sketch map of Kemp Land, MacRobertson Land and Princess Elizabeth Land in east Antarctica (modified after Mikhalsky et al., 2001; Fitzsimons, 2003; Liu et al., 2014). Inset shows the location of this region in Gondwana at c. 500 Ma. the Vestfold Block during late Mesoproterozoic to Mossel Gneiss, comprising highly magnesian, silica- Cambrian orogenies and establish its relationship undersaturated sapphrine-bearing lithologies. The with other granulite terranes in the Rayner orogen. Tryne Mafic Gneiss generally occurs as layered two- In this article, we describe the petrological character- pyroxene granulite and also as nodular ultramafic istics of metamorphosed mafic dykes from the Vest- xenoliths within younger units. The Mossel Gneiss fold Block, estimate their metamorphic P–T consists predominantly of tonalitic orthogneiss, with conditions based on pseudosection calculations, and subordinate trondhjemitic, granodioritic and granitic determine the ages for the granulite facies metamor- orthogneiss, which intruded the aforementioned three phism using sensitive high-resolution ion microprobe constituent units between 2526 Æ 6 and 2501 Æ 4 (SHRIMP) U–Pb zircon dating. These data are then Ma (Black et al., 1991b). The Crooked Lake Gneiss used to discuss the tectonic evolution of the Rayner is the youngest unit and comprises medium- to orogen in the context of the assembly of the Indian coarse-grained orthogneiss of mostly dioritic, grano- craton and east Antarctica. dioritic, granitic and less commonly, gabbroic compo- sition. Emplacement ages inferred for the Crooked Lake Gneiss range from 2501 Æ 4 to 2484 Æ 6Ma REGIONAL GEOLOGY AND FIELD (Black et al., 1991b). Two episodes or a protracted RELATIONSHIPS period of high-grade metamorphism and deformation The basement of the Vestfold Block is dominated by took place from 2520 to 2450 Ma (Collerson et al., granulite facies orthogneiss with subordinate parag- 1983; Black et al., 1991b; Snape et al., 1997; Clark neiss (Fig. 2a). The basement rocks can be classified et al., 2012). into five units according to composition and relative Several mafic dyke swarms cut the high-grade base- age with respect to metamorphic and deformational ment of the Vestfold Block. On the basis of geo- events. These units are the Chelnok Paragneiss, Tay- chemistry, isotopic dating, cross-cutting relationships naya Paragneiss, Tryne Mafic Gneiss, Mossel Gneiss and orientation, at least four generations have been and Crooked Lake Gneiss (Collerson et al., 1983; recognized (Collerson & Sheraton, 1986; Black et al., Black et al., 1991b; Harley, 1993; Snape & Harley, 1991a; Lanyon et al., 1993; Dirks et al., 1994; Seitz, 1996; Snape et al., 1997, 2001). The Chelnok Parag- 1994; Hoek & Seitz, 1995; Snape et al., 2001). Early neiss consists mainly of garnetiferous pelite and high-Mg mafic dykes are generally E- or NE- semipelite, with less abundant psammite, quartzite, trending, with emplacement ages of 2241 Æ 4and calcsilicate and banded iron formation. Protoliths 2238 Æ 7 Ma (Lanyon et al., 1993). Group I high-Fe were deposited between 2575 and 2520 Ma (Clark mafic dykes have a NW trend and have been dated et al., 2012). The Taynaya Paragneiss locally crops at 1754 Æ 16 Ma (Lanyon et al., 1993). Group II out as a discontinuous layer or boudin train in the high-Fe mafic dykes are NNW-trending and have © 2014 John Wiley & Sons Ltd METAMORPHISM OF MAFIC DYKES IN ANTARCTICA 1043 (a) (b) Fig. 2. Simplified geological map of the Vestfold Block (a) and the Mule Peninsula of the southwestern Vestfold Block (b) (modified after Snape et al., 2001; Clark et al., 2012). The localities of the studied samples are indicated. been dated at 1380 Æ 7 Ma (Lanyon et al., 1993). (Fig. 3b), and is probably, part of the Group III The youngest Group III high-Fe mafic dykes are high-Fe mafic dykes. All these dykes are 2–8m in NNE- to N-trending and have been dated at width, and dip at a steep angle of ~80° towards 1248 Æ 4 and 1241 Æ 5 Ma, respectively (Black the east for the N-trending dykes and towards the et al., 1991a; Lanyon et al., 1993). In addition, alka- southwest for the NW-trending dykes. Most dykes line and ultramafic lamprophyric dykes were em- are massive, and only some show weak deforma- placed before the intrusion of Group II or III mafic tional features, as evident from oriented fine- dykes. In the northern part of the Vestfold Block, the grained mineral assemblages (Fig. 3c). The granulite dykes are un-deformed and display chilled margins facies metamorphism of most mafic dykes is hetero- and baked contacts, but in the southeastern part of geneous, characterized by a spotted texture pro- the Vestfold Block, some dykes are metamorphosed duced by pink garnet-rich aggregates in a grey to and locally deformed (Collerson & Sheraton, 1986; dark groundmass (see Fig. 3b,c). Some dykes are Passchier et al., 1991).
Recommended publications
  • Glacio-Lacustrine Aragonite Deposition, Meltwater Evolution And
    Antarctic Science 19 (3), 365–372 (2007) & Antarctic Science Ltd 2007 Printed in the UK DOI: 10.1017/S0954102007000466 Glacio-lacustrine aragonite deposition, meltwater evolution and glacial history during isotope stage 3 at Radok Lake, Amery Oasis, northern Prince Charles Mountains, East Antarctica IAN D. GOODWIN1 and JOHN HELLSTROM2 1Environmental and Climate Change Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia 2School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia [email protected] Abstract: The late Quaternary glacial history of the Amery Oasis, and Prince Charles Mountains is of significant interest because about 10% of the total modern Antarctic ice outflow is discharged via the adjacent Lambert Glacier system. A glacial thrust moraine sequence deposited along the northern shoreline of Radok Lake between 20–10 ka BP, overlies a layer of thin, aragonite crusts which provide important constraints on the glacial history of the Amery Oasis. The modern Radok Lake is fed by the terminal meltwaters of the alpine Battye Glacier. The aragonite crusts were deposited in shallow water of ancestral Radok Lake 53 ka BP,during the A3 warm event in Isotope Stage 3. Oxygen isotope (d18O) analysis of the last glacial-age aragonite crusts 18 indicates that they precipitated from freshwater with a d OSMOW composition of -36%, which is 8% more depleted than the present water (-28%) in Radok Lake. A regional oxygen isotope (d18O) and elevation relationship for snow is used to determine the source of meltwater and glacial ice in Radok Lake during the A3 warm event.
    [Show full text]
  • Boeckella Poppei and Gladioferens Antarcticus I.A.E
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Tasmania Open Access Repository Antarctic Science 15 (4): 439–448 (2003) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102003001548 Taxonomy, ecology and zoogeography of two East Antarctic freshwater calanoid copepod species: Boeckella poppei and Gladioferens antarcticus I.A.E. BAYLY1,2, J.A.E. GIBSON3,4*, B. WAGNER5 and K.M. SWADLING4 1School of Biological Sciences, Monash University, VIC 3800, Australia 2501 Killiecrankie Rd, Flinders Island, TAS 7255, Australia 3Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia 4School of Zoology, University of Tasmania, Private Bag 5, Hobart, TAS 7001, Australia 5Institute for Geophysics and Geology, Faculty for Physics and Geoscience, University Leipzig, Talstrasse 35, D-04103 Leipzig, Germany *corresponding author: [email protected] Abstract: New populations of the two species of calanoid copepods known to inhabit freshwater lakes in East Antarctica, Boeckella poppei (Mrázek, 1901) and Gladioferens antarcticus Bayly, 1994, have recently been discovered. The morphology of the populations of B. poppei showed significant differences, notably a reduction in the armature of the male fifth leg, when compared with typical specimens from the Antarctic Peninsula and South America. Gladioferens antarcticus had previously been recorded from a single lake in the Bunger Hills, but has now been recorded from three further lakes in this region. A recent review of Antarctic terrestrial and limnetic zooplankton suggested that neither of these species can be considered an East Antarctic endemic, with B.
    [Show full text]
  • New Zircon U∓Pb and Hf∓Nd Isotopic Constraints on the Timing of Magmatism, Sedimentation and Metamorphism in the N
    Precambrian Research 299 (2017) 15–33 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres New zircon U–Pb and Hf–Nd isotopic constraints on the timing of magmatism, sedimentation and metamorphism in the northern Prince Charles Mountains, East Antarctica ⇑ Xiaochun Liu a, , Yue Zhao a, Hong Chen a, Biao Song b a Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China b Beijing SHRIMP Centre, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China article info abstract Article history: The northern Prince Charles Mountains (PCM) in East Antarctica represent the largest continuously Received 17 April 2017 exposed section of the Rayner Complex and may provide important insights into the tectonic evolution Revised 10 July 2017 of the Rayner orogen. We present new U–Pb and Hf isotopic data for zircons from felsic orthogneisses, Accepted 13 July 2017 mafic granulites, paragneisses and charnockites and additional Nd isotopic data for the former two rock Available online 15 July 2017 types from the Beaver Lake area in the northern PCM. Zircons from the felsic orthogneisses document protolith ages of ca. 1170–1070 Ma, with Hf and Nd model ages of 1.99–1.74 Ga, suggesting the genera- Keywords: tion of the felsic magmas by partial melting of crustal rocks that were extracted from the mantle during Zircon the Paleoproterozoic. Detrital zircons from one paragneiss sample yield a major age population at ca. Magmatic age Depositional age 1480–1140 Ma and three subordinate populations at ca. 2130–1850, 1780–1620 and 1010–860 Ma, Metamorphic age whereas those from another paragneiss sample produce a major age population at ca.
    [Show full text]
  • Boeckella Poppei and Gladioferens Antarcticus I.A.E
    Antarctic Science 15 (4): 439–448 (2003) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102003001548 Taxonomy, ecology and zoogeography of two East Antarctic freshwater calanoid copepod species: Boeckella poppei and Gladioferens antarcticus I.A.E. BAYLY1,2, J.A.E. GIBSON3,4*, B. WAGNER5 and K.M. SWADLING4 1School of Biological Sciences, Monash University, VIC 3800, Australia 2501 Killiecrankie Rd, Flinders Island, TAS 7255, Australia 3Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia 4School of Zoology, University of Tasmania, Private Bag 5, Hobart, TAS 7001, Australia 5Institute for Geophysics and Geology, Faculty for Physics and Geoscience, University Leipzig, Talstrasse 35, D-04103 Leipzig, Germany *corresponding author: [email protected] Abstract: New populations of the two species of calanoid copepods known to inhabit freshwater lakes in East Antarctica, Boeckella poppei (Mrázek, 1901) and Gladioferens antarcticus Bayly, 1994, have recently been discovered. The morphology of the populations of B. poppei showed significant differences, notably a reduction in the armature of the male fifth leg, when compared with typical specimens from the Antarctic Peninsula and South America. Gladioferens antarcticus had previously been recorded from a single lake in the Bunger Hills, but has now been recorded from three further lakes in this region. A recent review of Antarctic terrestrial and limnetic zooplankton suggested that neither of these species can be considered an East Antarctic endemic, with B. poppei being listed as a recent anthropogenic introduction and G. antarcticus a ‘marine interloper’. We conclude differently: B. poppei has been present in isolated populations in East Antarctica for significant lengths of time, possibly predating the current interglacial, while G.
    [Show full text]
  • THE COMBINED PROBUS CLUB of NOOSA Inc
    THE COMBINED PROBUS CLUB OF NOOSA Inc. President: Joy Pollard Ph: 0490 151361 Originally Sponsored by the Rotary PO Box 1261, Noosa ille D.C. 4566 hp://noosacombinedprobus.yolasite.com/ Club of Noosa No. 4 %MA( 2018 EVENTS LINE-UP From the President: Hello Everyone, Diary Dates—Page 7 By the time this bulletin goes to print the MAY ♦Coffee & Chat Peregian Commonwealth Games will have been well ♦Tipplers Anonymous and truly put to bed. As I write we are still ♦Call Yourself a Wine Buff? basking in the afterglow of the success of ♦Buffet Breakfast– Yacht Club our Australian athletes. All did us proud. Some perfor- ♦Theatre-Shorts on Stage mances were particularly inspirational – those of the less abled bodied athletes were awesome. JUNE ♦ Coffee & Chat Peregian ♦Tipplers Anonymous I never cease to be inspired by the many acts of kindness, ♦Lunch Pepper’s Resort big and little, amongst our fellow Probians. Friends qui- ♦Apollonian Hotel Lunch etly lending a helping hand when needed. This really is what it’s all about– having fun together but most im- July events—Page 3 portantly enjoying the friendship and support our Club has to offer. Golf & Sausage Sizzle event planned for July for our golfers—pg 3. Thanks to everyone for paying the annual membership fees on time. This is much appreciated. PLUS REGULAR EVENTS. Page 5 /6 Suggestion Box is still available!! Joy Pollard Please check page 8 for membership news. Meeting May 7th —GUEST SPEAKER - SYDNEY KIRKBY A pioneer in Antarctic exploration invites us to look back over a life of extraordinary adventures.
    [Show full text]
  • Glaciomarine Sedimentation at the Continental Margin of Prydz Bay, East Antarctica: Implications on Palaeoenvironmental Changes During the Quaternary
    Alfred-Wegener-Institut für Polar- und Meeresforschung Universität Potsdam, Institut für Erd- und Umweltwissenschaften Glaciomarine sedimentation at the continental margin of Prydz Bay, East Antarctica: implications on palaeoenvironmental changes during the Quaternary Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin “Geowissenschaften” eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Andreas Borchers Potsdam, 30. November 2010 Das Höchste, wozu der Mensch gelangen kann, ist das Erstaunen. J. W. von Goethe Acknowledgements This dissertation would not have been possible without the support and help of numerous people to whom I would like to express my gratitude. First, I am highly indebted to PD Dr. Bernhard Diekmann for the possibility to conduct this work under his supervision and for his constant support, whenever discussion or advice was needed. I appreciated his vast expertise and knowledge of marine geology, sedimentology and Quaternary Science that he so enthusiastically shared with me, adding considerably to my experience. Besides being a full-hearted geologist, he is also a great guitarist, which I enjoyed during the past years, especially during the expeditions I had the chance to participate. I would also like to thank Prof. Dr. Hans-Wolfgang Hubberten for his general support and understanding, giving me the opportunity to broaden my knowledge of marine geology in the field. Using the infrastructure of the institute in Potsdam, Bremerhaven and on the world’s oceans has made a major contribution realizing this work. I am deeply grateful to Prof. Dr. Ulrike Herzschuh and Dr. Gerhard Kuhn who provided a large part of assistance by discussions, constructive advices and moral support.
    [Show full text]
  • Paleoceanography
    PUBLICATIONS Paleoceanography RESEARCH ARTICLE Sea surface temperature control on the distribution 10.1002/2014PA002625 of far-traveled Southern Ocean ice-rafted Key Points: detritus during the Pliocene • New Pliocene East Antarctic IRD record and iceberg trajectory-melting model C. P. Cook1,2,3, D. J. Hill4,5, Tina van de Flierdt3, T. Williams6, S. R. Hemming6,7, A. M. Dolan4, • Increase in remotely sourced IRD 8 9 10 11 9 between ~3.27 and ~2.65 Ma due E. L. Pierce , C. Escutia , D. Harwood , G. Cortese , and J. J. Gonzales to cooling SSTs 1 2 • Evidence for ice sheet retreat in the Grantham Institute for Climate Change, Imperial College London, London, UK, Now at Department of Geological Sciences, Aurora Basin during interglacials University of Florida, Gainesville, Florida, USA, 3Department of Earth Sciences and Engineering, Imperial College London, London, UK, 4School of Earth and Environment, University of Leeds, Leeds, UK, 5British Geological Survey, Nottingham, UK, 6Lamont-Doherty Earth Observatory, Palisades, New York, USA, 7Department of Earth and Environmental Sciences, Columbia Supporting Information: 8 • Readme University, Lamont-Doherty Earth Observatory, Palisades, New York, USA, Department of Geosciences, Wellesley College, • Text S1 and Tables S1–S3 Wellesley, Massachusetts, USA, 9Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain, 10Department of Geology, University of Nebraska–Lincoln, Lincoln, Nebraska, USA, 11Department of Paleontology, GNS Science, Lower Hutt, New Zealand Correspondence to: C. P. Cook, c.cook@ufl.edu Abstract The flux and provenance of ice-rafted detritus (IRD) deposited in the Southern Ocean can reveal information about the past instability of Antarctica’s ice sheets during different climatic conditions.
    [Show full text]
  • Geochemistry and Geochronology of High-Grade Rocks from the Grove
    Precambrian Research 158 (2007) 93–118 Geochemistry and geochronology of high-grade rocks from the Grove Mountains, East Antarctica: Evidence for an Early Neoproterozoic basement metamorphosed during a single Late Neoproterozoic/Cambrian tectonic cycle Xiaochun Liu a,∗, Bor-Ming Jahn b,c, Yue Zhao a, Guochun Zhao d, Xiaohan Liu e a Institute of Geomechanics, Chinese Academy of Geological Sciences, 11 Minzudaxue Nanlu, Beijing 100081, China b Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan c Department of Geological Sciences, National Taiwan University, Taipei 106, Taiwan d Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong e Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China Received 30 May 2006; received in revised form 8 April 2007; accepted 24 April 2007 Abstract The Grove Mountains of East Antarctica are an inland continuation of the Prydz Belt. The high-grade metamorphic complex in this area is composed of felsic orthogneisses and mafic granulites, with minor paragneisses and calc-silicate rocks. U–Pb zircon analyses using SHRIMP and LA-ICP-MS techniques reveal that the protoliths of mafic granulites and felsic orthogneisses were emplaced during a short time interval of ca. 920–910 Ma. Mafic granulites can be divided into low- and high-Ti groups. They have t initial εNd values [εNd(T)] ranging from +0.8 to −1.9. TiO2 is positively correlated with FeO /MgO and La/Nb ratios, whereas it shows a negative correlation with εNd(T) values, indicating that the petrogenesis of their protoliths involved partial melting of a weakly enriched subcontinental lithospheric mantle and fractional crystallization of the magma accompanied by minor crustal contamination.
    [Show full text]
  • Prydz Bay Region, East Antarctica J.M
    Antarctic Science 18 (1), 83–99 (2006) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102006000083 A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben–Prydz Bay region, East Antarctica J.M. WHITEHEAD1*, P.G. QUILTY2, B.C. MCKELVEY3 and P.E. O’BRIEN4 1Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia 2School of Earth Sciences University of Tasmania, Private Bag 79, Hobart, TAS 7001, Australia 3Division of Earth Sciences, University of New England, Armidale, NSW 2351, Australia 4Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia *[email protected] Abstract: The Cenozoic glacial history of East Antarctica is recorded in part by the stratigraphy of the Prydz Bay–Lambert Graben region. The glacigene strata and associated erosion surfaces record at least 10 intervals of glacial advance (with accompanying erosion and sediment compaction), and more than 17 intervals of glacial retreat (enabling open marine deposition in Prydz Bay and the Lambert Graben). The number of glacial advances and retreats is considerably less than would be expected from Milankovitch frequencies due to the incomplete stratigraphic record. Large advances of the Lambert Glacier caused progradation of the continental shelf edge. At times of extreme glacial retreat, marine conditions reached > 450 km inland from the modern ice shelf edge. This review presents a partial reconstruction of Cenozoic glacial extent within Prydz Bay and the Lambert Graben that can be compared to eustatic sea-level records from the southern Australian continental margin. Received 1 December 2004, accepted 15 July 2005 Key words: glaciation, ice sheet, Milankovitch, Prince Charles Mountains Introduction Study area In recent years there has been considerable investigation of This paper reviews the Cenozoic stratigraphy of the the Cenozoic geology of the Lambert Graben and Prydz Antarctic continent and margin from 60°E to 80°E.
    [Show full text]
  • Coastal Change and Glaciological Map of The
    Prepared in cooperation with the Scott Polar Research Institute, University of Cambridge, United Kingdom Coastal-Change and Glaciological Map of the Amery Ice Shelf Area, Antarctica: 1961–2004 By Kevin M. Foley, Jane G. Ferrigno, Charles Swithinbank, Richard S. Williams, Jr., and Audrey L. Orndorff Pamphlet to accompany Geologic Investigations Series Map I–2600–Q 2013 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Foley, K.M., Ferrigno, J.G., Swithinbank, Charles, Williams, R.S., Jr., and Orndorff, A.L., 2013, Coastal-change and glaciological map of the Amery Ice Shelf area, Antarctica: 1961–2004: U.S. Geological Survey Geologic Investigations Series Map I–2600–Q, 1 map sheet, 8-p.
    [Show full text]
  • ANU SHRIMP PUBLICATIONS: 1977 - 2007 (Updated 27 February 2008)
    ANU SHRIMP PUBLICATIONS: 1977 - 2007 (Updated 27 February 2008) 1977 Clement, S.W., Compston, W. and Newstead, G., 1977. Design of a large, high resolution ion microprobe. Proceedings of the First International Conference on SIMS, Muenster. (Volume never published). 1982 Compston, W., Williams, I.S. and Black, L.P., 1982. Use of the ion microprobe in geological dating. BMR 82. Yearbook of Bureau of Mineral Resources, Geology and Geophysics, Australian Government Publishing Service, Canberra, 39-42. 1983 Collerson, K.D., 1983. Ion microprobe zircon geochronology of the Uivak gneisses: implications for the evolution of early terrestrial crust in the North Atlantic Craton. LPI Technical Report, 83-03, 29-32. Froude, D.O., Ireland, T.R., Kinny, P.D., Williams, I.S., Compston, W., Williams, I.R. and Myers, J.S., 1983. Ion microprobe identification of 4100-4200 Myr-old terrestrial zircons. Nature, 304, 616-618. Williams, I.S., Compston, W., Collerson, K.D., Arriens, P.A. and Lovering, J.F., 1983. A reassessment of the age of the Windmill metamorphics, Casey area. Antarctic Earth Science, Oliver, R.L., James, P.R. and Jago, J.B. (eds) Australian Academy of Science, Canberra, 73-76. 1984 Compston, W., Williams, I.S. and Meyer, C., 1984. U-Pb geochronology of zircon from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Resources, 89, Supplement, B525-B534. Williams, I.S., Compston, W., Black, L.P., Ireland, T.R. and Foster, J.J., 1984. Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages.
    [Show full text]
  • Early Miocene Mollusca from the ANDRILL 2A Core, Mcmurdo Sound
    1 1 EARLY MIOCENE MOLLUSCA FROM MCMURDO SOUND, ANTARCTICA 2 (ANDRILL 2A DRILL CORE), WITH A REVIEW OF ANTARCTIC 3 OLIGOCENE AND NEOGENE PECTINIDAE (BIVALVIA) 4 5 by Alan Beu1 and Marco Taviani2 6 7 1GNS Science, PO Box 30368, Lower Hutt, New Zealand 5040; e-mail: 8 <[email protected]> 9 2Istituto de Scienze Marine-CNR, via Gobetti 101, I-40129 Bologna, Italy; and 10 Woods Hole Oceanographic Institute, 266 Woods Hole Road, MA 02543, USA; e- 11 mail: <[email protected]> 12 13 Typescript received 14 ---------------------------------------------------------------------------------------------------------------- 15 Abstract: Retrotapes andrillorum n. sp., Hiatella cf. arctica (Linnaeus, 1767), ?Yoldia 16 sp. (internal mould), and six taxa of Pectinidae are reported from the Burdigalian 17 section of the ANDRILL 2A core, drilled in McMurdo Sound, Ross Sea. The pectinids 18 are Adamussium cf. jonkersi Quaglio et al., 2010, Antarctipecten n. gen. alanbeui 19 (Jonkers, 2003), Austrochlamys forticosta n. sp., Austrochlamys cf. marisrossensis 20 Jonkers, 2003, Ruthipecten n. gen., n. sp. (not named), and a fragmentary specimen 21 representing an unnamed genus and species. In a revision of Antarctic Pectinidae, 22 Austrochlamys Jonkers, 2003, Ruthipecten n. gen. (proposed for Chlamys 23 (Zygochlamys) tuftsensis Turner, 1967, reported only from Wright Valley and the 24 Vestfold Hills, not present in ANDRILL 2A), Leoclunipecten n. gen. (proposed for 25 Austrochlamys gazdzickii Jonkers, 2003, reported only from Oligocene rocks of King 26 George Island, not present in ANDRILL 2A) and the unnamed genus in ANDRILL 2A 27 are assigned to subfamily Chlamydinae, tribe Chlamydini, whereas Adamussium 28 Thiele, 1934 and Antarctipecten n.
    [Show full text]