THE COMBINED PROBUS CLUB of NOOSA Inc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Zircon U∓Pb and Hf∓Nd Isotopic Constraints on the Timing of Magmatism, Sedimentation and Metamorphism in the N
Precambrian Research 299 (2017) 15–33 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres New zircon U–Pb and Hf–Nd isotopic constraints on the timing of magmatism, sedimentation and metamorphism in the northern Prince Charles Mountains, East Antarctica ⇑ Xiaochun Liu a, , Yue Zhao a, Hong Chen a, Biao Song b a Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China b Beijing SHRIMP Centre, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China article info abstract Article history: The northern Prince Charles Mountains (PCM) in East Antarctica represent the largest continuously Received 17 April 2017 exposed section of the Rayner Complex and may provide important insights into the tectonic evolution Revised 10 July 2017 of the Rayner orogen. We present new U–Pb and Hf isotopic data for zircons from felsic orthogneisses, Accepted 13 July 2017 mafic granulites, paragneisses and charnockites and additional Nd isotopic data for the former two rock Available online 15 July 2017 types from the Beaver Lake area in the northern PCM. Zircons from the felsic orthogneisses document protolith ages of ca. 1170–1070 Ma, with Hf and Nd model ages of 1.99–1.74 Ga, suggesting the genera- Keywords: tion of the felsic magmas by partial melting of crustal rocks that were extracted from the mantle during Zircon the Paleoproterozoic. Detrital zircons from one paragneiss sample yield a major age population at ca. Magmatic age Depositional age 1480–1140 Ma and three subordinate populations at ca. 2130–1850, 1780–1620 and 1010–860 Ma, Metamorphic age whereas those from another paragneiss sample produce a major age population at ca. -
Early Neoproterozoic Granulite Facies Metamorphism of Mafic Dykes From
J. metamorphic Geol., 2014, 32, 1041–1062 doi:10.1111/jmg.12106 Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, east Antarctica X. C. LIU,1 W.-(R. Z.)WANG,1 Y. ZHAO,1 J. LIU1 AND B. SONG2 1Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Land and Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China ([email protected]) 2Beijing SHRIMP Centre, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China ABSTRACT Proterozoic mafic dykes from the southwestern Vestfold Block experienced heterogeneous granulite facies metamorphism, characterized by spotted or fractured garnet-bearing aggregates in garnet- absent groundmass. The garnet-absent groundmass typically preserves an ophitic texture composed of lathy plagioclase, intergranular clinopyroxene and Fe–Ti oxides. Garnet-bearing domains consist mainly of a metamorphic assemblage of garnet, clinopyroxene, orthopyroxene, hornblende, biotite, plagioclase, K-feldspar, quartz and Fe–Ti oxides. Chemical compositions and textural relationships suggest that these metamorphic minerals reached local equilibrium in the centre of the garnet-bearing domains. Pseudosection calculations in the model system NCFMASHTO (Na2O–CaO–FeO–MgO– Al2O3–SiO2–H2O–TiO2–Fe2O3) yield P–T estimates of 820–870 °C and 8.4–9.7 kbar. Ion microprobe U–Pb zircon dating reveals that the NW- and N-trending mafic dykes were emplaced at 1764 Æ 25 and 1232 Æ 12 Ma, respectively, whereas their metamorphic ages cluster between 957 Æ 7 and 938 Æ 9 Ma. The identification of granulite facies mineral inclusions in metamorphic zircon domains is also consistent with early Neoproterozoic metamorphism. -
Paleoceanography
PUBLICATIONS Paleoceanography RESEARCH ARTICLE Sea surface temperature control on the distribution 10.1002/2014PA002625 of far-traveled Southern Ocean ice-rafted Key Points: detritus during the Pliocene • New Pliocene East Antarctic IRD record and iceberg trajectory-melting model C. P. Cook1,2,3, D. J. Hill4,5, Tina van de Flierdt3, T. Williams6, S. R. Hemming6,7, A. M. Dolan4, • Increase in remotely sourced IRD 8 9 10 11 9 between ~3.27 and ~2.65 Ma due E. L. Pierce , C. Escutia , D. Harwood , G. Cortese , and J. J. Gonzales to cooling SSTs 1 2 • Evidence for ice sheet retreat in the Grantham Institute for Climate Change, Imperial College London, London, UK, Now at Department of Geological Sciences, Aurora Basin during interglacials University of Florida, Gainesville, Florida, USA, 3Department of Earth Sciences and Engineering, Imperial College London, London, UK, 4School of Earth and Environment, University of Leeds, Leeds, UK, 5British Geological Survey, Nottingham, UK, 6Lamont-Doherty Earth Observatory, Palisades, New York, USA, 7Department of Earth and Environmental Sciences, Columbia Supporting Information: 8 • Readme University, Lamont-Doherty Earth Observatory, Palisades, New York, USA, Department of Geosciences, Wellesley College, • Text S1 and Tables S1–S3 Wellesley, Massachusetts, USA, 9Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain, 10Department of Geology, University of Nebraska–Lincoln, Lincoln, Nebraska, USA, 11Department of Paleontology, GNS Science, Lower Hutt, New Zealand Correspondence to: C. P. Cook, c.cook@ufl.edu Abstract The flux and provenance of ice-rafted detritus (IRD) deposited in the Southern Ocean can reveal information about the past instability of Antarctica’s ice sheets during different climatic conditions. -
Australian Antarctic Magazine
AusTRALIAN MAGAZINE ISSUE 23 2012 7317 AusTRALIAN ANTARCTIC ISSUE 2012 MAGAZINE 23 The Australian Antarctic Division, a Division of the Department for Sustainability, Environment, Water, Population and Communities, leads Australia’s CONTENTS Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having PROFILE ‘Antarctica valued, protected and understood’. It does Charting the seas of science 1 this by managing Australian government activity in Antarctica, providing transport and logistic support to SEA ICE VOYAGE Australia’s Antarctic research program, maintaining four Antarctic science in the spring sea ice zone 4 permanent Australian research stations, and conducting scientific research programs both on land and in the Sea ice sky-lab 5 Southern Ocean. Search for sea ice algae reveals hidden Antarctic icescape 6 Australia’s four Antarctic goals are: Twenty metres under the sea ice 8 • To maintain the Antarctic Treaty System and enhance Australia’s influence in it; Pumping krill into research 9 • To protect the Antarctic environment; Rhythm of Antarctic life 10 • To understand the role of Antarctica in the global SCIENCE climate system; and A brave new world as Macquarie Island moves towards recovery 12 • To undertake scientific work of practical, economic and national significance. Listening to the blues 14 Australian Antarctic Magazine seeks to inform the Bugs, soils and rocks in the Prince Charles Mountains 16 Australian and international Antarctic community Antarctic bottom water disappearing 18 about the activities of the Australian Antarctic Antarctic bioregions enhance conservation planning 19 program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent the position of Antarctic ice clouds 20 the Australian Government. -
Geochemistry and Geochronology of High-Grade Rocks from the Grove
Precambrian Research 158 (2007) 93–118 Geochemistry and geochronology of high-grade rocks from the Grove Mountains, East Antarctica: Evidence for an Early Neoproterozoic basement metamorphosed during a single Late Neoproterozoic/Cambrian tectonic cycle Xiaochun Liu a,∗, Bor-Ming Jahn b,c, Yue Zhao a, Guochun Zhao d, Xiaohan Liu e a Institute of Geomechanics, Chinese Academy of Geological Sciences, 11 Minzudaxue Nanlu, Beijing 100081, China b Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan c Department of Geological Sciences, National Taiwan University, Taipei 106, Taiwan d Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong e Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China Received 30 May 2006; received in revised form 8 April 2007; accepted 24 April 2007 Abstract The Grove Mountains of East Antarctica are an inland continuation of the Prydz Belt. The high-grade metamorphic complex in this area is composed of felsic orthogneisses and mafic granulites, with minor paragneisses and calc-silicate rocks. U–Pb zircon analyses using SHRIMP and LA-ICP-MS techniques reveal that the protoliths of mafic granulites and felsic orthogneisses were emplaced during a short time interval of ca. 920–910 Ma. Mafic granulites can be divided into low- and high-Ti groups. They have t initial εNd values [εNd(T)] ranging from +0.8 to −1.9. TiO2 is positively correlated with FeO /MgO and La/Nb ratios, whereas it shows a negative correlation with εNd(T) values, indicating that the petrogenesis of their protoliths involved partial melting of a weakly enriched subcontinental lithospheric mantle and fractional crystallization of the magma accompanied by minor crustal contamination. -
ANU SHRIMP PUBLICATIONS: 1977 - 2007 (Updated 27 February 2008)
ANU SHRIMP PUBLICATIONS: 1977 - 2007 (Updated 27 February 2008) 1977 Clement, S.W., Compston, W. and Newstead, G., 1977. Design of a large, high resolution ion microprobe. Proceedings of the First International Conference on SIMS, Muenster. (Volume never published). 1982 Compston, W., Williams, I.S. and Black, L.P., 1982. Use of the ion microprobe in geological dating. BMR 82. Yearbook of Bureau of Mineral Resources, Geology and Geophysics, Australian Government Publishing Service, Canberra, 39-42. 1983 Collerson, K.D., 1983. Ion microprobe zircon geochronology of the Uivak gneisses: implications for the evolution of early terrestrial crust in the North Atlantic Craton. LPI Technical Report, 83-03, 29-32. Froude, D.O., Ireland, T.R., Kinny, P.D., Williams, I.S., Compston, W., Williams, I.R. and Myers, J.S., 1983. Ion microprobe identification of 4100-4200 Myr-old terrestrial zircons. Nature, 304, 616-618. Williams, I.S., Compston, W., Collerson, K.D., Arriens, P.A. and Lovering, J.F., 1983. A reassessment of the age of the Windmill metamorphics, Casey area. Antarctic Earth Science, Oliver, R.L., James, P.R. and Jago, J.B. (eds) Australian Academy of Science, Canberra, 73-76. 1984 Compston, W., Williams, I.S. and Meyer, C., 1984. U-Pb geochronology of zircon from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Resources, 89, Supplement, B525-B534. Williams, I.S., Compston, W., Black, L.P., Ireland, T.R. and Foster, J.J., 1984. Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. -
Sea Surface Temperature Control on the Distribution of Far-Traveled Southern Ocean Ice-Rafted Detritus During the Pliocene
This is a repository copy of Sea surface temperature control on the distribution of far-traveled Southern Ocean ice-rafted detritus during the Pliocene. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80164/ Version: Published Version Article: Cook, CP, Van De Flierdt, T, Hill, DJ et al. (8 more authors) (2014) Sea surface temperature control on the distribution of far-traveled Southern Ocean ice-rafted detritus during the Pliocene. Paleoceanography, 29 (6). 533 - 548. ISSN 0883-8305 https://doi.org/10.1002/2014PA002625 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ PUBLICATIONS Paleoceanography RESEARCH ARTICLE Sea surface temperature control on the distribution 10.1002/2014PA002625 of far-traveled Southern Ocean ice-rafted Key Points: detritus during the Pliocene • New Pliocene East Antarctic IRD record and iceberg trajectory-melting model C. -
Medals and Awards Gold Medal Recipients
Medals and Awards Gold Medal Recipients The Gold Medals (Founder’s and Patron’s Medals) originated as an annual gift of fifty guineas from King William IV. It was awarded for the first time in 1831, for the encouragement and promotion of geographical science and discovery. In 1839 the Society decided that this sum should be converted into two gold medals of equal value, to be designated the Founder’s Medal and the Patron’s Medal. Today both Medals are approved by Her Majesty The Queen. Gold Medal recipients are listed in full below: 1832 Founder's Medal - Richard Lander For important services in determining the course and termination of the Niger 1833 Founder's Medal - John Biscoe For his discovery of Graham’s Land and Enderby’s Land in the Antarctic 1834 Founder's Medal - Captain Sir John Ross For his discovery of Boothia Felix and King William Land and for his famous sojourn of four winters in the Arctic 1835 Founder's Medal - Sir Alexander Burnes For his remarkable and important journeys through Persia 1836 Founder's Medal - Captain Sir George Back For his recent discoveries in the Arctic, and his memorable journey down the Great Fish River 1837 Founder's Medal - Captain Robert Fitzroy For his survey of the coasts of South America, from the Rio de la Plata to Guayaquil in Peru 1838 Founder's Medal - Colonel Francis Rawdon Chesney For valuable materials in comparative and physical geography in Syria, Mesopotamia and the delta of Susiana 1839 Founder's Medal - Thomas Simpson For tracing the hitherto unexplored coast of North America Patron's Medal - Dr. -
Terra Antartica Publication Terra Antartica 2005, 12(2), 45-50
© Terra Antartica Publication Terra Antartica 2005, 12(2), 45-50 Thermochronological Investigation around the Lambert Graben: Review of Pre-Existing Data and Field Work during PCMEGA F. LISKER1*, D.X. BELTON2 & U. KRONER3 1FB Geowissenschaften, Universität Bremen, PF 330440, 28334 Bremen - Germany 2School of Earth Sciences, University of Melbourne, 3052 Parkville, Victoria – Australia 3Institut für Geowissenschaften, Technische Universität Bergakademie Freiberg, Bernhard-von-Cottastr. 2, 09596 Freiberg - Germany Abstract - The Lambert Graben is the largest known rift structure within the East Antarctic Craton. The north-western shoulder segment, the northern Prince Charles Mountains (PCM), experienced two major denudational episodes during the Permo-Carboniferous and the Cretaceous that are apparently related to the initial rifting and graben formation, and its reactivation due to the Gondwana breakup between India and Antarctica, respectively. Structural field work and morphological observation carried out during the joint German-Australian PCMEGA expedition 2002/03 as well as subsequent thermochronological analyses (40Ar/39Ar, fission track, and U/Th-He analyses) shall unravel the rifting history of the much less understood southern graben segment. The main topics of the future investigation are: (1) Structure, initiation and development of the Lambert Graben, (2) Long-term evolution of the topography, and (3) Using intra- Gondwanian rifts as a tool for Gondwana reconstruction. INTRODUCTION The Lambert Graben in Mac.Robertson Land is -
Erosional History of East Antarctica from Double and Triple-Dating of Single Grains in Glacially- Derived Sediments from Prydz Bay
EROSIONAL HISTORY OF EAST ANTARCTICA FROM DOUBLE AND TRIPLE-DATING OF SINGLE GRAINS IN GLACIALLY- DERIVED SEDIMENTS FROM PRYDZ BAY by Clare J. Tochilin A Prepublication Manuscript Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA th May 7 , 2012 STATEMENT BY THE AUTHOR This manuscript, prepared for publication in Geochemistry Geophysics Geosystems, has been submitted in partial fulfillment of requirements for the Master of Science degree at The University of Arizona and is deposited in the Antevs Reading Room to be made available to borrowers, as are copies of regular theses and dissertations. Brief quotations from this manuscript are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the Department of Geosciences when the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. (author 's signature) (date) APPROVAL BY RESEARCH COMMITTEE As members of the Research Committee, we recommend that this prepublication manuscript be accepted as fulfilling the research requirement for the degree of Master of Science. Dr. Peter W. Reiners 2. Major Advisor (signature) (date) Dr. George E. Gehrels 2otz_ (signature) (date) {J Dr. Stuart N. Thomson Lf{., I 1 s/:r/1z.. (signature) (dat/i 1 Erosional history of East Antarctica from double and triple-dating of single grains in glacially-derived sediments from Prydz Bay Clare J. -
Australian ANTARCTIC Magazine ISSUE 14 2008
Australian ANTARCTIC MAGAZinE ISSUE 14 2008 AUSTRALIA IN THE INTERNATIONAL POLAR YEAR www.aad.gov.au Australian ANTARCTIC MAGAZinE ISSUE 14 2008 CONTEnts The Australian Antarctic Division, a Division of the Australia in the International Polar Year 1 Department of the Environment, Water, Heritage and the Arts, leads Australia’s Antarctic program and seeks CEAMARC to advance Australia’s Antarctic interests in pursuit of its vision of having ‘Antarctica valued, protected Underwater world gives up its secrets 2 and understood’. It does this by managing Australian Ship’s Log: Collaborative East Antarctic Marine Census 4 government activity in Antarctica, providing transport Sound decisions for seabed sampling 7 and logistic support to Australia’s Antarctic research program, maintaining four permanent Australian Sequencing secrets of whole microbial communities 8 research stations, and conducting scientific research Broadcasting marine science to the world 9 programs both on land and in the Southern Ocean. Venom evolution 10 Australia’s four Antarctic goals are: • To maintain the Antarctic Treaty System Supporting scientists at sea 12 and enhance Australia’s influence in it; SIPEX • To protect the Antarctic environment; • To understand the role of Antarctica in Sea Ice Physics and Ecosystem eXperiment 14 the global climate system; and Determining sea ice thickness with an airborne scanning laser 16 • To undertake scientific work of practical, Sea ice algae put spring in krill growth 17 economic and national significance. Today’s youth – tomorrow’s Antarctic scientists 19 Australian Antarctic Magazine seeks to inform the Australian and international Antarctic community about the activities of the Australian Antarctic Tracing elements in the ocean 20 program. -
Terra Antartica Publication Terra Antartica 2005, 12(2), 69-86
© Terra Antartica Publication Terra Antartica 2005, 12(2), 69-86 Stratigraphy and Structure of the Southern Prince Charles Mountains, East Antarctica G. PHILLIPS1*, C.J.L. WILSON1 & I.C.W. FITZSIMONS2 1School of Earth Sciences, The University of Melbourne, Victoria 3010 - Australia 2Tectonics SRC, Department of Applied Geology, Curtin University of Technology, GPO Box U1987 Perth, WA 6845 - Australia Received 22 April 2005; accepted in revised form 3 October 2005 Abstract- Stratigraphic and structural data support the existence of a thick and extensive low-grade sedimentary cover sequence of relatively young age at Cumpston Massif and Mount Rubin compared with the underlying Archaean-Palaeoproterozic basement rocks of the southern Prince Charles Mountains. The stratigraphy of these sequences suggests sediment deposition was within a shallowing-up marine basin. Folding within the basin displays a simple structural style in comparison to older, multiply deformed rocks in the adjacent nunataks such as Mount Stinear and Mount Ruker. D1 folding and fabric development within the basin has formed in response to a northeast-southwest shortening. This stress regime may be responsible for late stage mylonite zones, thrust faults and transposed fabrics that overprint earlier structures in the basement that represent the basin margins. At Cumpston Massif, the base of the basin sediments is incorporated into a 100 m wide low-angle shear zone, with the meta-sediments ramping over deformed felsic gneiss. Similar relationships at Mount Maguire suggesting continuation of the basin further south, yet absent at Mount Rubin, creating uncertainties in extrapolating basin margins to the west. Early deformation within basement sequences prior to basin deposition suggests at least two phases of non-coaxial deformation, preserved in the folded banded iron formations at Mount Ruker.