Download the Scanned
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nanoparticles of Lanthanide and Transition Metal Oxysulfides : from Colloidal Synthesis to Structure, Surface, Optical and Magnetic Properties Clement Larquet
Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthesis to structure, surface, optical and magnetic properties Clement Larquet To cite this version: Clement Larquet. Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthe- sis to structure, surface, optical and magnetic properties. Material chemistry. Sorbonne Université, 2018. English. NNT : 2018SORUS432. tel-02950055 HAL Id: tel-02950055 https://tel.archives-ouvertes.fr/tel-02950055 Submitted on 27 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 397 : Physique et chimie des matériaux Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) Nanoparticles of lanthanide and transition metal oxysulfides: from colloidal synthesis to structure, surface, optical and magnetic properties Par M. Clément Larquet Thèse de doctorat de Sorbonne Université Dirigée par Clément Sanchez et Andrea Gauzzi Présentée et soutenue publiquement le 25 septembre 2018 Devant un jury composé de : Mme. Elsje Alessandra Quadrelli Directrice de recherches - CPE Lyon Rapporteur M. Stéphane Jobic Directeur de recherches - IEMN Rapporteur Mme. Catherine Louis Directrice de recherches - SU Examinatrice Mme. Asma Tougerti Chargée de recherches – Univ. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Chromite Crystal Structure and Chemistry Applied As an Exploration Tool
Western University Scholarship@Western Electronic Thesis and Dissertation Repository February 2015 Chromite Crystal Structure and Chemistry applied as an Exploration Tool Patrick H.M. Shepherd The University of Western Ontario Supervisor Dr. Roberta L. Flemming The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Patrick H.M. Shepherd 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Shepherd, Patrick H.M., "Chromite Crystal Structure and Chemistry applied as an Exploration Tool" (2015). Electronic Thesis and Dissertation Repository. 2685. https://ir.lib.uwo.ca/etd/2685 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Western University Scholarship@Western University of Western Ontario - Electronic Thesis and Dissertation Repository Chromite Crystal Structure and Chemistry Applied as an Exploration Tool Patrick H.M. Shepherd Supervisor Roberta Flemming The University of Western Ontario Follow this and additional works at: http://ir.lib.uwo.ca/etd Part of the Geology Commons This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in University of Western Ontario - Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Chromite Crystal Structure and Chemistry Applied as an Exploration Tool (Thesis format: Integrated Article) by Patrick H.M. -
JOURNAL the Russell Society
JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material. -
Italian Type Minerals / Marco E
THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests. -
Design Rules for Discovering 2D Materials from 3D Crystals
Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point. -
Anomalous Elastic Behavior of Phase Egg, Alsio3(OH), at High Pressures
American Mineralogist, Volume 104, pages 130–139, 2019 Anomalous elastic behavior of phase egg, AlSiO3(OH), at high pressures MAINAK MOOKHERJEE1,*, WENDY R. PANERO2, BERND WUNDER3, AND SANDRO JAHN4 1Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida 32306, U.S.A. 2School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, U.S.A. 3Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany 4Institut für Geologie und Mineralogie, Zülpicher Str. 49b, Universität zu Köln, 50674 Cologne, Germany ABSTRACT Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3-SiO2-H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. High-pressure and high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use first-principles simulations based on density functional theory to explore the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elastic- ity is related to changes in the hydrogen bonding O-H···O configurations, which we delineate as a transition from a low-pressure to a high-pressure structure of phase egg. -
1 #4771 REVISION 1 1 Revised January 13, 2014 2 Original
1 #4771 REVISION 1 2 Revised January 13, 2014 3 Original manuscript submitted October 15, 2013 4 5 MANTLE-DERIVED GUYANAITE IN A Cr-OMPHACITITE XENOLITH FROM MOSES 6 ROCK DIATREME, UTAH 7 8 Daniel J. Schulze 9 Department of Earth Sciences and Department of Chemical and Physical Sciences, 10 University of Toronto, Mississauga, Ontario, Canada L5L 1C6 11 Roberta L. Flemming 12 Department of Earth Sciences, Western University, London, Ontario, Canada N6A 5B7 13 Patrick H.M. Shepherd 14 Department of Earth Sciences, Western University, London, Ontario, Canada N6A 5B7 15 Herwart Helmstaedt 16 Department of Geological Sciences and Geological Engineering, Queen’s University, 17 Kingston, Ontario, Canada K7L 3N6 18 19 20 21 1 22 Abstract 23 Guyanaite, naturally occurring β-CrOOH, has been identified in a xenolith of Cr-rich 24 omphacitite from the Moses Rock diatreme in the Navajo Volcanic Field of the southwestern 25 United States. It occurs as the dominant phase in small clusters of accessory minerals, 26 intergrown with kosmochlor-rich omphacite, zincian chromite, eskolaite and carmichaelite. The 27 assemblage is interpreted as the result of metasomatism of chromite-bearing serpentinite by slab- 28 derived fluids during subduction of the Farallon Plate in Laramide time. At the time of 29 entrainment of the xenolith, the rock was undergoing prograde metamorphism, with guyanaite 30 dehydrating to eskolaite plus water. This reaction, and the coeval dehydration of the inferred 31 accompanying host serpentinites (which would have been much more volumetrically 32 significant), provided water for hydration of the subcontinental upper mantle, contributing to 33 uplift of the Colorado Plateau. -
New Mineral Names*
American Mineralogist, Volume 62, pages 1259-1262, 1977 NewMineral Names* MtcHe.rr-Flrlscsnn, Lours J. CesRrAND ADoLF Pe.ssr Franzinite* Six microprobe analyses gave (range and av.): AsrOu 44.96-45.68,45.36; CuO 16.84-20.22,18.81; ZnO 16.78-18.57, Stefano Merlino and Paolo Orlandi (1977)Franzinite, a new min- 17.90;CdO l3 58-14.93,14.08; CaO 0.41-l.ll' 0.80; PbO 0.14- eral phase from Pitigliano,ltaly. Neues Jahrb. Mineral. Mon- 1.42,0.63: MnO 0.'79-1.27,1.07; sum 97 8l-99 54' 98.65 percent, atsh., 163-167. corresponding to (Cu,Zn,Cd).(AsOa), with Cu:Zn:Cd : 1.19: Microchemical analysis gave SiO, 32.44, Al2Os 25.21, Fe"O" Lll:0.55. The mineral is readily dissolvedby concentratedacids 0.04,MgO 0.14,CaO 12.08,Na,O 11.50,K,O 4.24,SOa 10.65, CO, X-ray study showsthe mineral to be monoclinic,space group 12' 154, Cl 036,H,O 1.88,sum 100.08- (O:Cl,) 0.08 : 100.00 Im. or 12/m, a ll.65, b 12.68,c 6.87(all + 0.01A)' B 98 95 + 0.05'' percent. "SiO, and AlrO, were determined by X-ray fluorescence, Z = 6, G calc 4.95 The strongest X-ray lines (46 given) are 6.41 (vvs) account being taken of the proper correction factor for S and Cl (MS) (020, l0T), 3.29 (vSXll2), 2.876 (vSX400), 2.79s and assuming that the weight percentages sum up to 100 0." (222, 321, 240), 1.644(MS). -
UQ Geology Papers 12 Ns 3
PAPERS Department of Geology • The University of Queensland VOLUME 12 number 3 Editor: S.H. HALL Zeolites in the Main Range Volcanics, Queensland D.J. DRYSDALE P.264-268 Bracewellite and the origin of "Merumite" D.J. DRYSDALE P.269-277 Perlitic texture and other fracture patterns produced by hydration of glassy rocks D.J. DRYSDALE P.278-285 Lithium aluminium silicate minerals and pollucite from Meldon, Devon and San Piero in Campo, Elba D.J. DRYSDALE P.286-293 Polytype 2H molybdenites with high rhenium contents D.J. DRYSDALE P.294-303 Date of publication: December 1991 ZEOLITES IN THE MAIN RANGE VOLCANICS, QUEENSLAND by D.J. Drysdale ABSTRACT. Amygdaloidal zeolites from the Main Range Volcanics, Queensland, in the collections of the Queensland Museum and the Geology Museum, Queensland University, are dominated by chabazite and natrolite. Stilbite and analcite are the only other species represented. Zeolites are present in a number of amygdaloidal horizons at several levels in the pile and there is no evidence for vertical zonation of species. INTRODUCTION Zeolites present in amygdales in basalt lavas that build up thick piles of more or less constant composition are characteristically distributed in depth related zones that are regional in scale and defined by the incoming and outgoing of marker species. This zonation is interpreted as reflecting heat flow in the lava pile during zeolitization and is supposed to be a measure of regional geothermal gradient. High heat flow, as at mid-ocean ridges and spreading centres in continental environments, is the main factor that controls the nature and extent of regional zonation. -
General Index Lep – Lil
GENERAL INDEX LEP – LIL SABINAITE Zaire Michigan Canada Shinkolobwe mine 8:(390), 9:33, 20:284 Isle Royale lode, Houghton County (various Québec SALESITE mines) (after clinochlore) 23:M68 Keweenaw Peninsula (several localities listed) Mt. St-Hilaire (tabular, micaceous to 6 mm) Chile (massive) 14:224 21:333–334p,d,c 9: 9: Chuquicamata 325h,d,c, 326p Laurium mine, Houghton County: after clino- SABUGALITE SAMARSKITE chlore; also primary acicular 23:M68; with Brazil Metamict 4:218 kinoite 14:224 Minas Gerais United States Mass mine, Ontonagon County (acicular) Córrego Frio mine, near Linópolis (spots in Colorado 14:224 scorzalite) 14:233 Pikes Peak region 16:228n “SAPPHIRE” Italy Texas See Corundum Sardinia Clear Creek pegmatite, Burnet County (small Arcu su Linnarbu, near Capoterra 18:183 masses) 8:90 SAPPHIRINE Spain SAMPLEITE Australia Pedro Alvaro, Salamanca region 9:(113) Northern Territory Chile SACROFANITE Harts Range, northeast of Alice Springs Chuquicamata 8:(390), 8:(517), 9:330d,c Italy 15:100–101c,p,q SAMSONITE Lazio Canada Sacrofano quarry (1 cm crystals) 23:434n Germany Northwest Territories Mt. Walker, Somerset Island (tabular crystals SAFFLORITE Niedersachsen St. Andreasberg 17:(9) to 3 cm) 22:386n Canada SANBORNITE Resolute (south of), Somerset Island 18:362n Northwest Territories Greenland Port Radium (safflorite-rammelsbergite) Canada Fiskenæsset (Qeqertarsuatsiaat) region 24:G12– 20:(207) Yukon 13p,h Germany Gunn claim, near MacMillan Pass 17:340n Madagascar Halle SANIDINE Androy: rounded, to 15 mm 24:50n; to 4 cm Mansfeld Kupferschiefer 17:(10) Bulgaria 24:230 Obersachsen Kyustendil (twins) 22:459n SARABAUITE Schneeberg 17:(13) Canada Malaysia Odenwald British Columbia Mackenheim 8:305 Sarabau mine, Sarawak: 9:(113); announced Beaverdell (near) (euhedral to 5 cm, some 9:116h Rheinland-Pfalz Carlsbad twins) 23:428n Angelika mine, Nieder-Beerbach 17:(7) Québec SARCOPSIDE Mexico Mt. -
Guyanaite Cr3+O(OH)
Guyanaite Cr3+O(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m2/m2/m. Very rarely as prismatic crystals, to 0.1 mm; in microcrystalline aggregates; commonly in alluvial grains. Physical Properties: Hardness = n.d. D(meas.) = n.d. D(calc.) = 4.53–4.81 Optical Properties: Semitransparent. Color: Reddish brown, golden brown, greenish brown, green, probably variable with particle size and degree of oxidation; gray with greenish tint in reflected light, with strong red to yellowish brown internal reflections. Streak: Yellow-brown, greenish brown. Optical Class: Biaxial. Pleochroism: In browns. α = n.d. β = n.d. γ = n.d. 2V(meas.) = n.d. Cell Data: Space Group: P nnm. a = 4.857–4.862 b = 4.295–4.314 c = 2.951–2.958 Z=2 X-ray Powder Pattern: Merume River, Guyana. 3.224 (vvs), 2.432 (vs), 1.636 (s), 1.719 (ms), 1.609 (ms), 1.516 (ms), 2.524 (m) Chemistry: (1) (2) (3) Ti2O3 0.86 Al2O3 4.0 1.03 Fe2O3 4.4 1.47 Mn2O3 0.98 V2O3 6.78 Cr2O3 71.7 75.76 89.40 + H2O [14.3] [14.96] 10.60 Total [96.3] [100.00] 100.00 (1) Merume River, Guyana; H2O calculated from stoichiometry, original total given as 96.2%; H2O 8.7% determined by the Penfield method on a separate sample, probably low due to oxidation of Cr with loss of H1+. (2) Outokumpu, Finland; by electron microprobe, average of seven analyses; H2O by difference. (3) CrO(OH). Polymorphism & Series: Trimorphous with bracewellite and grimaldiite.