New Mineral Names*

Total Page:16

File Type:pdf, Size:1020Kb

New Mineral Names* American Mineralogist, Volume 62, pages 593400, 1977 NEW MINERAL NAMES* Mrcnerl FLnrscHrR,Louls J. Cttnr, ERNssrH. Nrcxtl ANDADoLF pABsr Argentocuproaurite Bracewellite,* grimaldiite,* guyanaite,+ mcconnellite* (1975) L V. Razin Minerals-natural alloys of gold and copper in Charles Milton, D. E. Appleman, M. H Appleman, E. C. T. ores of copper-nickel deposits of Noril's. Trudy Mineral. Mu- Chao, Frank Cuttitta, J. I. Dinnin, E. J. Dwornik, B. L. Ingram zeya Akad. Naak SSSR, 24, 93-106 (in Russian) and H. J Rose,Jr. (1976) Merumite, a complex assemblageof chromium minerals from Guyana. U. S. Geol. Suns. Prof. Pap., Microprobe analysesof two grains from Noril'sk and Talnakh. 887. l-29. respectivefy,gave Au 67.7,66.5:Cu 9.2, t 1.2;Ag 12 8, 19.4;pd4.2" 22:Rh4.3, -; Pb I 6, -; Pt 0.9,-; Sn -,0.5; totals100.7,99.8, with Merumite, supposedly CrrOr. HrO [Am. Mineral., 34, 339 idealizedformulae of AuuoCu'Agr?Rh6pd6and AurrAgr"Curnpd.. (19a9)]is shown to consistoffine-grained intergrowths ofeskolaite The X-ray powder pattern (8 lines)was indexedas primitive cubic (Cr,O.) (predominant) with 4 new minerals. It occurs as black with a : 4.073(2)A. The mineral is light reddish-rose in reflecred rounded grains in alluvial gravelsof the drainage basin of the light, isotropic, with no observed birefringence Reflectanceat 5g0 Merume River, Guyana. mm : 64.3 percent. VHNuo = 214(2ll-216). Negative to standard Guyanaite, CrO(OH) is orthorhombic, space group Pnnm, a etch agents, except for KCN and aqua regia. 4.857,b 4.295,c 2.958,4,Z = 2,G calc4.53; synthetic material has closelyagreeing unit-cell dimensions. Analysis on 37 mg by B.L.L Discussion gaveCr2O, 7 |.7, Al,Os4.0, Fe.O, 4.4, Mn,O3 0.98,Tiros 0.86,HrO Compositionally, the mineral is argentoanCuAu or cuproan ar- * 8 7, sum 90.7 percent.The strongestX-ray lines (21 given) are gentoan gold. The mineral can be indexedas face-centeredcubic 3.224(vvs) (t t0),2.432 (SX200), 1.719 (MSX2l I ), 1.636(SXl 2 I ), (hence cuproan argentoan gold), except for the weakest reflection 1.609(MSX220), 1.516 (MSX3l0). Color reddish-brown, golden- in the pattern reported at 1.6734 Confirmation by single-crystal brown, greenish-brown,green (synthetic). methods of this single weak extra reflection in the powder pattern Bracewellite, also CrO(OH), is orthorhombic, space group is necessaryto justify characterization as a new mineral species. Pbnm, a 4.492 + 0.003, b 9.860 + 0.005, c 2.974 + 0.002A., Z = 4, The name is unnecessary.L.J.C. G 4.45-4.48.It is isostructuralwith goethiteand diaspore.Analysis of a mixture containing 70 percent bracewellite * 30 percent eskolaitegave Cr2O.70.6, FeO, 15.1,AlrO3 6.2,V2Oe 0.64, TirO, Aurocuproite 0.17, H,O 6.9, sum 996 percent The strongestX-ray lines (14 L V. Razin (1975) Minerals-natural alloys of gold and copper in given) are 4.065(VVS) (ll0),2.648 (VSXl30),2.404 (VSXlll). ores of copper-nickel deposits of Noril'sk. Trudy Mineral. Mu- Color deep red to black, streak dark brown. The mineral has not zeya Akad. Nauk SSSR, 24,93-106 (in Russian). been synthesized. Grimaldiite, CrO(OH), and mcconnellite,CrOOCu, occur as M icroprobe analysesof two grains gave A u 6l .6, 64.5;Cu 28.4, intergrowths of tabular deep-red rhombohedral crystals up to I 28.0;Ag 0.9, -; Pd 7.1,69; pt 2.3,-; Rh 1.9,-; Bi 0.6,_; totals mm in size.Analysis of such an intergrowth (containing 80-86% 103.4,99.4, with idealized formulae of Cu,rAu,.pd, and grimaldiite) gave on 9.35 mg Cr"O"77.3, AlrOs 34.3, Fe,O,0.85, CurrAur"Pdr.The X-ray powder pattern (8 lines) was indexedas CuO 5.5, SiO,0.42, ignition loss 11.5,sum 999 percent.X-ray primitive cubic with a: 3.862(2)A.The mineral, foundin ores of study shows that both minerals are rhombohedral, spacegroup the Talnakh deposit,is light orange-yellowin reflectedlight, iso- R3m Grimaldiite has a 2.973 + 0.002,c 13 392 + 0.01A; mccon- tropic, with no birefringence observed. Reflectance at 580 nm : nellite has a2.983t 0.004,c 17.160+ 0.031A. The strongestlines 63 I percent. VHNuo = 199(189-206).Negative to standard etch ior grimaldiite (14 given) are 44'l (VVSX003), 2 401 (VSXOI2), reagents except for KCN and aqua regia 1.857(VSX0l5), 1.486(MSX009); for mcconnellite,the strongest Discussion Iines (14 given) are 2.860 (006), 24'14 (012),2.213 (104), 1.650 (018), 1.492(l l0). Theseboth agreewith data in the literatureon Compositionally the mineral is palladianAuCu or auroan palla- syntheticCrO(OH) and CrOOCu. dian copper. The powder pattern may be indexed as face centered Synthetic grimaldiite has been reported in the literature to have cubic (hence auroan palladian copper) except for the weakest a 2.155, e 1.975,G 4.11, 4.12. Optical propertieswere not mea- reflection at 1.0704. Confirmation by single-crystal methods of sured for mcconnellite;it has G meas(synthetic) 5.49, calc 5.61. this single extra weak reflection in the powder pattern is necessary Guyanaite is named for the locality, bracewellite for Smith to justify characterization as a new mineral species.The name is Bracewell,formerly director, British Guiana Geological Survey, unnecessary. L.J.C. who first describedmerumite, mcconnellitefor Dr. R. B. McCon- nell, former director, British Guiana Geological Survey, grimal- * Minerals marked with an asterisk after the name were ap- diite for Dr. Frank S. Grimaldi. former chief chemist.U.S. Geo- proved before publication by the Commission on New Minerals logical Survey. Type material is at the Smithsonian Institution, and Mineral Names, International Mineraloeical Association. Washington,D.C. M.F. 593 594 NEW MINERAL NAMES Kankitet Y : b, Z 1. a 2-4o, elong.pos., pleochroicwith X and Z colorless to pale purple, abs. X I Z { Y F. Cech,J Jansaand F Novak (1976)Kankite, FeAsO,'3112 The first sample forms the core of a zoned single crystal, the HrO, a new mineral. NeuesJahrb. Mineral Monatsh.,426-436. outer part being brown manganoanzinnwaldite, from a druse of Analysisby M. Mrazek gaveAs,Ou 43.92, SO3 0.44, FerO.3l.84, granite pegmatiteat Tanakamiyama,Japan, associated with topaz, CaO 0.02, H,O + 13.91,H,O - 9.91, insol.0.36, sum 100.40 black tourmaline, albite, and quartz. The secondis a pseudohexa- percent (given as 100.46), corresponding to 2FeAsO. 6.74 H"O. gonal crystal, 3 cm across and I cm thick from Tawara, Gifu Spectographicanalysis showed traces of N, B, Cu, Mg, Mn, Ti, Prefecture, associated with cassiterite, top^z, black tourmaline, and Zn. The DTA curve shows 2 endothermicpeaks at 190 and albite, and quartz. 29O" and an exothermic peak at 605o. The loss in weight is 9.0 Unit-cell determinationsand opticson 8 lithium micasshow that percent at 200', 23.81 percent at 500'. The infrared absorption complete solid solutionsexist in the title ternary system. spectrumis given.The mineral is insolublein water, but dissolves The name is for Dr. Kazunosuke Masutomi, amateur miner- readily in l0 percentHCl. alogist and mineral collector.Type material is preservedat Kana- X-ray powder data (51 lines) are given; the strongestare 12.8 zawa Univ (anal. l) and at Tohoku University (anal.2). M'F. (l00xll0),7.56 (25)(001), 7.22 (2txi0l), 6.97 (l9x0ll), 4.764 (14x3r| ). 4.258 (2s)(r40). 3.697 (228)(42t. t4t). 2 630(29X631 ). 2553(22)(550,63t),2.520 (2lx0l3). These are indexed on a Nakauriite* monocliniccell with a 18.803,b 17 490, c7.633A, 0 92.7 1", Z ='16, Juiin Suzuki,Masahira lto and Tsutomu Sugiura(1976) A new C calc 2.732,meas 2.70 (pycnometer). .opp", sulfate-carbonate hydroxide hydrate mineral, The mineral forms yellowish-greenbotryoidal coatings and (Mn,Ni,Cu).(SO').(CO3)(OH)6.48H,O, from Nakauri, Achi crusts severaltenths mm to 7 mm thick. Luster dull. H 2-2 1/2, Prefecture, Japan. J. Japan Assoc Mineral Pettol' Econ. Geol., fracture uneven Mean n about 1.666,birefringence about d02, 71, t83-192 (in English). fi bers are length-fast The mineral was found in old dumps ( I 3th to Chemical analysiswas made of a mixture of the mineral with I sth century) near Kank, Kutna Hora district,Czechoslovakia It chrysotile,from which it could not be separated.Examination by is an alteration product of arsenopyriteand is associatedwith X-ray fluorescenceand electron microprobe analysis showed that quartz, scorodite,pitticite, gypsum, and a new mineral with for- the mineral did not contain Mg or Si; these were deducted as mula Fe3+(AsO.),(SO.XOH) I 5H,O. chrysotile,(about 607oof the sample), leaving FerO' 0.06, MnO The name is for the locality. The mineral was compared with 0.09,CuO 32.12,ZnO 0.03, NiO 0.88, SO, 16.23,CO,2.28,H2O+ ferrisymplesite(Dana's System,7th Ed., vol. 2, p. 753); type mate- 45 31, H,O 3 0l percent, corresponding to Cu(SOn).(COs) rial of the latter was amorohous to X-ravs. M.F. (OH)u.48HrO. DTA curves show strong endothermic breaks at 330o and 396' and weak ones at 78", 150', and 186' X-ray powder data (34 lines) are given for Type I and Type Masutomilite* * II crystals For Type I the strongestlines (those marked may Kazuo Harada, Mariko Honda, Kozo Nagashima and Satoshi be in part chrysotile):7.314*(100),(200); 7.081(la)(102); 4840 Kanisawa (1976) Masutomilite, manganeseanalogue of zinn- ( IaX300); 3.936(14)(222,023.312),3.652*(20X400); 3.ss2(I 3)(40 I )' waldite, with special reference to masutomilite-lepidolite- 2.3e7(t 0QaT: 2 367(|6)(s0a); 2.332 (14)(602) ; I 9I 5 ( I 6X7I 3); zinnwaldite seriesMineral J.
Recommended publications
  • Chromite Crystal Structure and Chemistry Applied As an Exploration Tool
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository February 2015 Chromite Crystal Structure and Chemistry applied as an Exploration Tool Patrick H.M. Shepherd The University of Western Ontario Supervisor Dr. Roberta L. Flemming The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Patrick H.M. Shepherd 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Shepherd, Patrick H.M., "Chromite Crystal Structure and Chemistry applied as an Exploration Tool" (2015). Electronic Thesis and Dissertation Repository. 2685. https://ir.lib.uwo.ca/etd/2685 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Western University Scholarship@Western University of Western Ontario - Electronic Thesis and Dissertation Repository Chromite Crystal Structure and Chemistry Applied as an Exploration Tool Patrick H.M. Shepherd Supervisor Roberta Flemming The University of Western Ontario Follow this and additional works at: http://ir.lib.uwo.ca/etd Part of the Geology Commons This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in University of Western Ontario - Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Chromite Crystal Structure and Chemistry Applied as an Exploration Tool (Thesis format: Integrated Article) by Patrick H.M.
    [Show full text]
  • Italian Type Minerals / Marco E
    THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests.
    [Show full text]
  • Anomalous Elastic Behavior of Phase Egg, Alsio3(OH), at High Pressures
    American Mineralogist, Volume 104, pages 130–139, 2019 Anomalous elastic behavior of phase egg, AlSiO3(OH), at high pressures MAINAK MOOKHERJEE1,*, WENDY R. PANERO2, BERND WUNDER3, AND SANDRO JAHN4 1Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida 32306, U.S.A. 2School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, U.S.A. 3Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany 4Institut für Geologie und Mineralogie, Zülpicher Str. 49b, Universität zu Köln, 50674 Cologne, Germany ABSTRACT Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3-SiO2-H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. High-pressure and high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use first-principles simulations based on density functional theory to explore the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elastic- ity is related to changes in the hydrogen bonding O-H···O configurations, which we delineate as a transition from a low-pressure to a high-pressure structure of phase egg.
    [Show full text]
  • 1 #4771 REVISION 1 1 Revised January 13, 2014 2 Original
    1 #4771 REVISION 1 2 Revised January 13, 2014 3 Original manuscript submitted October 15, 2013 4 5 MANTLE-DERIVED GUYANAITE IN A Cr-OMPHACITITE XENOLITH FROM MOSES 6 ROCK DIATREME, UTAH 7 8 Daniel J. Schulze 9 Department of Earth Sciences and Department of Chemical and Physical Sciences, 10 University of Toronto, Mississauga, Ontario, Canada L5L 1C6 11 Roberta L. Flemming 12 Department of Earth Sciences, Western University, London, Ontario, Canada N6A 5B7 13 Patrick H.M. Shepherd 14 Department of Earth Sciences, Western University, London, Ontario, Canada N6A 5B7 15 Herwart Helmstaedt 16 Department of Geological Sciences and Geological Engineering, Queen’s University, 17 Kingston, Ontario, Canada K7L 3N6 18 19 20 21 1 22 Abstract 23 Guyanaite, naturally occurring β-CrOOH, has been identified in a xenolith of Cr-rich 24 omphacitite from the Moses Rock diatreme in the Navajo Volcanic Field of the southwestern 25 United States. It occurs as the dominant phase in small clusters of accessory minerals, 26 intergrown with kosmochlor-rich omphacite, zincian chromite, eskolaite and carmichaelite. The 27 assemblage is interpreted as the result of metasomatism of chromite-bearing serpentinite by slab- 28 derived fluids during subduction of the Farallon Plate in Laramide time. At the time of 29 entrainment of the xenolith, the rock was undergoing prograde metamorphism, with guyanaite 30 dehydrating to eskolaite plus water. This reaction, and the coeval dehydration of the inferred 31 accompanying host serpentinites (which would have been much more volumetrically 32 significant), provided water for hydration of the subcontinental upper mantle, contributing to 33 uplift of the Colorado Plateau.
    [Show full text]
  • UQ Geology Papers 12 Ns 3
    PAPERS Department of Geology • The University of Queensland VOLUME 12 number 3 Editor: S.H. HALL Zeolites in the Main Range Volcanics, Queensland D.J. DRYSDALE P.264-268 Bracewellite and the origin of "Merumite" D.J. DRYSDALE P.269-277 Perlitic texture and other fracture patterns produced by hydration of glassy rocks D.J. DRYSDALE P.278-285 Lithium aluminium silicate minerals and pollucite from Meldon, Devon and San Piero in Campo, Elba D.J. DRYSDALE P.286-293 Polytype 2H molybdenites with high rhenium contents D.J. DRYSDALE P.294-303 Date of publication: December 1991 ZEOLITES IN THE MAIN RANGE VOLCANICS, QUEENSLAND by D.J. Drysdale ABSTRACT. Amygdaloidal zeolites from the Main Range Volcanics, Queensland, in the collections of the Queensland Museum and the Geology Museum, Queensland University, are dominated by chabazite and natrolite. Stilbite and analcite are the only other species represented. Zeolites are present in a number of amygdaloidal horizons at several levels in the pile and there is no evidence for vertical zonation of species. INTRODUCTION Zeolites present in amygdales in basalt lavas that build up thick piles of more or less constant composition are characteristically distributed in depth related zones that are regional in scale and defined by the incoming and outgoing of marker species. This zonation is interpreted as reflecting heat flow in the lava pile during zeolitization and is supposed to be a measure of regional geothermal gradient. High heat flow, as at mid-ocean ridges and spreading centres in continental environments, is the main factor that controls the nature and extent of regional zonation.
    [Show full text]
  • Guyanaite Cr3+O(OH)
    Guyanaite Cr3+O(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m2/m2/m. Very rarely as prismatic crystals, to 0.1 mm; in microcrystalline aggregates; commonly in alluvial grains. Physical Properties: Hardness = n.d. D(meas.) = n.d. D(calc.) = 4.53–4.81 Optical Properties: Semitransparent. Color: Reddish brown, golden brown, greenish brown, green, probably variable with particle size and degree of oxidation; gray with greenish tint in reflected light, with strong red to yellowish brown internal reflections. Streak: Yellow-brown, greenish brown. Optical Class: Biaxial. Pleochroism: In browns. α = n.d. β = n.d. γ = n.d. 2V(meas.) = n.d. Cell Data: Space Group: P nnm. a = 4.857–4.862 b = 4.295–4.314 c = 2.951–2.958 Z=2 X-ray Powder Pattern: Merume River, Guyana. 3.224 (vvs), 2.432 (vs), 1.636 (s), 1.719 (ms), 1.609 (ms), 1.516 (ms), 2.524 (m) Chemistry: (1) (2) (3) Ti2O3 0.86 Al2O3 4.0 1.03 Fe2O3 4.4 1.47 Mn2O3 0.98 V2O3 6.78 Cr2O3 71.7 75.76 89.40 + H2O [14.3] [14.96] 10.60 Total [96.3] [100.00] 100.00 (1) Merume River, Guyana; H2O calculated from stoichiometry, original total given as 96.2%; H2O 8.7% determined by the Penfield method on a separate sample, probably low due to oxidation of Cr with loss of H1+. (2) Outokumpu, Finland; by electron microprobe, average of seven analyses; H2O by difference. (3) CrO(OH). Polymorphism & Series: Trimorphous with bracewellite and grimaldiite.
    [Show full text]
  • Mineral Ecology and Network Analysis of Chromium, Platinum
    MINERAL ECOLOGY AND NETWORK ANALYSIS OF CHROMIUM, PLATINUM, GOLD AND PALLADIUM A THESIS IN ENVIRONMENTAL AND URBAN GEOSCIENCES Presented to the Faculty of the University Of Missouri-Kansas City in partial fulfillment of The requirements for the degree MASTER OF SCIENCE By CHARLES ANDENGENIE MWAIPOPO B.S., University of Missouri-Kansas City, 2018 Kansas City, Missouri 2020 MINERAL ECOLOGY AND NETWORK ANALYSIS OF CHROMIUM, PLATINUM, GOLD AND PALLADIUM Charles Andengenie Mwaipopo, Candidate for the Master of Science Degree University of Missouri-Kansas City, 2020 ABSTRACT Data collected on the location of mineral species and related minerals from the field have many great uses from mineral exploration to mineral analysis. Such data is useful for further exploration and discovery of other minerals as well as exploring relationships that were not as obvious even to a trained mineralogist. Two fields of mineral analysis are examined in the paper, namely mineral ecology and mineral network analysis through mineral co-existence. Mineral ecology explores spatial distribution and diversity of the earth’s minerals. Mineral network analysis uses mathematical functions to visualize and graph mineral relationships. Several functions such as the finite Zipf-Mandelbrot (fZM), chord diagrams and mineral network diagrams, processed data and provided information on the estimation of minerals at different localities and interrelationships between chromium, platinum, gold and palladium-bearing minerals. The results obtained are important in highlighting several connections that could prove useful in mineral exploration. The main objective of the study is to provide any insight into the relationship among chromium, platinum, palladium and gold that could prove useful in mapping out potential locations of either mineral in the future.
    [Show full text]
  • Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108
    PNNL-14019 Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108 B.M. Rapko J.D. Vienna September 2002 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-ACO6-76RLO183O Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper.
    [Show full text]
  • Summary of FY 1999 Geosciences Research
    DOE/SC-???? Summary of FY 1999 Geosciences Research December 2000 U.S. Department of Energy Office of Science Office of Basic Energy Sciences Division of Engineering and Geosciences Washington, D.C. 20585 CONTENTS Contents ............................................................................................................................. ii Foreword ............................................................................................................................. x The Geosciences Research Program in the Office of Basic Energy Sciences ................. xi PART I: ON-SITE ..................................................................................................................... 1 CONTRACTOR: Argonne National Laboratory................................................................................1 CATEGORY: Geochemistry...........................................................................................................1 Mineral-Fluid Interactions: Synchrotron Radiation Studies at the Advanced Photon Source............................................................................................................1 CONTRACTOR: Brookhaven National Laboratory...........................................................................2 CATEGORY: Geology, Geophysics, and Earth Dynamics..............................................................2 Study of the Microgeometry of Geological Materials Using Synchrotron Computed Microtomography .......................................................................................................................2
    [Show full text]
  • High Pressure Experimental Study of Natural Antigorite Dehydration Reactions Juliette Maurice
    High pressure experimental study of natural antigorite dehydration reactions Juliette Maurice To cite this version: Juliette Maurice. High pressure experimental study of natural antigorite dehydration reactions. Earth Sciences. Université Clermont Auvergne, 2017. English. NNT : 2017CLFAC099. tel-02918062 HAL Id: tel-02918062 https://tel.archives-ouvertes.fr/tel-02918062 Submitted on 20 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE BLAISE PASCAL U.F.R Sciences et Technologies ECOLE DOCTORALE DES SCIENCES FONDAMENTALES THESE Présentée pour obtenir le grade de DOCTEUR D’UNIVERSITE Spécialité : Pétrologie Par Juliette MAURICE Titulaire du Master 2 Recherche : « Magmas et Volcans » Étude expérimentale des réactions de déshydratation de l’antigorite naturelle à haute pression Soutenue publiquement le 17 mars 2017 devant la commission d'examen composée de: Jörg Hermann Professeur, Universität Bern Rapporteur Bruno Reynard Directeur de Recherches, ENS Lyon Rapporteur Patrizia Fumagalli Professeur, Università Degli Studi di Milano Examinateur
    [Show full text]
  • Solid Solutions of Karelianite and Eskolaite (Slyudyanka Complex, Southern Baikal Area): Genesis and a Possible Petrogenetic Indicator
    Russian Geology and Geophysics © 2019, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 60, No. 11, pp. 1229–1246, 2019 DOI:10.15372/RGG2019114 Geologiya i Geofizika Solid Solutions of Karelianite and Eskolaite (Slyudyanka Complex, Southern Baikal Area): Genesis and a Possible Petrogenetic Indicator L.Z. Reznitskya, , E.V. Sklyarova, L.F. Suvorovab, I.G. Barasha a Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, ul. Lermontova 128, Irkutsk, 664033, Russia b A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, ul. Favorskogo 1a, Irkutsk, 664033, Russia Received 6 March 2019; accepted 22 May 2019 Abstract—A continuous solid-solution series between the end-members eskolaite (98 wt.% Cr2O3) and karelianite (93 wt.% V2O3) has been revealed in Cr–V-bearing rocks of the Slyudyanka metamorphic complex. Chromium and vanadium oxides crystallized as karelianite- eskolaite minerals during regional high-temperature prograde (granulite facies) metamorphism and participated in the formation of other Cr–V and Cr–V-bearing phases. Ferrian karelianite (up to 12 wt.% Fe2O3) and three-component solid solutions Esk12–50Kar45–60Hem6–30 occur in metamorphic rocks that have particular protolith compositions (Fe–Kar) and in later metasomatic rocks ((Cr, V, Fe)2O3). Natural eskolaite and karelianite are discussed in terms of paragenesis, and their crystallization conditions are compared with the conditions of their laboratory synthesis. Keywords: eskolaite, karelianite, solid solution, genesis, synthesis INTRODUCTION regolith (Bogatikov et al., 2001; Mokhov et al., 2007, 2017) and has been often reported from meteorites, mainly carbo- Natural Cr and V oxides of eskolaite (Cr2O3) and kareli- naceous chrondrite or other varieties (Ramdohr, 1977; Ki- anite (V2O3) were discovered in the Outokumpu Cu–Co–Zn mu ra and Ikeda, 1992; Prinz et al., 1994; Greshake and deposit in Finland, which has been known since the 1900s as Bischoff, 1996; Barber and Scott, 2006; Ma et al., 2011; Liu a rich source of Cr–V mineralization.
    [Show full text]
  • Merumite a Complex Assemblage of Chromium Minerals from Guyana
    Merumite A Complex Assemblage of Chromium Minerals from Guyana GEOLOGICAL SURVEY PROFESSIONAL PAPER 887 Prepared in cooperation with the Geological Survey of Guyana MERUMITE A COMPLEX ASSEMBLAGE OF CHROMIUM MINERALS FROM GUYANA r 0 1 mm 0.1 mm 0.1 mm 0.1 mm Photomicrographs of four merumite thin sections illustrating the diversity of mineral composition and structure and the fineness of grain size. Plain transmitted light. UPPER LEFT: Green eskolaite and red-brown guyanaite. UPPER RIGHT: Banded structure of green eskolaite and yellow to brown guyanaite. The very bright polygonal area is a cross section of a quartz crystal. LOWER LEFT : Reddish grimaldiite-mcconnellite aggregate filling LOWER RIGHT : Green eskolaite and yellow-brown guyanaite opening in merumite specimen. showing banded structure. Merumite A Complex Assemblage of Chromium Minerals from Guyana By CHARLES MILTON, D. E. APPLEMAN, M. H. APPLEMAN, E. C. T. CHAD, FRANK CUTTITTA, J. I. DINNIN, E. J. DWORNIK, B. L. INGRAM, and H. J. ROSE, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 887 Prepared in cooperation with the Geological Survey of Guyana UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Main entry under title: Merumite a complex assemblage of chromium minerals from Guyana. (Geological Survey professional paper 887) Bibliography: p. Supt. of Docs, no.: I 19.16:887 1. Merumite Guyana. I. Milton, Charles, 1896- II. Series: United States. Geological Survey. Professional paper 887. QE391.M45M47 549'.7 74-16247 For sale by the Superintendent of Documents, U.S.
    [Show full text]