1 #4771 REVISION 1 1 Revised January 13, 2014 2 Original
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chromite Crystal Structure and Chemistry Applied As an Exploration Tool
Western University Scholarship@Western Electronic Thesis and Dissertation Repository February 2015 Chromite Crystal Structure and Chemistry applied as an Exploration Tool Patrick H.M. Shepherd The University of Western Ontario Supervisor Dr. Roberta L. Flemming The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Patrick H.M. Shepherd 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Shepherd, Patrick H.M., "Chromite Crystal Structure and Chemistry applied as an Exploration Tool" (2015). Electronic Thesis and Dissertation Repository. 2685. https://ir.lib.uwo.ca/etd/2685 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Western University Scholarship@Western University of Western Ontario - Electronic Thesis and Dissertation Repository Chromite Crystal Structure and Chemistry Applied as an Exploration Tool Patrick H.M. Shepherd Supervisor Roberta Flemming The University of Western Ontario Follow this and additional works at: http://ir.lib.uwo.ca/etd Part of the Geology Commons This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in University of Western Ontario - Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Chromite Crystal Structure and Chemistry Applied as an Exploration Tool (Thesis format: Integrated Article) by Patrick H.M. -
List of New Mineral Names: with an Index of Authors
415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis. -
A Comparative Study of Jadeite, Omphacite and Kosmochlor Jades from Myanmar, and Suggestions for a Practical Nomenclature
Feature Article A Comparative Study of Jadeite, Omphacite and Kosmochlor Jades from Myanmar, and Suggestions for a Practical Nomenclature Leander Franz, Tay Thye Sun, Henry A. Hänni, Christian de Capitani, Theerapongs Thanasuthipitak and Wilawan Atichat Jadeitite boulders from north-central Myanmar show a wide variability in texture and mineral content. This study gives an overview of the petrography of these rocks, and classiies them into ive different types: (1) jadeitites with kosmochlor and clinoamphibole, (2) jadeitites with clinoamphibole, (3) albite-bearing jadeitites, (4) almost pure jadeitites and (5) omphacitites. Their textures indicate that some of the assemblages formed syn-tectonically while those samples with decussate textures show no indication of a tectonic overprint. Backscattered electron images and electron microprobe analyses highlight the variable mineral chemistry of the samples. Their extensive chemical and textural inhomogeneity renders a classiication by common gemmological methods rather dificult. Although a deinitive classiication of such rocks is only possible using thin-section analysis, we demonstrate that a fast and non-destructive identiication as jadeite jade, kosmochlor jade or omphacite jade is possible using Raman and infrared spectroscopy, which gave results that were in accord with the microprobe analyses. Furthermore, current classiication schemes for jadeitites are reviewed. The Journal of Gemmology, 34(3), 2014, pp. 210–229, http://dx.doi.org/10.15506/JoG.2014.34.3.210 © 2014 The Gemmological Association of Great Britain Introduction simple. Jadeite jade is usually a green massive The word jade is derived from the Spanish phrase rock consisting of jadeite (NaAlSi2O6; see Ou Yang, for piedra de ijada (Foshag, 1957) or ‘loin stone’ 1999; Ou Yang and Li, 1999; Ou Yang and Qi, from its reputed use in curing ailments of the loins 2001). -
Italian Type Minerals / Marco E
THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests. -
BURMESE JADE: the INSCRUTABLE GEM by Richard W
BURMESE JADE: THE INSCRUTABLE GEM By Richard W. Hughes, Olivier Galibert, George Bosshart, Fred Ward, Thet Oo, Mark Smith, Tay Thye Sun, and George E. Harlow The jadeite mines of Upper Burma (now Myanmar) occupy a privileged place in the If jade is discarded and pearls destroyed, petty thieves world of gems, as they are the principal source of top-grade material. This article, by the first will disappear, there being no valuables left to steal. foreign gemologists allowed into these impor- — From a dictionary published during the reign of tant mines in over 30 years, discusses the his- Emperor K’ang Hsi (1662–1722 AD) , as quoted by Gump, 1962 tory, location, and geology of the Myanmar jadeite deposits, and especially current mining erhaps no other gemstone has the same aura of mys- activities in the Hpakan region. Also detailed tery as Burmese jadeite. The mines’ remote jungle are the cutting, grading, and trading of location, which has been off-limits to foreigners for jadeite—in both Myanmar and China—as P well as treatments. The intent is to remove decades, is certainly a factor. Because of the monsoon rains, some of the mystery surrounding the Orient’s this area is essentially cut off from the rest of the world for most valued gem. several months of the year, and guerrilla activities have plagued the region since 1949 (Lintner, 1994). But of equal importance is that jade connoisseurship is almost strictly a Chinese phenomenon. People of the Orient have developed jade appreciation to a degree found nowhere else in the world, but this knowledge is largely locked away ABOUT THE AUTHORS in non-Roman-alphabet texts that are inaccessible to most Mr. -
Kosmochlor-Bearing Jadeite Rocks from Kenterlau-Itmurundy (Lake Balkhash, Kazakhstan)
35th IGC 2017 – Windhoek, Namibia Poster Sessions Kosmochlor-bearing jadeite rocks from Kenterlau-Itmurundy (Lake Balkhash, Kazakhstan) Leander Franz1, Michael Krzemnicki2, Kristina Ernst3, Christian de Capitani4, George E. Harlow5, Nicolai Kouznetsov6 1Mineralogisch-Petrographisches Institut, University of Basel, Switzerland, [email protected] 2SSEF Swiss Gemmological Institute, Basel, Switzerland 3ETH Zürich, Switzerland 4Mineralogisch-Petrographisches Institut, University of Basel, Switzerland 5American Museum of Natural History, New York, U.S.A 6Jade Resources, LTD, Hong Kong Petrographic, petrologic and geochemical investigations on Cr-jadeite rocks from Kenterlau-Itmurundy near Lake Balkhash (Kazakhstan) reveal ive diferent rock groups. Jadeitites show irregular, medium-grained white sections made up of decussate jadeite crystals and ine-grained sections made up of aligned Cr-jadeite. Omphacite jadeitites show a homogeneous, pale green colour with randomly oriented jadeite crystals, which are overgrown by omphacite on their rims and along fractures. Phlogopite-analcime jadeitites show decussate, white sections made up of jadeite and foliated, partially microfolded green layers and spots consisting of Cr-jadeite. Analcime and phlogopite formed late in fractures in the jadeite-rich sections. Phlogopite-omphacite jadeitites reveal an inhomogeneous mineral dis- tribution with a dark-green matrix made up of sheaf-like aggregates of Cr-omphacite and white spots of decussate prismatic jadeite crystals. Post-crystallization deformation is evident by bent and twisted pyroxenes while phlogopite formed post-tectonically on fractures and grain boundaries. Due to the extreme textural inhomogeneity, transitions between these four groups are blurred. Kosmochlor-analcime-albite-omphacite jadeitites reveal an inhomogeneous fabric with decussate, white sections, pale-green shear bands, and dark green layers. -
Anomalous Elastic Behavior of Phase Egg, Alsio3(OH), at High Pressures
American Mineralogist, Volume 104, pages 130–139, 2019 Anomalous elastic behavior of phase egg, AlSiO3(OH), at high pressures MAINAK MOOKHERJEE1,*, WENDY R. PANERO2, BERND WUNDER3, AND SANDRO JAHN4 1Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida 32306, U.S.A. 2School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, U.S.A. 3Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany 4Institut für Geologie und Mineralogie, Zülpicher Str. 49b, Universität zu Köln, 50674 Cologne, Germany ABSTRACT Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3-SiO2-H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. High-pressure and high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use first-principles simulations based on density functional theory to explore the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elastic- ity is related to changes in the hydrogen bonding O-H···O configurations, which we delineate as a transition from a low-pressure to a high-pressure structure of phase egg. -
On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India
minerals Article On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India OndˇrejKrátký 1,2,3,*, Vladislav Rapprich 1, Martin Racek 2, Jitka Míková 1 and Tomáš Magna 1 1 Czech Geological Survey, Klárov 3, CZ-118 21 Prague 1, Czech Republic; [email protected] (V.R.); [email protected] (J.M.); [email protected] (T.M.) 2 Faculty of Science, Charles University in Prague, Albertov 6, CZ-128 43 Prague 2, Czech Republic; [email protected] 3 Faculty of Science, Masaryk University, Kotláˇrská 2, CZ-602 00 Brno, Czech Republic * Correspondence: [email protected] Received: 26 June 2018; Accepted: 11 August 2018; Published: 17 August 2018 Abstract: Mineralogical and chemical data are presented for a suite of Na–Cr-rich clinopyroxenes associated with chromite, winchite (sodium-calcium amphibole), titanite and calcite in Mg-Cr-rich silicocarbonatites from the Samalpatti carbonatite complex, Tamil Nadu, South India. The Mg-Cr-rich silicocarbonatites occur as 10–30 cm large enclaves in pyroxenites. The chemical composition of the pyroxenes differs among individual enclaves, with variable proportions of diopside, kosmochlor and jadeite-aegirine end-members. These compositions fill a previously unoccupied space in the kosmochlor-diopside-jadeite+aegirine ternary plot, indicating a distinct origin of kosmochlor-rich pyroxene compared with previous findings from diverse settings. The Na–Cr-rich clinopyroxene has low SREE = 9.2 ppm, with slight enrichment in LREE (LaN = 7), coupled with low HREE (YbN = 0.6), and flat HREE, paralleled by a significant fractionation of Nb/Ta (2408) and Th/U (26.5). -
UQ Geology Papers 12 Ns 3
PAPERS Department of Geology • The University of Queensland VOLUME 12 number 3 Editor: S.H. HALL Zeolites in the Main Range Volcanics, Queensland D.J. DRYSDALE P.264-268 Bracewellite and the origin of "Merumite" D.J. DRYSDALE P.269-277 Perlitic texture and other fracture patterns produced by hydration of glassy rocks D.J. DRYSDALE P.278-285 Lithium aluminium silicate minerals and pollucite from Meldon, Devon and San Piero in Campo, Elba D.J. DRYSDALE P.286-293 Polytype 2H molybdenites with high rhenium contents D.J. DRYSDALE P.294-303 Date of publication: December 1991 ZEOLITES IN THE MAIN RANGE VOLCANICS, QUEENSLAND by D.J. Drysdale ABSTRACT. Amygdaloidal zeolites from the Main Range Volcanics, Queensland, in the collections of the Queensland Museum and the Geology Museum, Queensland University, are dominated by chabazite and natrolite. Stilbite and analcite are the only other species represented. Zeolites are present in a number of amygdaloidal horizons at several levels in the pile and there is no evidence for vertical zonation of species. INTRODUCTION Zeolites present in amygdales in basalt lavas that build up thick piles of more or less constant composition are characteristically distributed in depth related zones that are regional in scale and defined by the incoming and outgoing of marker species. This zonation is interpreted as reflecting heat flow in the lava pile during zeolitization and is supposed to be a measure of regional geothermal gradient. High heat flow, as at mid-ocean ridges and spreading centres in continental environments, is the main factor that controls the nature and extent of regional zonation. -
Guyanaite Cr3+O(OH)
Guyanaite Cr3+O(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m2/m2/m. Very rarely as prismatic crystals, to 0.1 mm; in microcrystalline aggregates; commonly in alluvial grains. Physical Properties: Hardness = n.d. D(meas.) = n.d. D(calc.) = 4.53–4.81 Optical Properties: Semitransparent. Color: Reddish brown, golden brown, greenish brown, green, probably variable with particle size and degree of oxidation; gray with greenish tint in reflected light, with strong red to yellowish brown internal reflections. Streak: Yellow-brown, greenish brown. Optical Class: Biaxial. Pleochroism: In browns. α = n.d. β = n.d. γ = n.d. 2V(meas.) = n.d. Cell Data: Space Group: P nnm. a = 4.857–4.862 b = 4.295–4.314 c = 2.951–2.958 Z=2 X-ray Powder Pattern: Merume River, Guyana. 3.224 (vvs), 2.432 (vs), 1.636 (s), 1.719 (ms), 1.609 (ms), 1.516 (ms), 2.524 (m) Chemistry: (1) (2) (3) Ti2O3 0.86 Al2O3 4.0 1.03 Fe2O3 4.4 1.47 Mn2O3 0.98 V2O3 6.78 Cr2O3 71.7 75.76 89.40 + H2O [14.3] [14.96] 10.60 Total [96.3] [100.00] 100.00 (1) Merume River, Guyana; H2O calculated from stoichiometry, original total given as 96.2%; H2O 8.7% determined by the Penfield method on a separate sample, probably low due to oxidation of Cr with loss of H1+. (2) Outokumpu, Finland; by electron microprobe, average of seven analyses; H2O by difference. (3) CrO(OH). Polymorphism & Series: Trimorphous with bracewellite and grimaldiite. -
Mineral Ecology and Network Analysis of Chromium, Platinum
MINERAL ECOLOGY AND NETWORK ANALYSIS OF CHROMIUM, PLATINUM, GOLD AND PALLADIUM A THESIS IN ENVIRONMENTAL AND URBAN GEOSCIENCES Presented to the Faculty of the University Of Missouri-Kansas City in partial fulfillment of The requirements for the degree MASTER OF SCIENCE By CHARLES ANDENGENIE MWAIPOPO B.S., University of Missouri-Kansas City, 2018 Kansas City, Missouri 2020 MINERAL ECOLOGY AND NETWORK ANALYSIS OF CHROMIUM, PLATINUM, GOLD AND PALLADIUM Charles Andengenie Mwaipopo, Candidate for the Master of Science Degree University of Missouri-Kansas City, 2020 ABSTRACT Data collected on the location of mineral species and related minerals from the field have many great uses from mineral exploration to mineral analysis. Such data is useful for further exploration and discovery of other minerals as well as exploring relationships that were not as obvious even to a trained mineralogist. Two fields of mineral analysis are examined in the paper, namely mineral ecology and mineral network analysis through mineral co-existence. Mineral ecology explores spatial distribution and diversity of the earth’s minerals. Mineral network analysis uses mathematical functions to visualize and graph mineral relationships. Several functions such as the finite Zipf-Mandelbrot (fZM), chord diagrams and mineral network diagrams, processed data and provided information on the estimation of minerals at different localities and interrelationships between chromium, platinum, gold and palladium-bearing minerals. The results obtained are important in highlighting several connections that could prove useful in mineral exploration. The main objective of the study is to provide any insight into the relationship among chromium, platinum, palladium and gold that could prove useful in mapping out potential locations of either mineral in the future. -
Sannan-Skarn: a New Ornamental Gemstone from Pakistan
14th Swiss Geoscience Meeting, Geneva 2016 Sannan-Skarn: a new ornamental gemstone from Pakistan Leander Franz*, Henry A. Hänni** & Zhou Wei** *Mineralogisch-Petrographisches Institut, University of Basel, Bernoullistrasse 30, CH- 4056 Basel ([email protected]) ** SSEF Swiss Gemmological Institute, Aeschengraben 26, CH-4051 Basel At the Hong Kong Jewellery and Gem Fair September 2015 a significant volume of complex fine grained green rock material from Western Pakistan was sold to gemstone dealers under the name Maw Sit Sit. The new material originates from a remote area in Belochistan, about 60 km from the Muslim Bagh Chromite mine. The productive area lies in a thrust zone (Kazmi & Snee 1989) known as Karakorum Suture Zone. There, sediments from the Tethys were welded on the Eurasian Plate when the Indian continent collided some 65 Mio years ago. Triassic carbonate sediments and oceanic crust were imbricated in a tectonic movement going along with strong brecciation and mylonitization of the rocks. During this imbrication, intense fluid activity led to a replacement of carbonate by calcsilicate minerals. A common term to name the material is skarn, as it describes a rock formed by metasomatic replacement of a parent rock. Sannan is a specific modifier that describes the skarn from the new occurrence. After a preliminary test, it became clear that this material has nothing in common with Maw Sit Sit, i.e. kosmochlor jade (e.g. Hänni & Meyer 1997; Franz et al. 2014), although specific gravity and refractive index may show overlaying data. Three samples (JG1– JG3) were selected and prepared for petrographic thin sections and investigated by polarization microscopy and micro-Raman spectroscopy.