Mineralogy of Silicate-Natrophosphate Immiscible † Inclusion in Elga IIE Iron Meteorite

Total Page:16

File Type:pdf, Size:1020Kb

Mineralogy of Silicate-Natrophosphate Immiscible † Inclusion in Elga IIE Iron Meteorite minerals Article Mineralogy of Silicate-Natrophosphate Immiscible y Inclusion in Elga IIE Iron Meteorite Victor V. Sharygin 1,2 1 V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3 Acad. Koptyuga pr., 630090 Novosibirsk, Russia; [email protected] 2 ExtraTerra Consortium, Institute of Physics and Technology, Ural Federal University, 19 Mira str., 620002 Ekaterinburg, Russia The paper was presented at the 81st Annual Meeting of the Meteoritical Society in Moscow, Russia, y 22–27 July 2018. Received: 7 April 2020; Accepted: 11 May 2020; Published: 13 May 2020 Abstract: Rare type of silicate inclusions found in the Elga iron meteorite (group IIE) has a very specific mineral composition and shows silicate ( 90%)–natrophosphate ( 10%) liquid ≈ ≈ immiscibility due to meniscus-like isolation of Na-Ca-Mg-Fe phosphates. The 3 mm wide immiscible inclusion has been first studied in detail using optical microscopy, scanning electron microscopy, electron microprobe analysis and Raman spectroscopy. The silicate part of the inclusion contains fine-grained quartz-feldspar aggregate and mafic minerals. The relationships of feldspars indicate solid decay of initially homogenous K-Na-feldspar into albite and K-feldspar with decreasing of temperature. Some mafic minerals in the silicate part are exotic in composition: the dominant phase is an obertiite-subgroup oxyamphibole (amphibole supergroup), varying from ferri-obertiite 3+ 2+ NaNa2Mg3Fe Ti[Si8O22]O2 to hypothetical NaNa2Mg3Fe 0.5Ti1.5[Si8O22]O2; minor phases are the aenigmatite-subgroup mineral (sapphirine supergroup) with composition close to median value 2+ of the Na2Fe 5TiSi6O18O2-Na2Mg5TiSi6O18O2 join, orthopyroxene (enstatite), clinopyroxene of the diopside Ca(Mg,Fe)Si2O6–kosmochlor NaCrSi2O6-Na(Mg,Fe)0.5Ti0.5Si2O6 series and chromite. The alteration phases are represented by Fe-dominant chlorite, goethite and hydrated Na2O-rich (2.3–3.3 wt.%) Fe-phosphate close to vivianite. Natrophosphate part consists of aggregate of three orthophosphates (brianite, czochralskiite, mari´cite)and minor Na-Cr-Ti-clinopyroxene, pentlandite, rarely taenite. Czochralskiite Na4Ca3Mg(PO4)4 is rich in FeO (2.3–5.1 wt.%) and MnO (0.4–1.5 wt.%). Brianite Na2CaMg(PO4)2 contains FeO (3.0–4.3 wt.%) and MnO (0.3–0.7 wt.%) and mari´citeNaFe(PO4) bears MnO (5.5–6.2 wt.%), MgO (5.3–6.2 wt.%) and CaO (0.5–1.5 wt.%). The contact between immiscible parts is decorated by enstatite zone in the silicate part and diopside–kosmochlor clinopyroxene zone in the natrophosphate ones. The mineralogy of the studied immiscible inclusion outlines three potentially new mineral species, which were first identified in meteorites: obertiite–related 2+ oxyamphibole NaNa2Mg3Fe 0.5Ti1.5[Si8O22]O2, Mg-analog of aenigmatite Na2Mg5TiSi6O18O2 and Na-Ti-rich clinopyroxene Na(Mg,Fe)0.5Ti0.5Si2O6. Keywords: silicate-natrophosphate immiscibility; obertiite; aenigmatite; kosmochlor; brianite; czochralskiite; mari´cite;Elga meteorite; IIE iron; Yakutia 1. Introduction The Elga iron meteorite (group IIE) is a fine-grained octahedrite with up to 15 vol.% silicate inclusions and with local zones of shock metamorphism [1–20]. Silicate-bearing iron meteorites represent about 4% of all iron meteorites. In general, they are important for understanding metal-silicate partitioning in processes related to the formation and evolution of asteroids and terrestrial planets Minerals 2020, 10, 437; doi:10.3390/min10050437 www.mdpi.com/journal/minerals Minerals 2020, 10, 437 2 of 29 Minerals 2020, 10, x FOR PEER REVIEW 2 of 29 indescribed the early within solar system. the following At present chemical day, groups: silicate-bearing IAB (12% iron of meteoritestotal), IIE (50%) were and described IVA (5%) within; silicate the followinginclusions chemical were also groups: reported IAB for (12% 8 ofungrouped total), IIE (50%)iron meteorites and IVA (5%); [15]. silicate The mineralogy inclusions wereof silicate also reportedinclusions for indicates 8 ungrouped the peculiarities iron meteorites of metal [15].-silicate The mineralogy relations ofin silicatemeteorite inclusions parental indicates bodies. theThe peculiaritiesexotic mineral of metal-silicatecomposition of relations some silicate in meteorite inclusions parental may bodies. reflect Thelocal exotic specific mineral conditions composition within ofparental some silicate bodies. inclusions This paper may is devoted reflect local to the specific mineralogy conditions of a silicate within inclusion parental with bodies. specific This paperminerals is devotedand silicate to the-natrophosphate mineralogy of immiscibility a silicate inclusion found within the specific Elga meteorite. minerals and silicate-natrophosphate immiscibility found in the Elga meteorite. 2. History of Finding and Brief Review on Studies for the Elga Meteorite 2. History of Finding and Brief Review on Studies for the Elga Meteorite The Elga meteorite was found on August 28, 1959, at the Razvedchik gold field in the basin of The Elga meteorite was found on August 28, 1959, at the Razvedchik gold field in the basin of the the Elga River, a large left-hand tributary of the Indigirka River in its upper reaches, in the territory Elga River, a large left-hand tributary of the Indigirka River in its upper reaches, in the territory of of Yakutia (64°42' N, 141°12' E). The meteorite was found when gold-bearing sand was washed, with Yakutia (64 42 N, 141 12 E). The meteorite was found when gold-bearing sand was washed, with the the sand ◦recovered0 ◦from0 a production mine in the valley of the Promezhutochnyi Stream, a sand recovered from a production mine in the valley of the Promezhutochnyi Stream, a right-hand right-hand tributary of the Elga River. The meteorite was found in pebble material lifted from a tributary of the Elga River. The meteorite was found in pebble material lifted from a depth of 20 m. depth of 20 m. The detailed description of the finding is given in [2,14]. The detailed description of the finding is given in [2,14]. The meteorite is of irregular, slightly angular morphology, and its natural surface is rounded The meteorite is of irregular, slightly angular morphology, and its natural surface is rounded and and locally displays a thin platy fabrics and regmaglypt surface topography. The upstanding locally displays a thin platy fabrics and regmaglypt surface topography. The upstanding fine-flow fine-flow surface areas are of steel-gray color, whereas “depressions” are covered with a black film surface areas are of steel-gray color, whereas “depressions” are covered with a black film and, locally, and, locally, rust-brown material (up to 3 mm, Figure 1). The general mass of the sample was 28.8 kg. rust-brown material (up to 3 mm, Figure1). The general mass of the sample was 28.8 kg. The main The main mass of the Elga meteorite (type specimen–10.5 kg plus some smaller cut-offs of the mass of the Elga meteorite (type specimen–10.5 kg plus some smaller cut-offs of the working collection, working collection, 449 g and 79.8 g) is now on display in the meteorite collection of the Central 449 g and 79.8 g) is now on display in the meteorite collection of the Central Siberian Geological Siberian Geological Museum (CSGM) in the V.S. Sobolev Institute of Geology and Mineralogy (IGM, Museum (CSGM) in the V.S. Sobolev Institute of Geology and Mineralogy (IGM, SB RAS), Novosibirsk, SB RAS), Novosibirsk, Russia (registration number I-1155/204-24, Figure 1). Fragments from the Russia (registration number I-1155/204-24, Figure1). Fragments from the working collection were working collection were used for detailed mineralogical investigations [5,9,12,13,17,20]. A large used for detailed mineralogical investigations [5,9,12,13,17,20]. A large cut-off fragment (887.5 g) of cut-off fragment (887.5 g) of the meteorite was transferred to the Meteorite Committee of the USSR the meteorite was transferred to the Meteorite Committee of the USSR Academy of Sciences (now in Academy of Sciences (now in the Vernadsky Institute of Geochemistry and Analytical Chemistry, the Vernadsky Institute of Geochemistry and Analytical Chemistry, GEOKHI RAS, Moscow, Russia) GEOKHI RAS, Moscow, Russia) and its cut-offs were also used for studies [8,10,11,14–16,18–20]. and its cut-offs were also used for studies [8,10,11,14–16,18–20]. Smaller cut-offs of the Elga meteorite Smaller cut-offs of the Elga meteorite are also deposited in the meteorite collection of the Museum in are also deposited in the meteorite collection of the Museum in the Institute of Diamond and Precious the Institute of Diamond and Precious Metal Geology, SB RAS, Yakutsk (126.7 g) and, possibly, in Metal Geology, SB RAS, Yakutsk (126.7 g) and, possibly, in other geological museums in Russia. other geological museums in Russia. FigureFigure 1.1. GeneralGeneral view view of of the the Elga Elga iron iron meteorite meteorite (IIE) (IIE) and anda cu at-off cut-o withff with silicate silicate inclusions. inclusions. Type Typespecimen specimen from from CSGM CSGM IGM, IGM, SB RAS, SB RAS, Novosibirsk. Novosibirsk. TheThe ElgaElga meteorite meteorite is ais fine-graineda fine-grained octahedrite octahedrite with with numerous numerous (up to (up 15 vol.%)to 15 roundedvol.%) rounded silicate inclusionssilicate inclusions (up to a(up few to millimetersa few millimet iner size)s in size) [1]. [1]. The The texture texture and and composition composition of of the the metal metal and and silicatesilicate inclusionsinclusions indicateindicate thatthat thethe meteoritemeteorite showsshows tracestraces ofof secondarysecondary meltingmelting causedcaused byby shockshock metamorphismmetamorphism [ 1[1,5,8,5,8–20–20].]. The The chemical chemical composition composition of theof the metallic metallic constituent constituent is as follows:is as follows: 90.51 wt.%90.51 Fe,wt.% 8.38 Fe, wt.% 8.38 Ni,wt.% 0.64 Ni, wt.% 0.64 Co,wt.% 0.46 Co, wt.% 0.46 wt.% P and P 100and ppm 100 ppm Cu [3 Cu,7].
Recommended publications
  • Handbook of Iron Meteorites, Volume 3
    Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu­ DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Nanomagnetic Properties of the Meteorite Cloudy Zone
    Nanomagnetic properties of the meteorite cloudy zone Joshua F. Einslea,b,1, Alexander S. Eggemanc, Ben H. Martineaub, Zineb Saghid, Sean M. Collinsb, Roberts Blukisa, Paul A. J. Bagote, Paul A. Midgleyb, and Richard J. Harrisona aDepartment of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom; bDepartment of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom; cSchool of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom; dCommissariat a` l’Energie Atomique et aux Energies Alternatives, Laboratoire d’electronique´ des Technologies de l’Information, MINATEC Campus, Grenoble, F-38054, France; and eDepartment of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom Edited by Lisa Tauxe, University of California, San Diego, La Jolla, CA, and approved October 3, 2018 (received for review June 1, 2018) Meteorites contain a record of their thermal and magnetic history, field, it has been proposed that the cloudy zone preserves a written in the intergrowths of iron-rich and nickel-rich phases record of the field’s intensity and polarity (5, 6). The ability that formed during slow cooling. Of intense interest from a mag- to extract this paleomagnetic information only recently became netic perspective is the “cloudy zone,” a nanoscale intergrowth possible with the advent of high-resolution X-ray magnetic imag- containing tetrataenite—a naturally occurring hard ferromagnetic ing methods, which are capable of quantifying the magnetic state mineral that
    [Show full text]
  • Linking the Chassigny Meteorite and the Martian Surface Rock Backstay: Insights Into Igneous Crustal Differentiation Processes on Mars
    Meteoritics & Planetary Science 44, Nr 6, 853–869 (2009) Abstract available online at http://meteoritics.org Linking the Chassigny meteorite and the Martian surface rock Backstay: Insights into igneous crustal differentiation processes on Mars Hanna NEKVASIL*, Francis M. MCCUBBIN, Andrea HARRINGTON, Stephen ELARDO, and Donald H. LINDSLEY Department of Geosciences, Stony Brook University, Stony Brook, New York 11794–2100, USA *Corresponding author. E-mail: [email protected] (Received 05 August 2008; revision accepted 18 March 2009) Abstract–In order to use igneous surface lithologies to constrain Martian mantle characteristics, secondary processes that lead to compositional modification of primary mantle melts must be considered. Crystal fractionation of a mantle-derived magma at the base of the crust followed by separation and ascent of residual liquids to the surface is common in continental hotspot regions on Earth. The possibility that this process also takes place on Mars was investigated by experimentally determining whether a surface rock, specifically the hawaiite Backstay analyzed by the MER Spirit could produce a known cumulate lithology with a deep origin (namely the assemblages of the Chassigny meteorite) if trapped at the base of the Martian crust. Both the major cumulus and melt inclusion mineral assemblages of the Chassigny meteorite were produced experimentally by a liquid of Backstay composition within the pressure range 9.3 to 6.8 kbar with bulk water contents between 1.5 and 2.6 wt%. Experiments at 4.3 and 2.8 kbar did not produce the requisite assemblages. This agreement suggests that just as on Earth, Martian mantle-derived melts may rise to the surface or remain trapped at the base of the crust, fractionate, and lose their residual liquids.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Chromite Crystal Structure and Chemistry Applied As an Exploration Tool
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository February 2015 Chromite Crystal Structure and Chemistry applied as an Exploration Tool Patrick H.M. Shepherd The University of Western Ontario Supervisor Dr. Roberta L. Flemming The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Patrick H.M. Shepherd 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Shepherd, Patrick H.M., "Chromite Crystal Structure and Chemistry applied as an Exploration Tool" (2015). Electronic Thesis and Dissertation Repository. 2685. https://ir.lib.uwo.ca/etd/2685 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Western University Scholarship@Western University of Western Ontario - Electronic Thesis and Dissertation Repository Chromite Crystal Structure and Chemistry Applied as an Exploration Tool Patrick H.M. Shepherd Supervisor Roberta Flemming The University of Western Ontario Follow this and additional works at: http://ir.lib.uwo.ca/etd Part of the Geology Commons This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in University of Western Ontario - Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Chromite Crystal Structure and Chemistry Applied as an Exploration Tool (Thesis format: Integrated Article) by Patrick H.M.
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • 8. Projectile ˜˜˜
    8. Projectile ˜˜˜ Meteoritic remnants of the impacting asteroid that produced Barringer Crater littered the landscape when exploration began ~115 years ago. As described in Chapter 1, meteoritic irons are what initially captured Foote’s interest and spurred Barringer’s interest in a possibly rich natural source of native metal. After Foote’s description was published, samples were collected by F. W. Volz at a nearby trading post and sold widely. Gilbert (1896) estimated that 10 tons of meteoritic debris had already been recovered by the time of his visit. Similarly, Barringer (1905) estimated that 10 to 15 tons of it were circulating around the world by the time his exploration work began. Fortunately, he tried to document the geographic and mass distribution of that debris in a detailed map, which is reproduced in Fig. 8.1. The map indicates that meteoritic irons were recovered from distances approaching 10 km. Gilbert (1896) apparently recovered a sample nearly 13 km beyond the crater rim. A lot of the meteoritic material was oxidized. It is sometimes simply called oxidized iron, but large masses are also called shale balls. A concentrated deposit of small oxidized iron fragments was found northeast of the crater, although those types of fragments are distributed in all directions around the crater. The current estimate of the recovered meteoritic iron mass is 30 tons (Nininger, 1949; Grady, 2000), although this is a highly uncertain number. Specimens were transported in pre-historical times and have been found scattered throughout Arizona (see, for example, Wasson, 1968). Specimens have also been illicitly removed in recent times, without any documentation of the locations or masses recovered.
    [Show full text]
  • Iron Meteorites
    Meteoritics & Planetary Science 42, Nr 7/8, 1441–1463 (2007) Abstract available online at http://meteoritics.org Trace element studies of silicate-rich inclusions in the Guin (UNGR) and Kodaikanal (IIE) iron meteorites Gero KURAT1*, Ernst ZINNER2, and Maria Eugenia VARELA3 1Department of Lithospheric Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 2Laboratory for Space Sciences and Physics Department, Washington University, Saint Louis, Missouri 63130, USA 3Complejo Astronómico El Leoncito (CASLEO), Av. España 1512 sur, J5402DSP, San Juan, Argentina *Corresponding author. E-mail: [email protected] (Received 30 October 2006; revision accepted 20 June 2007) Abstract–A devitrified glass inclusion from the Guin (UNGR) iron consists of cryptocrystalline feldspars, pyroxenes, and silica and is rich in SiO2, Al2O3, and Na2O. It contains a rutile grain and is in contact with a large Cl apatite. The latter is very rich in rare earth elements (REEs) (~80 × CI), which display a flat abundance pattern, except for Eu and Yb, which are underabundant. The devitrified glass is very poor in REEs (<0.1 × CI), except for Eu and Yb, which have positive abundance anomalies. Devitrified glass and Cl apatite are out of chemical equilibrium and their complementary REE patterns indicate a genesis via condensation under reducing conditions. Inclusion 1 in the Kodaikanal (IIE) iron consists of glass only, whereas inclusion 2 consists of clinopyroxene, which is partly overgrown by low-Ca pyroxene, and apatite embedded in devitrified glass. All minerals are euhedral or have skeletal habits indicating crystallization from the liquid precursor of the glass. Pyroxenes and the apatite are rich in trace elements, indicating crystallization from a liquid that had 10–50 × CI abundances of REEs and refractory lithophile elements (RLEs).
    [Show full text]
  • Addibischoffite, Ca2al6al6o20, a New Calcium Aluminate Mineral from The
    1 Revision 3 2 Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from 3 the Acfer 214 CH carbonaceous chondrite: A new refractory phase from 4 the solar nebula 5 Chi Ma1,*, Alexander N. Krot2, Kazuhide Nagashima2 6 1Division of Geological and Planetary Sciences, California Institute of Technology, 7 Pasadena, California 91125, USA 8 2Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, 9 Honolulu, Hawai‘i 96822, USA 10 11 ABSTRACT 12 Addibischoffite (IMA 2015-006), Ca2Al6Al6O20, is a new calcium aluminate mineral 13 that occurs with hibonite, perovskite, kushiroite, Ti-kushiroite, spinel, melilite, 14 anorthite and FeNi-metal in the core of a Ca-Al-rich inclusion (CAI) in the Acfer 15 214 CH3 carbonaceous chondrite. The mean chemical composition of type 16 addibischoffite by electron probe microanalysis is (wt%) Al2O3 44.63, CaO 15.36, 17 SiO2 14.62, V2O3 10.64, MgO 9.13, Ti2O3 4.70, FeO 0.46, total 99.55, giving rise to 18 an empirical formula of 3+ 3+ 2+ 19 (Ca2.00)(Al2.55Mg1.73V 1.08Ti 0.50Ca0.09Fe 0.05)Σ6.01(Al4.14Si1.86)O20. The general 20 formula is Ca2(Al,Mg,V,Ti)6(Al,Si)6O20. The end-member formula is Ca2Al6Al6O20. 21 Addibischoffite has the P1 aenigmatite structure with a = 10.367 Å, b = 10.756 Å, c 22 = 8.895 Å, α = 106.0°, β = 96.0°, γ = 124.7°, V = 739.7 Å3, and Z = 2, as revealed by 23 electron back-scatter diffraction. The calculated density using the measured 24 composition is 3.41 g/cm3.
    [Show full text]
  • Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING on a VARIETY of SCALES 1:30 P.M
    Lunar and Planetary Science XLVIII (2017) sess453.pdf Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING ON A VARIETY OF SCALES 1:30 p.m. Waterway Ballroom 5 Chairs: Arya Udry Geoffrey Howarth 1:30 p.m. Nielsen S. G. * Magna T. Mezger K. The Vanadium Isotopic Composition of Mars and Evidence for Solar System Heterogeneity During Planetary Accretion [#1225] Vanadium isotope composition of Mars distinct from Earth and chondrites. 1:45 p.m. Tait K. T. * Day J. M. D. Highly Siderophile Element and Os-Sr Isotope Systematics of Shergotittes [#3025] The shergottite meteorites represent geochemically diverse, broadly basaltic, and magmatically-derived rocks from Mars. New samples were processed and analyzed. 2:00 p.m. Armytage R. M. G. * Debaille V. Brandon A. D. Agee C. B. The Neodymium and Hafnium Isotopic Composition of NWA 7034, and Constraints on the Enriched End-Member for Shergottites [#1065] Couple Sm-Nd and Lu-Hf isotopic systematics in NWA 7034 suggest that such a crust is not the enriched end-member for shergottites. 2:15 p.m. Howarth G. H. * Udry A. Nickel in Olivine and Constraining Mantle Reservoirs for Shergottite Meteorites [#1375] Ni enrichment in olivine from enriched versus depleted shergottites provide evidence for constraining mantle reservoirs on Mars. 2:30 p.m. Jean M. M. * Taylor L. A. Exploring Martian Mantle Heterogeneity: Multiple SNC Reservoirs Revealed [#1666] The objective of the present study is to assess how many mixing components can be recognized, and address ongoing debates within the martian isotope community. 2:45 p.m. Udry A. * Day J.
    [Show full text]
  • Impact Shock Origin of Diamonds in Ureilite Meteorites
    Impact shock origin of diamonds in ureilite meteorites Fabrizio Nestolaa,b,1, Cyrena A. Goodrichc,1, Marta Moranad, Anna Barbarod, Ryan S. Jakubeke, Oliver Christa, Frank E. Brenkerb, M. Chiara Domeneghettid, M. Chiara Dalconia, Matteo Alvarod, Anna M. Fiorettif, Konstantin D. Litasovg, Marc D. Friesh, Matteo Leonii,j, Nicola P. M. Casatik, Peter Jenniskensl, and Muawia H. Shaddadm aDepartment of Geosciences, University of Padova, I-35131 Padova, Italy; bGeoscience Institute, Goethe University Frankfurt, 60323 Frankfurt, Germany; cLunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058; dDepartment of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy; eAstromaterials Research and Exploration Science Division, Jacobs Johnson Space Center Engineering, Technology and Science, NASA, Houston, TX 77058; fInstitute of Geosciences and Earth Resources, National Research Council, I-35131 Padova, Italy; gVereshchagin Institute for High Pressure Physics RAS, Troitsk, 108840 Moscow, Russia; hNASA Astromaterials Acquisition and Curation Office, Johnson Space Center, NASA, Houston, TX 77058; iDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy; jSaudi Aramco R&D Center, 31311 Dhahran, Saudi Arabia; kSwiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland; lCarl Sagan Center, SETI Institute, Mountain View, CA 94043; and mDepartment of Physics and Astronomy, University of Khartoum, 11111 Khartoum, Sudan Edited by Mark Thiemens, University of California San Diego, La Jolla, CA, and approved August 12, 2020 (received for review October 31, 2019) The origin of diamonds in ureilite meteorites is a timely topic in to various degrees and in these samples the graphite areas, though planetary geology as recent studies have proposed their formation still having external blade-shaped morphologies, are internally at static pressures >20 GPa in a large planetary body, like diamonds polycrystalline (18).
    [Show full text]