Geochemicai Methods for the Discovery of Blind Mineral Deposits

Total Page:16

File Type:pdf, Size:1020Kb

Geochemicai Methods for the Discovery of Blind Mineral Deposits 174 A4/A3 THE GEOCHEMISTRY OF ANTIMONY AND ITS USE AS AN INDICATOR ELEMENT IN GEOCHEMICAL PROSPECfING SILVER DEPOSITS - AN OVERVIEW OF THEIR TYPES, GE<X:HEMISTRY, PRODUCTION, AND ORIGIN. GOLD DEPOSITS - AN OVERVIEW OF THEIR TYPES, GEOCHEMISTRY, PROOUCTION, AND ORIGIN PROSPECTING FOR GOLD AND SILVER OEPOSITS SILVER DEPOSITS AND GECX:HEMICAL METHODS OF THEIR DISCOVERY GOLD DEPOSITS AND GEOCHEMICAL METHODS OF THEIR DISCOVERy GeochemicaI methods for the discovery of blind mineral deposits R.W. BOYLE Georogical Survey of Canada Ottawa Journal of Geochemical Exploration, 20 (1984) 223-302 223 Elsevier Science Publishers B. V., Amsterdam - Printed in The Netherlands THE GEOCHEMISTRY OF ANTIMONY AND ITS USE AS AN INDICATOR ELEMENT IN GEOCHEMICAL PROSPECfING R.W. BOYLE and I.R. JONASSON Geological Survev of Canada, 601 Booth Street, Ottawa, Ont. K1A OE8 (Canada) (Received October 31, 1983) ABSTRACT Boyle, R.W. and Jonasson, I.R., 1984. The geochemistry of antimony and its use as an indicator element in geochemical prospecting. J. Geochem. Explor., 20: 223-302. The geochemistry of antimony is reviewed, and the use of the element as an indicator in geochemical prospeoting for various types of mineral deposits is outlined. Antimony is widely diffused in many types of mineral deposits, particularly those containing sulphides and sulphosalts. In these and other deposits, antimony commonly accompanies Cu, Ag, Au, Zn, Cd, Hg, Ba, U, Sn, Pb, P, As, Bi, S, Se, Te, Nb, Ta, Mo, W, Fe, Ni, Co , and Pt metals. Under most conditions antimony is a suitable indicator of deposits of these elements, being particularly useful in geochemical surveys utilizing primary halos in rocks, and secondary halos and trains in soils and glacial materials, stream and lake sediments, natural waters, and to a limited degree vegetation. Some of the natural antimony compounds (e.g. stibine, dimethylstibine) are volatile, but methods utilizing gaseous antimony halos for geochemical prospecting have not yet been devel­ oped. INTRODUCTION Antimony is an ancient element and is mentioned in the Old Testament (II Kings, 9, 30), "and she painted her face (with stibium)". The reference is to the use of stibnite as a cosmetic for darkening the eyes. Pliny Secundus called the element stibium, and in a latin translation of Geber, the alchemist, it is termed antimonium. The element was prepared and its compounds described by Basil Valentine (probably Tholde) in his treatise "The Triumphal Chariot of Antimony" written in the 15th century. Antimony is widely diffused in nature and is concentrated in many types of mineral deposits, particularly those containing sulphides and sulphosalts. It accompanies many elements in their deposits including Cu, Ag, Au, Zn, Cd, Hg, Ba, U, Sn, Pb, P, As, Bi, S, Se, Te, Nb, Ta, Mo, W, Fe, Ni, Co, and Pt metals. Antimony is, therefore, an ideal indicator in geochemical prospecting surveys for some twenty elements of commercial importance. In preparing this outline of the geochemistry of antimony we have con­ sulted most of the literature available on the element up to the end of 1982. 0375-6742/84/$03.00 © 1984 Elsevie r Science Pu hlisbers B.V. 224 This we have supplemented with our own data and research on the geochem­ istry of antimony extending over a period of same thirty years. During the compilation of the tables on the normal or background abundance of anti­ mony in the various earth materials we encountered considerable difficulty in deciding which analytical data in the literature should be used in our calculations because of the different analytical procedures employed, rock nomenclature, possible presence of antimony mineralization, and so on. These problems are familiar to all geochemists who attempt to calculate normal or background abundance figures. We have been selective in our compilation, utilizing only those data which in our opinion have been ob­ tained by reliable modem analytical procedures on earth materials which seemed to us from the descriptions of the samples to be well removed from the effects of antimony mineralization. Admittedly, this is a subjective pro­ cedure, and we would stress the fact that our abundance figures are only estimates at best. All of our data sources are given in the Selected Bibliog­ raphy at the end of the paper. GENERAL GEOCHEMISTRY AND MINERALOGY Antimony is the fourth member of Group VA of the periodic system, which also includes nitrogen, phosphorus, arsenic, and bismuth. In some of its chemical reactions antimony behaves much like arsenic and bismuth. In nature three oxidation states are possible for the element - the metallic or covalent (O) state, and the (III) and (V) states. The metallic state is not uncommon for the element in certain types of mineral deposits. The (III) and (V) states are common in a variety of complex minerals and in dissolved salts in natural waters. The (III) state is also represented in the gaseous compound SbH3 (stibine) which may occur under certain natural conditions. Because of the multiple oxidation states of the element and the tendency to form soluble complexes and complex compounds, the geochemistry ,of antimony is intricate and not weIl characterized. A generalized cycle of anti­ mony interconversions in nature is shown in Fig. 1. The elements most frequently associated with antimony in nature are arsenic and sulphur. Antimony has two stable isotopes in nature, the conventional abundances being as follows (Lederer and Shirley, 1978): 121Sb 57.3% 123Sb 42.7% No authenticated differences in the isotopic composition of antimony have yet been found in nature. Radioactive an timony isotopes are commonly noted in the atmosphere after thermonuclear explosions. The half life of most of these isotopes is short (e.g. 124Sb - 60.2 d; 125 Sb - 2.71 y). Native antimony is relatively common in certain types of mineral deposits despite the fact that the element has a marked chalcophile character forming sulphides and a great variety of sulphosalts, particularly with the metals Cu, Ag, Zn, Hg, Pb, and Fe. The most common of these sulphosalts is tetrahedrite­ ... 225 IEROVALENT Sb eecurs ,n nature ImmobIle IOlms as nahve .nhmony Immobile lorms. in Ollide. sulphlde. sulphlde-olllde and In certa," in oxide. sulphlde. and and ",alIOUS antimonites. In metall.c alloys vaflous complex anlimonates and antimon.des hydlous manganese Olit ide (Ich in hydrous manganese oxide (Immobile 101ms) gels: In ilon-manganese tlch rich gels: ,n Ilon-manganese olganlc maltel such as peat. tlCh organlc matter such as gy",a. humus. ,n plants and Sb(O) peat, gyttja. humus. animals In planIs and animals. ........ <,O,-,,~ \~ " ('I,,~o: <.9 "C' \~ ,\~. O O.., \~o. \ "2­ ~-;o \../ \'" \ "O \ O PENTAVALENT Sb ~ malnlyantonic \ \ \ (j\' torms preva.' \"2- V~ ~ I ~ e g. SbO. 3­ IJ'_ (1) and Ihioanlimonales \~ I Oxidation in SOI_u-:-tio_n..,...o_,__.-_<.9-Y{b (V) by action ofbacte,ia Mobtle larms. MobIle larms as ax 'des and sulph,des In as oxide conoids or sols. In sols and collaIdai gels. hydrous «on-manqanese oxroe anllmonue (01 lhlo.nt,monlle) couo.os and gels. as orqamc scsoens.oos. soluble species enerates or In gels: as mineral and acsorbed ions: in organic partieulates. in suspensrons or cbeiates and couo-cs: and as dust: as anlimonyl. antimorrate posstbly as volalile hydlides or Ihioanl,monale rons (and or alkyl hydlides: as complex hydrolyles) in sotuuon: as rons In sotu.ion. In dust: In complex lons 01 potymerrc hydrocarbons lons in solvhon : in hydrocarbons Fig. 1. Cycle of antimony interconversions in nature. tennantite. Antimony forms oxides and complex oxides in nature, and there are a large number of natural antimonites and antimonates and other corn­ plex oxygen-salts of the element. The biophile character of antimony is manifest by its presence, usually in small amounts, in a variety of living organisms and their fossil equivalents. The principal antimony minerals are given in Table r. Only the most com­ mon antimonites and antimonates are given. The principal antimony miner­ als in endogene (hypogene) deposits are native an timony, stibnite, tetra­ hedrite, jamesonite, boulangerite, and pyrargyrite. The other sulphosalts of the element are relatively rare. The common supergene antimony minerals, formed as a result of oxidation of the hypogene sulphides, sulphosalts, etc., are senarmontite, stibiconite, kermesite, and bindheimite. Antimony is found as traces and minor quantities in many of the native elements, in practicallyall the common sulphides, and in a great variety of secondary oxidation produets, particularly in sulphates, arsenates, etc. The element is also a trace or minor constituent in a number of complex niobates and tantalates. The principal carriers of antimony in rocks and in many types of mineral deposits are arsenopyrite and pyrite. The latter mineral may contain up to 100 ppm or more Sb, the element being apparently present in lattice sites 226 TABLE I Antimony minerals Native dement. ond in termetallic comp ounds: AnUmony Sb Al1emontite SbAs + ~ or Sb SUb~en Sb~ Paradocra.site Sb1(Sb,As)1 Sulpnide«, an tim onides, arseniäes, teliurides, etc. Stibnite Sb2S, Geversite PtSb1 Metastibnite Sb2S, lruizwaite Pt(Bi,Sb), Wakabayashilite (As,Sb).. Sil SUbiopalladinite Pd,Sb2 Cuprostibite Cu 2(Sb,TI) Genkinite (Pt,Pd)..Sb, Horsfordite CusSb Isomertieite Pdl1Sb2~1 Allargentum Agl~Sbx Mertieite - I Pd1•(Sb,As).. Dyscrasite Ag,Sb Mertieite - II Pd.(Sb,As), Stistaite SnSb Arsenopalladinite Pd.(As.Sb), Breithauptite NiSb Testibiopalladite Pd(Sb.Bi)Te Sudburyite (Pd,Ni)Sb Hexatestibiopanickelite
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • The Behavior of Molybdenum., Tungsten, and Titanium
    The behavior of molybdenum, tungsten, and titanium in the porphyry copper environment Item Type text; Dissertation-Reproduction (electronic) Authors Kuck, Peter Hinckley Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 08/10/2021 00:24:06 Link to Item http://hdl.handle.net/10150/565421 THE BEHAVIOR OF MOLYBDENUM., TUNGSTEN, AND TITANIUM IN THE PORPHYRY COPPER ENVIRONMENT Peter' 'Hinckley Kuck A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES. In Partial.Fulfillment of the Requirements. ' ■ For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College ■ THE UNIVERSITY OF ARIZONA 1 9 7 8 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my Peter Hinckley Kuck direction by ___________ , , The Behavior of Molybdenum, Tungsten, and Titanium entitled ________________________________________________________ in the Porphyry Copper Environment be accepted as fulfilling the dissertation requirement for the Doctor of Philosophy degree of _______________________________________________________ Dissertation Director Date As members of the Final Examination Committee, we certify that we have read this dissertation and agree that it may be presented for final defense. \ R A j r i A hi / 7IT 2 / 1 r 7 - Final approval and acceptance of this dissertation is contingent on the candidate's adequate performance and defense thereof at the final oral examination. STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Mineralization at Le Pulec, Jersey, Channel Islands; No. 1 Lode
    134 SHORT COMMUNICATIONS REFERENCES McKay, W. J. (1975) Woodlawn copper-lead-zinc orebody. Ibid. 701-10. Davis, L. W. (1975) Captains Flat lead-zinc orebody. In Knight, C. L. (ed.). Economic Geology of Australia and Papua New Guinea I. Metals. Melbourne, Australasian [Revised manuscript received 2 June 1981] Institute of Mining and Metallurgy, 691-700. Malone, E. J., Olgers, F., Cucchi, F. G., Nicholas, T., and t~) Copyright the Mineralogical Society Dept. of Geology, University of Wollonoong, New South Wales, Australia F. IVOR ROBERTS [Present address: School of Applied Geology, University of New South Wales, PO Box 1, Kensinoton , NSW 2033, Australia] MINERALOGICAL MAGAZINE, MARCH 1982, VOL. 46, PP. 134-6 Mineralization at Le Pulec, Jersey, Channel Islands; No. 1 Lode THE No. 1 Lode is the westernmost and most Mineralization within the Brioverian sediments extensive of three lead-zinc veins cutting Brioverian sediments at Le Pulec. It was described by Williams Anatase is common within the sediments as 2-10 (1871) as being between 1.5 and 1.8 m in width and pm anhedral grains associated with silicates or 183 m in length, with a trend of 340 ~ and the as 10 x 2 #m laths, parallel to the basal cleavage galena was reported to have a high silver content. of the altered phyllosilicates, particularly musco- Since the investigation of the No. 3 Lode (Ixer and vite. Anatase is also found with hematite laths Stanley, 1980) it has been possible to examine (20x 2 /~m) included in early pyrite grains. A several specimens, collected from the recently re- coarse-grained (600 x 20 pm) generation of anatase discovered No.
    [Show full text]
  • The Nature of Waste Associated with Closed Mines in England and Wales
    The nature of waste associated with closed mines in England and Wales Minerals & Waste Programme Open Report OR/10/14 BRITISH GEOLOGICAL SURVEY MINERALS & WASTE PROGRAMME OPEN REPORT OR/10/14 The National Grid and other Ordnance Survey data are used with the permission of the The nature of waste associated Controller of Her Majesty’s Stationery Office. OS Topography © Crown with closed mines in England and Copyright. All rights reserved. BGS 100017897/2010 Wales Keywords Abandoned mine waste facilities; Palumbo-Roe, B and Colman, T England and Wales; mineral deposits; environmental impact; Contributor/editor European Mine Waste Directive. Cameron, D G, Linley, K and Gunn, A G Front cover Graiggoch Mine (SN 7040 7410), Ceredigion, Wales. Bibliographical reference Palumbo-Roe, B and Colman, T with contributions from Cameron, D G, Linley, K and Gunn, A G. 2010. The nature of waste associated with closed mines in England and Wales. British Geological Survey Open Report, OR/10/14. 98pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and the Environment Agency that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. The views and statements expressed in this report are those of the authors alone and do not necessarily represent the views of the Environment Agency.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Selective Flotation of Enargite from Copper Sulphides in Complex Ore Systems
    Selective flotation of enargite from copper sulphides in complex ore systems Maedeh Tayebi-Khorami M.Sc. (Mineral Processing Engineering) B.Sc. (Mining Engineering) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in November 2016 Sustainable Minerals Institute Abstract Recent research has demonstrated promising results showing the possibility of separating arsenic- copper sulphides from other copper minerals by controlling the potential of the flotation pulp. Most of these studies were conducted on single mineral systems, and the selective removal of arsenic- copper minerals in real ore systems is not well understood. In real ore systems, the efficiency of the separation strongly depends on the mineralogical characteristics of the ore samples. This study seeks to understand the effect of ore mineralogy on the floatability of enargite in a complex ore system, under a controlled potential flotation environment. A composite of several high arsenic-containing drill core intersections for the high arsenic sample (HAS) and a composite of some low arsenic-containing drill core intersections for the low arsenic sample (LAS) were selected from the Tampakan copper-gold deposit in the Philippines, providing a range of arsenic levels. Arsenic in the HAS sample (enargite) was practically twice that for the LAS sample. The non-enargite copper minerals (NECu) were mostly chalcopyrite and bornite in both samples. Comprehensive size-by-size, chemical and mineralogical analyses were performed on both ore samples. It was observed that the two ore samples had similar mineralogical characteristics in terms of mineral content and liberation distribution, however there are some differences in the proportions of minerals.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 100, pages 1649–1654, 2015 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND OLIVIER C. GAGNE2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada IN THIS ISSUE This New Mineral Names has entries for 10 new minerals, including debattistiite, evdokimovite, ferdowsiite, karpovite, kolskyite, markhininite, protochabournéite, raberite, shulamitite, and vendidaite. DEBATTISTIITE* for 795 unique I > 2σ(I) reflections] corner-sharing As(S,Te)3 A. Guastoni, L. Bindi, and F. Nestola (2012) Debattistiite, pyramids form three-membered distorted rings linked by Ag atoms in triangular or distorted tetrahedral coordination. Certain Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Len- genbach quarry, Binn valley, Switzerland: description and features of that linkage are similar to those in the structures of crystal structure. Mineralogical Magazine, 76(3), 743–750. trechmannite and minerals of pearceite–polybasite group. Of the seven anion positions, one is almost fully occupied by Te (Te0.93S0.07). The Hg atom is in a nearly perfect linear coordination Debattistiite (IMA 2011-098), ideally Ag9Hg0.5As6S12Te2, is a new mineral discovered in the famous for Pb-Cu-Ag-As-Tl with two Te/S atoms. One of five Ag sites and Hg site, which are bearing sulfosalts Lengenbach quarry in the Binn Valley, Valais, very close (separation 1.137 Å), are partially occupied (50%). Switzerland. Debattistiite has been identified in two specimens Thus there is a statistical distribution (50:50) between Hg(Te,S)2 from zone 1 of the quarry in cavities in dolomitic marble with and AgS2(Te,S)2 polyhedra in the structure.
    [Show full text]
  • Tin, Tungsten, and Tantalum Deposits of South Dakota
    TIN, TUNGSTEN, AND TANTALUM DEPOSITS OF SOUTH DAKOTA. By FRANK L. HESS. INTRODUCTION. Many articles have been written 011 the tin deposits of the Black Hills, and an excellent paper by J. D. Irving a on the tungsten deposits at Lead was published in 1901. Nothing is known to have been pub­ lished on the tungsten deposits of the southern Black Hills, but several articles have been written on the deposits of tantalum. Nearly all the papers on these different deposits, however, are a num­ ber of years old, and later developments have given several of the deposits an aspect somewhat different from their appearance at the time they were described. It therefore seems well to give a brief account of observations made by the writer during a short reconnais­ sance trip in September, 1908, together with such reviews of the his­ tory and the literature of the region as may seem advisable. All the known deposits of tin, tungsten, and tantalum in South Dakota occur in the Black Hills, in Lawrence and Pennington coun­ ties, in the southwestern part of the State. Although designated as "hills," these elevations reach a height of 7,216 feet in Harney Peak, 500 feet above the highest of the Appalachians (Mount Mitchell, 6,711 feet) and almost a thousand feet above the highest of the White Mountains (Mount Washington, 6,279 feet). They are about 60 to 75 miles long by 50 miles wide, the longer axis lying nearly north and south. There is a considerable diversity of topography in the different parts of the area to be considered.
    [Show full text]
  • Epithermal Bicolor Black and White Calcite Spheres from Herja Ore Deposit, Baia Mare Neogene Ore District, Romania-Genetic Considerations
    minerals Review Epithermal Bicolor Black and White Calcite Spheres from Herja Ore Deposit, Baia Mare Neogene Ore District, Romania-Genetic Considerations 1 1, 2 3 4,5 Ioan Mârza ,Călin Gabriel Tămas, * , Romulus Tetean , Alina Andreica , Ioan Denut, and Réka Kovács 1,4 1 Babe¸s-BolyaiUniversity, Faculty of Biology and Geology, Department of Geology, 1, M. Kogălniceanu str., Cluj-Napoca 400084, Romania; [email protected] (I.M.); [email protected] (R.K.) 2 Babe¸s-BolyaiUniversity, Faculty of Physics, 1, M. Kogălniceanu str., Cluj-Napoca 400084, Romania; [email protected] 3 Babe¸s-BolyaiUniversity, Faculty of European Studies, 1, Em. de Martonne, Cluj-Napoca 400090, Romania; [email protected] 4 County Museum of Mineralogy, Bulevardul Traian nr. 8, Baia Mare 430212, Romania; [email protected] 5 Technical University of Cluj-Napoca, North University Centre of Baia Mare, 62A, Dr. Victor Babes, str., Baia Mare 430083, Romania * Correspondence: [email protected] or [email protected]; Tel.: +40-264-405-300 (ext. 5216) Received: 24 April 2019; Accepted: 5 June 2019; Published: 8 June 2019 Abstract: White, black, or white and black calcite spheres were discovered during the 20th century within geodes from several Pb-Zn Au-Ag epithermal vein deposits from the Baia Mare ore district, ± Eastern Carpathians, Romania, with the Herja ore deposit being the maiden occurrence. The black or black and white calcite spheres are systematically accompanied by needle-like sulfosalts which are known by the local miners as “plumosite”. The genesis of epithermal spheres composed partly or entirely of black calcite is considered to be related to the deposition of calcite within voids filled by hydrothermal fluids that contain acicular crystals of sulfosalts, mostly jamesonite in suspension.
    [Show full text]
  • The Distinction Between Enargite and Famatinite (Luzonite) G
    THE DISTINCTION BETWEEN ENARGITE AND FAMATINITE (LUZONITE) G. Ar,aN Hancounr, Haraard Uniaersity, Cambridge,Mass. fNrnonucrrow For the past three years the writer has been working on the problem of studying minute samplesof ore minerals by a method combining the use of the quartz spectograph and the r-ray powder camera. The method is being developed as an adjunct to the optical study of ore minerals in polished sectionsl and it is particularly adapted to the study of minerals which occur habitually in fine intergrowths and whose identity and specific properties are in many casesuncertain. The pro- cedure involves excavating minute samples from very small areas in a polished section by means of an improved micro-drill, and utilizing them for powder photographs and spectographic analyses. In this way valu- able qualitative structural and chemical data are obtained for com- parison with the usual charactersobserved in polished sections. TnB Mrcno-DRTLL The drill used in the present work was patterned after that described by Haycock (1931). This consistsof a 1/50 H.P. electric motor con- nected by means of a flexible cable to a rigidly mounted spindle which holds the drill (Fig. 1). The drill point is simply a No. 7 Sharp needle mounted in a pin vise chuck and supported close to the drilling point by a bearing. The spindle and drill are mounted rigidly in a frame in an inclined position so that the point of the needle is in the center of the field of the microscope when a polished section is in focus. The inclina- tion of the spindle and drill is governed by the focal length and outside diameter of the objective used, leaving sufficient clearance so that the section may be brought into focus when it is lowered out of contact with the drill.
    [Show full text]