Nanoparticles of Lanthanide and Transition Metal Oxysulfides : from Colloidal Synthesis to Structure, Surface, Optical and Magnetic Properties Clement Larquet

Total Page:16

File Type:pdf, Size:1020Kb

Nanoparticles of Lanthanide and Transition Metal Oxysulfides : from Colloidal Synthesis to Structure, Surface, Optical and Magnetic Properties Clement Larquet Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthesis to structure, surface, optical and magnetic properties Clement Larquet To cite this version: Clement Larquet. Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthe- sis to structure, surface, optical and magnetic properties. Material chemistry. Sorbonne Université, 2018. English. NNT : 2018SORUS432. tel-02950055 HAL Id: tel-02950055 https://tel.archives-ouvertes.fr/tel-02950055 Submitted on 27 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 397 : Physique et chimie des matériaux Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) Nanoparticles of lanthanide and transition metal oxysulfides: from colloidal synthesis to structure, surface, optical and magnetic properties Par M. Clément Larquet Thèse de doctorat de Sorbonne Université Dirigée par Clément Sanchez et Andrea Gauzzi Présentée et soutenue publiquement le 25 septembre 2018 Devant un jury composé de : Mme. Elsje Alessandra Quadrelli Directrice de recherches - CPE Lyon Rapporteur M. Stéphane Jobic Directeur de recherches - IEMN Rapporteur Mme. Catherine Louis Directrice de recherches - SU Examinatrice Mme. Asma Tougerti Chargée de recherches – Univ. Lille Examinatrice M. Patrick Maestro Directeur scientifique - Solvay Examinateur Mme. Sophie Carenco Chargée de recherches - SU Encadrant principal M. Andrea Gauzzi Professeur - SU Directeur de thèse M. Clément Sanchez Professeur - Collège de France Directeur de thèse Introduction Among the various combinations of metal with chalcogens, the association of a metal with oxygen and sulfur anions is peculiar. It was given the name of metal oxysulfide. Because these two anions present dissimilar sizes and electronic properties, associating them with a metal in a single compound is a synthetic challenge. Notably, metal oxysulfides are scarcer in nature than their oxide or sulfide cousins despite the abundance of the two chalcogens. From a synthetic point of view, even if the first oxysulfides were described in the XIXth century, their preparation was developed only at the beginning of the 1950’s with the advent of the first lanthanide- and actinide-based chalcogenides. Remarkably, the d-block transition metal oxysulfides are rarely involved in monometallic oxysulfide compounds. However, the formation of bimetallic oxysulfides enriched the number of elements that could crystallize in oxysulfide structures. Since 1967, bimetallic oxysulfides are regularly reported and more complex compositions (quinary oxysulfides and more) started to emerge at the beginning of the 1980’s. Since 2000, the hype for nanoparticles has reached the oxysulfides. Twenty years later, Ln2O2S crystalline phase and the other oxysulfides are now studied within two segregated chemists communities. Great efforts were made on the development of various syntheses of Ln2O2S nanoparticles whose applications in luminescence are diverse and were previously identified in the bulk phases. On the contrary, few works on other nanoscaled oxysulfides were reported in the same period. In the Laboratory of the Chemistry of Condensed Matter of Paris (LCMCP) was noted that lanthanide oxysulfide nanoparticles were almost exclusively studied for luminescence despite their intriguing bichalcogenide nature. At the beginning of the project, the works of Ishikawa et al. on the photocatalytic properties of Sm2Ti2S2O5 and He et al. on the magnetic properties of Eu2-xO2S nanoparticles were already reported since a few years. Building from the know-how the LCMCP developed on the synthesis of complex nanostructures, collaboration started with the Institute of Mineralogy, Physics of Materials and Cosmochemistry (IMPMC) whose expertise on the electronic, optical and magnetic properties of complex materials was extremely valuable and complementary. 3 The strategy of the project was first to acquire some know-how from the Ln2O2S nanoparticles synthesis and then switch to the d-block oxysulfide nanoparticles, for which novel structures and properties were expected. We did not expect that lanthanide oxysulfide nanoparticles would be such a complex and surprising system despite the dozens of reported works on the subject. Following this strategy, the manuscript is divided in two independent parts. The first one is dedicated to the lanthanide oxysulfide nanoparticles. We will see from a detailed bibliographic study that the synthesis of Ln2O2S nanoparticles is now well controlled both in aqueous and organic solvents, with various morphologies, surfaces, and applications (Chapter I). Then, the challenging case of cerium oxysulfide nanoparticles is handled (Chapter II). For the first time, unsupported Ce2O2S nanoparticles are obtained via a colloidal synthesis in organic surfactants, using Ce(acac)3, elemental sulfur and a sodium complex. The peculiar reactivity of the entire series of the oxysulfide solid solution of (Gd,Ce)2O2S nanoparticles is evaluated with in situ X-ray absorption near edge spectroscopy (XANES) and near ambient pressure X-ray photoemission spectroscopy (NAP-XPS). Following this work, an investigation on the structure and the surface of the Ln2O2S nano-objects is conducted through the case study of Gd2O2S (Chapter III). The sulfur amount, the ligands quantity and coordination mode, the sodium localization and role in the synthesis are discussed, leading to a more precise vision of the final nanoparticles contradictory on several points with previous works on the subject. Also, the study of colloidal solution samples during the nanoparticles nucleation and growth allow us to propose a detail formation mechanism for Ln2O2S nanoparticles. This work on the description of the structure is a milestone for the quantification of the magnetic and optical properties of the (Gd,Ce)2O2S nanocrystals. The electronic properties of cerium in the oxysulfide structure leads to significant evolutions of these properties (Chapter IV). In the second part, transition metal oxysulfides were investigated. The bibliographic study underlines the lack of monometallic structures and reviews the several syntheses of transition metal oxysulfides syntheses (Chapter V). An exploratory approach is conducted to reach monometallic and bimetallic oxysulfides with d-block transition metals at the nanoscale (Chapter VI). Confronted with mitigated results, a new strategy is developed to obtain at mild temperatures the concomitant oxidation and sulfidation of a metal (0) complex, leading to an unprecedented synthesis of amorphous nickel oxysulfide (Chapter VII). 4 Note: Part of this manuscript was written using the manuscripts of several journal articles (published, submitted or to be submitted) for which I wrote the first draft. Whenever an extract of an article was used, the corresponding sections are clearly delimited in the text. At the end of the manuscript, an experimental section references details on the various conducted syntheses and techniques throughout the project. Now is the time to dive in the fascinating world of the metal oxysulfides. 5 6 Table of contents Introduction ..............................................................................................................................3 Table of contents ......................................................................................................................7 Part I: Lanthanide oxysulfide nanoparticles ..........................................................................9 Chapter I - Lanthanide oxysulfide syntheses: from bulk to nanoparticles .............................11 Chapter II - Synthesizing and storing Ln2O2S nanoparticles: from Gd2O2S to Ce2O2S ..................................................................................................................................63 Chapter III - Unveiling the structure of Ln2O2S nanoplates in high boiling point organic solvents with an alkaline source: Gd2O2S as a case study ..................................93 Chapter IV - Benefits of bimetallic composition: the tunable optical and magnetic properties of Gd2(1-y)Ce2yO2S nanoparticles ............................................................137 Part II: d-Block transition metal oxysulfide nanoparticles...............................................159 Chapter V - The synthesis of bulk and nanoscaled transition metal oxysulfides: a burgeoning challenge.......................................................................................161 Chapter VI - Attempts at transposing Ln2O2S synthesis to nanoscaled transition metal oxysulfides ....................................................................................................195 Chapter VII - Towards nickel oxysulfide nanoparticles .......................................................217 Conclusion and perspectives ................................................................................................245
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids—Seeing Nanomaterials As They Are
    nanomaterials Review The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids—Seeing Nanomaterials as They Are Daria Semenova 1 and Yuliya E. Silina 2,* 1 Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; [email protected] 2 Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany * Correspondence: [email protected] or [email protected]; Tel.: +49-681-302-64717 Received: 23 October 2019; Accepted: 19 November 2019; Published: 23 November 2019 Abstract: The functional properties of organic-inorganic (O-I) hybrids can be easily tuned by combining system components and parameters, making this class of novel nanomaterials a crucial element in various application fields. Unfortunately, the manufacturing of organic-inorganic nanohybrids still suffers from mechanical instability and insufficient synthesis reproducibility. The control of the composition and structure of nanosurfaces themselves is a specific analytical challenge and plays an important role in the future reproducibility of hybrid nanomaterials surface properties and response. Therefore, appropriate and sufficient analytical methodologies and technical guidance for control of their synthesis, characterization and standardization of the final product quality at the nanoscale level should be established. In this review, we summarize and compare the analytical merit of the modern analytical methods, viz. Fourier transform infrared spectroscopy (FTIR), RAMAN spectroscopy, surface plasmon resonance (SPR) and several mass spectrometry (MS)-based techniques, that is, inductively coupled plasma mass spectrometry (ICP-MS), single particle ICP-MS (sp-ICP-MS), laser ablation coupled ICP-MS (LA-ICP-MS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), liquid chromatography mass spectrometry (LC-MS) utilized for characterization of O-I nanohybrids.
    [Show full text]
  • Recombinant DNA Technology and Click Chemistry: a Powerful
    Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization Mohamed Hamed Misbah1, Mercedes Santos1, Luis Quintanilla1, Christina Günter2, Matilde Alonso1, Andreas Taubert3 and José Carlos Rodríguez-Cabello*1 Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2017, 8, 772–783. 1G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de doi:10.3762/bjnano.8.80 Belén 19, 47011 Valladolid, Spain, 2Institute of Earth and Environmental Sciences, University of Potsdam, D-14476 Potsdam, Received: 27 November 2016 Germany and 3Institute of Chemistry, University of Potsdam, D-14476 Accepted: 07 March 2017 Potsdam, Germany Published: 04 April 2017 Email: This article is part of the Thematic Series "Hybrid nanomaterials: from the José Carlos Rodríguez-Cabello* - [email protected] laboratory to the market". * Corresponding author Associate Editor: M. Stenzel Keywords: © 2017 Misbah et al.; licensee Beilstein-Institut. calcium phosphate; elastin-like recombinamers; hydroxyapatite; License and terms: see end of document. mineralization; SNA15 Abstract Understanding the mechanisms responsible for generating different phases and morphologies of calcium phosphate by elastin-like recombinamers is supreme for bioengineering of advanced multifunctional materials. The generation of such multifunctional hybrid materials depends on the properties of their counterparts and the way in which they are assembled. The success of this assembly depends on the different approaches used, such as recombinant DNA technology and click chemistry. In the present work, an elastin-like recombinamer bearing lysine amino acids distributed along the recombinamer chain has been cross-linked via Huisgen [2 + 3] cycloaddition. The recombinamer contains the SNA15 peptide domains inspired by salivary statherin, a peptide epitope known to specifically bind to and nucleate calcium phosphate.
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • Clefs CEA N°60
    No. 60 clefsSummer 2011 Chemistry is everywhere No. 60 - Summer 2011 clefs Chemistry is everywhere www.cea.fr No. 60 Summer 2011 clefs Chemistry is everywhere Chemistry 2 Foreword, by Valérie Cabuil is everywhere I. NUCLEAR CHEMISTRY Clefs CEA No. 60 – SUMMER 2011 4 Introduction, by Stéphane Sarrade Main cover picture Dyed polymers for photovoltaic cells. 6 Advances in the separation For many years, CEA has been applying chemistry of actinides, all aspects of chemistry, in all its forms. Chemistry is at the very heart of all its by Pascal Baron major programs, whether low-carbon 10 The chemical specificities energies (nuclear energy and new energy technologies), biomedical and of actinides, environmental technologies or the by Philippe Moisy information technologies. 11 Uranium chemistry: significant P. Avavian/CEA – C. Dupont/CEA advances, Inset by Marinella Mazzanti top: Placing corrosion samples in a high-temperature furnace. 12 Chemistry and chemical P. Stroppa/CEA engineering, the COEX process, by Stéphane Grandjean bottom: Gas sensors incorporating “packaged” NEMS. P. Avavian/CEA 13 Supercritical fluids in chemical Pictogram on inside pages processes, © Fotolia by Audrey Hertz and Frédéric Charton Review published by CEA Communication Division 14 The chemistry of corrosion, Bâtiment Siège by Damien Féron, Christophe Gallé 91191 Gif-sur-Yvette Cedex (France) and Stéphane Gin Phone: + 33 (0)1 64 50 10 00 Fax (editor’s office): + 33 (0)1 64 50 17 22 14 17 Focus A Advances in modeling Executive publisher Xavier Clément in chemistry, by Philippe Guilbaud, Editor in chief Jean-Pierre Dognon, Didier Mathieu, 21 Understanding the chemical Marie-José Loverini (until 30/06/2011) Christophe Morell, André Grand mechanisms of radiolysis and Pascale Maldivi by Gérard Baldacchino Deputy editor Martine Trocellier [email protected] Scientific committee Bernard Bonin, Gilles Damamme, Céline Gaiffier, Étienne Klein, II.
    [Show full text]
  • William T. Petuskey
    WILLIAM T. PETUSKEY ADDRESS Department of Chemistry & Biochemistry; Arizona State University Box 871604; Tempe, AZ 85287-1604 CONTACTS 602-965-6358 (ph); 480-965-8293 (fx); 480-307-3402 (cell) [email protected] (e-mail) SPECIALTY Chemistry of Materials: physical chemistry, ceramic materials, glass-ceramic nanocomposites. magnetic nanoferrites, electrical ceramics, chemical vapor deposition, low temperature synthesis of dense and nanoporous oxides EDUCATION Massachusetts Institute of Technology Sc.D. Ceramic Science; Advisor: Prof. H. Kent Bowen 1973-1977 University of Utah B.S., Materials Science and Engineering 1969-1973 PROFESSIONAL EMPLOYMENT Arizona State University Knowledge Enterprise Development Director, Advanced Materials Initiative 2016-present Associate Vice President, Science, Engineering and Technology 2012 – 2016 Department of Chemistry & Biochemistry (now School of Molecular Sciences) Chairman 2006 – 2012 Associate Chairman 2002 – 2006 Professor 1996 – present Assistant Chairman 1986 –1990 Associate Professor 1983 – 1996 School of Materials, Professor 2006 – 2010 Science and Engineering of Materials Graduate Program, Co-Director 1998 – 2006 Tokyo Institute of Technology Research Laboratory of Engineering Materials, Guest Professor 1990 – 1991 University of Illinois at Urbana/Champaign Department of Ceramic Engineering, Assistant Professor 1978 – 1983 Technischen Universität Hannover (now Universität Hannover, Germany) Institüt für Physikalische Chemie und Elektrochemie, Postdoctoral Fellow 1977 – 1978 Supervisor: Prof. Dr. H. Schmalzried Massachusetts Institute of Technology, Research Assistant 1973 – 1977 University of Utah, Research Assistant 1969, 1972 – 73 PROFESSIONAL AND HONORARY SOCIETIES AAAS, American Ceramic Society, American Chemical Society, Royal Society of Chemistry, Tau Beta Pi, Keramos 12/31/2016 Publications of WILLIAM T. PETUSKEY "Chemical Stability and Degradation of MHD Electrodes," H. K. Bowen, J. W. Halloran, W.
    [Show full text]
  • Design Rules for Discovering 2D Materials from 3D Crystals
    Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point.
    [Show full text]
  • Copolymerization Preparation of Cationic Cyclodextrin Chiral Stationary Phases for Drug Enantioseparation in Chromatography
    Copolymerization preparation of cationic cyclodextrin chiral stationary phases for drug enantioseparation in chromatography Ren-Qi Wang ( [email protected] ) Division of Chemical and Biomolecular Engineering, College of Engineering, Nanyang Technological University, 16 Nanyang Drive, Singapore 637722, Singapore Siu-Choon Ng ( [email protected] ) Division of Chemical and Biomolecular Engineering, College of Engineering, Nanyang Technological University, 16 Nanyang Drive, Singapore 637722, Singapore Teng-Teng Ong Division of Chemical and Biomolecular Engineering, College of Engineering, Nanyang Technological University, 16 Nanyang Drive, Singapore 637722, Singapore Ke Huang Division of Chemical and Biomolecular Engineering, College of Engineering, Nanyang Technological University, 16 Nanyang Drive, Singapore 637722, Singapore Weihua Tang Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education of China), Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China Method Article Keywords: chiral separation, chiral stationary phases, cyclodextrin, radical copolymerization Posted Date: June 6th, 2012 DOI: https://doi.org/10.1038/protex.2012.023 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/11 Abstract We described a facile and effective protocol wherein radical copolymerization is employed to covalently bond cationic β-cyclodextrin \(β-CD) onto silica particles with extended linkage, resulting in a chiral stationary
    [Show full text]
  • Meeting Program
    Meeting Program 2nd Nano@IAState Meeting - Friday, August 3rd, 2018 Iowa State University, Scheman Building •Meeting Overview Nano@IAState is a single day meeting to bring together ISU, Ames Lab and industrial scientists and researchers working on the synthesis and characterization of nanomaterials and applications of nanoscience. The meeting is open to ISU and Ames Lab graduate and undergraduate students, staff and faculty, and members of local industry. •Sponsors We are grateful to the following sponsors whose generous contributions have made the meeting possible: Iowa State University Research Park, The Department of Materials Science and Engineering, The Ames Laboratory, ISU VP Research, The College of Engineering, The College of Liberal Arts and Sciences, The Department of Chemistry, The Department of Chemical and Biological Engineering and The Department of Physics and Astronomy. •Presentation Information Contributed oral Presentations will have a total duration of 15 minutes, including a few minutes for Questions from the audience. The boards for Poster Presentations will be 4' x 4'. Please make sure your poster is 4' wide or narrower. Poster boards will be available in the morning in the second floor Scheman Lobby. Please bring your posters in the morning so that you can hang them up early. •Organizing Committee Aaron Rossini - Chemistry - [email protected] Matthew Panthani - Chemical and Biological Engineering - [email protected] Martin Thuo - Materials Science and Engineering - [email protected] Zhe Fei - Physics - [email protected]
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 62, pages 1259-1262, 1977 NewMineral Names* MtcHe.rr-Flrlscsnn, Lours J. CesRrAND ADoLF Pe.ssr Franzinite* Six microprobe analyses gave (range and av.): AsrOu 44.96-45.68,45.36; CuO 16.84-20.22,18.81; ZnO 16.78-18.57, Stefano Merlino and Paolo Orlandi (1977)Franzinite, a new min- 17.90;CdO l3 58-14.93,14.08; CaO 0.41-l.ll' 0.80; PbO 0.14- eral phase from Pitigliano,ltaly. Neues Jahrb. Mineral. Mon- 1.42,0.63: MnO 0.'79-1.27,1.07; sum 97 8l-99 54' 98.65 percent, atsh., 163-167. corresponding to (Cu,Zn,Cd).(AsOa), with Cu:Zn:Cd : 1.19: Microchemical analysis gave SiO, 32.44, Al2Os 25.21, Fe"O" Lll:0.55. The mineral is readily dissolvedby concentratedacids 0.04,MgO 0.14,CaO 12.08,Na,O 11.50,K,O 4.24,SOa 10.65, CO, X-ray study showsthe mineral to be monoclinic,space group 12' 154, Cl 036,H,O 1.88,sum 100.08- (O:Cl,) 0.08 : 100.00 Im. or 12/m, a ll.65, b 12.68,c 6.87(all + 0.01A)' B 98 95 + 0.05'' percent. "SiO, and AlrO, were determined by X-ray fluorescence, Z = 6, G calc 4.95 The strongest X-ray lines (46 given) are 6.41 (vvs) account being taken of the proper correction factor for S and Cl (MS) (020, l0T), 3.29 (vSXll2), 2.876 (vSX400), 2.79s and assuming that the weight percentages sum up to 100 0." (222, 321, 240), 1.644(MS).
    [Show full text]
  • General Index Lep – Lil
    GENERAL INDEX LEP – LIL SABINAITE Zaire Michigan Canada Shinkolobwe mine 8:(390), 9:33, 20:284 Isle Royale lode, Houghton County (various Québec SALESITE mines) (after clinochlore) 23:M68 Keweenaw Peninsula (several localities listed) Mt. St-Hilaire (tabular, micaceous to 6 mm) Chile (massive) 14:224 21:333–334p,d,c 9: 9: Chuquicamata 325h,d,c, 326p Laurium mine, Houghton County: after clino- SABUGALITE SAMARSKITE chlore; also primary acicular 23:M68; with Brazil Metamict 4:218 kinoite 14:224 Minas Gerais United States Mass mine, Ontonagon County (acicular) Córrego Frio mine, near Linópolis (spots in Colorado 14:224 scorzalite) 14:233 Pikes Peak region 16:228n “SAPPHIRE” Italy Texas See Corundum Sardinia Clear Creek pegmatite, Burnet County (small Arcu su Linnarbu, near Capoterra 18:183 masses) 8:90 SAPPHIRINE Spain SAMPLEITE Australia Pedro Alvaro, Salamanca region 9:(113) Northern Territory Chile SACROFANITE Harts Range, northeast of Alice Springs Chuquicamata 8:(390), 8:(517), 9:330d,c Italy 15:100–101c,p,q SAMSONITE Lazio Canada Sacrofano quarry (1 cm crystals) 23:434n Germany Northwest Territories Mt. Walker, Somerset Island (tabular crystals SAFFLORITE Niedersachsen St. Andreasberg 17:(9) to 3 cm) 22:386n Canada SANBORNITE Resolute (south of), Somerset Island 18:362n Northwest Territories Greenland Port Radium (safflorite-rammelsbergite) Canada Fiskenæsset (Qeqertarsuatsiaat) region 24:G12– 20:(207) Yukon 13p,h Germany Gunn claim, near MacMillan Pass 17:340n Madagascar Halle SANIDINE Androy: rounded, to 15 mm 24:50n; to 4 cm Mansfeld Kupferschiefer 17:(10) Bulgaria 24:230 Obersachsen Kyustendil (twins) 22:459n SARABAUITE Schneeberg 17:(13) Canada Malaysia Odenwald British Columbia Mackenheim 8:305 Sarabau mine, Sarawak: 9:(113); announced Beaverdell (near) (euhedral to 5 cm, some 9:116h Rheinland-Pfalz Carlsbad twins) 23:428n Angelika mine, Nieder-Beerbach 17:(7) Québec SARCOPSIDE Mexico Mt.
    [Show full text]
  • Synthesis and Characterization of Gd2o2s:Pr3+ Nanophosphors
    Sains Malaysiana 47(8)(2018): 1861–1866 http://dx.doi.org/10.17576/jsm-2018-4708-26 3+ Synthesis and Characterization of Gd2O2S:Pr Nanophosphors using Gamma Irradiation Method 3+ (Sintesis dan Pencirian Nanofosfor Gd2O2S:Pr menggunakan Kaedah Gama Iradiasi) MUHAMMAD HASSYAKIRIN HASIM, IRMAN ABDUL RAHMAN*, SAPIZAH RAHIM, MUHAMMAD TAQIYUDDIN MAWARDI AYOB, LIYANA MOHD ALI NAPIA & SHAHIDAN RADIMAN ABSTRACT 3+ Praseodymium ion, Pr doped Gd2O2S nanophosphors were successfully synthesized via gamma irradiation route along with the heat treatment. The effect of the gamma irradiation (0-150 kGy) on the structural, morphology and 3+ photoluminescence properties of Gd2O2S:Pr were characterized via X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and photoluminescence spectroscopy (PL). The thermal properties of precursor sample were tested by the thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The chemical bonding of the precursor samples were analyzed by Fourier transform infrared spectroscopy (FT-IR). The XRD result confirmed the 3+ formation of hexagonal phase of Gd2O2S:Pr without the presence of any impurities. The FESEM inspection showed the non-symmetrical shape of particles transformed into grain-like shape. The optimum photoluminescence (PL) emission 3+ 3+ intensities of Gd2-xO2S:xPr occur at 50 kGy dose of gamma irradiation and 2 mol% concentration dopant of Pr ions. 3 3 The spectra under 325 nm UV excitation shows a strong green emission at 515 nm, which match the P0 → H4 transition 3+ 3+ of Pr ions. The Gd2O2S:Pr nanophosphors possessed many useful approaches in various applications mainly as radiation detection and biomedical diagnostic. Keywords: Gadolinium oxysulfide; gamma irradiation; praseodymium doped ABSTRAK 3+ Nanofosfor Gd2O2S didop ion praseodimium, Pr berjaya disintesis melalui kaedah penyinaran gama bersama dengan rawatan haba.
    [Show full text]