International Technology Roadmap for Semiconductors
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
China's Progress in Semiconductor Manufacturing Equipment
MARCH 2021 China’s Progress in Semiconductor Manufacturing Equipment Accelerants and Policy Implications CSET Policy Brief AUTHORS Will Hunt Saif M. Khan Dahlia Peterson Executive Summary China has a chip problem. It depends entirely on the United States and U.S. allies for access to advanced commercial semiconductors, which underpin all modern technologies, from smartphones to fighter jets to artificial intelligence. China’s current chip dependence allows the United States and its allies to control the export of advanced chips to Chinese state and private actors whose activities threaten human rights and international security. Chip dependence is also expensive: China currently depends on imports for most of the chips it consumes. China has therefore prioritized indigenizing advanced semiconductor manufacturing equipment (SME), which chip factories require to make leading-edge chips. But indigenizing advanced SME will be hard since Chinese firms have serious weaknesses in almost all SME sub-sectors, especially photolithography, metrology, and inspection. Meanwhile, the top global SME firms—based in the United States, Japan, and the Netherlands—enjoy wide moats of intellectual property and world- class teams of engineers, making it exceptionally difficult for newcomers to the SME industry to catch up to the leading edge. But for a country with China’s resources and political will, catching up in SME is not impossible. Whether China manages to close this gap will depend on its access to five technological accelerants: 1. Equipment components. Building advanced SME often requires access to a range of complex components, which SME firms often buy from third party suppliers and then assemble into finished SME. -
Technology Roadmap for 22Nm CMOS and Beyond
Technology Roadmap for 22nm CMOS and beyond June 1, 2009 IEDST 2009@IIT-Bombay Hiroshi Iwai Tokyo Institute of Technology 1 Outline 1. Scaling 2. ITRS Roadmap 3. Voltage Scaling/ Low Power and Leakage 4. SRAM Cell Scaling 5.Roadmap for further future as a personal view 2 1. Scaling 3 Scaling Method: by R. Dennard in 1974 1 Wdep: Space Charge Region (or Depletion Region) Width 1 1 SDWdep has to be suppressed 1 Otherwise, large leakage Wdep between S and D I Leakage current Potential in space charge region is high, and thus, electrons in source are 0 attracted to the space charge region. 0 V 1 K=0.7 X , Y, Z :K, V :K, Na : 1/K for By the scaling, Wdep is suppressed in proportion, example and thus, leakage can be suppressed. K Good scaled I-V characteristics K K Wdep V/Na K Wdep I I : K : K 0 0K V 4 Downscaling merit: Beautiful! Geometry & L , W g g K Scaling K : K=0.7 for example Supply voltage Tox, Vdd Id = vsatWgCo (Vg‐Vth) Co: gate C per unit area Drive current I d K –1 ‐1 ‐1 in saturation Wg (tox )(Vg‐Vth)= Wgtox (Vg‐Vth)= KK K=K Id per unit Wg Id/µm 1 Id per unit Wg = Id / Wg= 1 Gate capacitance Cg K Cg = εoεoxLgWg/tox KK/K = K Switching speed τ K τ= CgVdd/Id KK/K= K Clock frequency f 1/K f = 1/τ = 1/K Chip area Achip α α: Scaling factor In the past, α>1 for most cases Integration (# of Tr) N α/K2 N α/K2 = 1/K2 , when α=1 Power per chip P α fNCV2/2 K‐1(αK‐2)K (K1 )2= α = 1, when α=1 5 k= 0.7 and α =1 k= 0.72 =0.5 and α =1 Single MOFET Vdd 0.7 Vdd 0.5 Lg 0.7 Lg 0.5 Id 0.7 Id 0.5 Cg 0.7 Cg 0.5 P (Power)/Clock P (Power)/Clock 0.73 = 0.34 0.53 = 0.125 τ (Switching time) 0.7 τ (Switching time) 0.5 Chip N (# of Tr) 1/0.72 = 2 N (# of Tr) 1/0.52 = 4 f (Clock) 1/0.7 = 1.4 f (Clock) 1/0.5 = 2 P (Power) 1 P (Power) 1 6 - The concerns for limits of down-scaling have been announced for every generation. -
Moore's Law: the Future of Si Microelectronics
Moore’s law: the future of Si microelectronics Soon after Bardeen, Brattain, and Shockley invented a solid-state device in 19471 to replace electron vacuum tubes, the microelectronics industry and a revolution started. Since its birth, the industry has experienced four decades of unprecedented explosive growth driven by two factors: Noyce and Kilby inventing the planar integrated circuit2,3 and the advantageous characteristics that result from scaling (shrinking) solid-state devices. Scott E. Thompson and Srivatsan Parthasarathy SWAMP Center, Department of Electrical and Computer Engineering, University of Florida, Gainsville, FL 32611-6130 USA E-mail:[email protected], [email protected] Scaling solid-state devices has the peculiar property of improving approaches under investigation are: (1) nonclassical CMOS, which cost, performance, and power, which has historically given any consists of new channel materials and/or multigate fully depleted company with the latest technology a large competitive device structures; and (2) alternatives to CMOS, such as spintronics, advantage in the market. As a result, the microelectronics single electron devices, and molecular computing8,9. While some of industry has driven transistor feature size scaling from 10 µm to these non-Si research areas are important and will be successful in ~30 nm4-6 during the past 40 years. During most of this time, new applications and markets10, it seems unlikely any of the non-Si scaling simply consisted of reducing the feature size. However, options can replace the Si transistor for the $300 billion during certain periods, there were major changes as with the microelectronics industry in the foreseeable future (perhaps as long industry move from Si bipolar to p-channel metal-oxide- as 30 years). -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
Estimation of Power Dissipation of CMOS and Finfet Based 6T SRAM Memory M
et International Journal on Emerging Technologies (Special Issue on ICRIET-2016) 7(2): 347-353(2016) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Estimation of Power Dissipation of CMOS and finFET based 6T SRAM Memory M. R. Govind * and Chetan Alatagi** *Asst Prof, Department of Electronics and Communication Engineering, VSMIT, Nipani, Karanataka, India ** Asst Prof, Department of Electronics and Communication Engineering, VSMIT, Nipani, Karanataka, India (Corresponding author : M. R. Govind) (Received 28 September, 2016 Accepted 29 October, 2016) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: This paper provides the estimation of power dissipation of CMOS and finFET based 6T SRAM Memory. CMOS expertise feature size and threshold voltage have been scaling down for decades for achieving high density and high performance. The continuing reduce in the feature size and the corresponding increases in chip density and operating frequency have made power consumption a major concern in VLSI design. Extreme power dissipation in integrated circuits discourages their use in moveable systems. Low threshold voltage also results in enlarged sub-threshold leakage current because transistors cannot be turned off completely. For these reasons, leakage power dissipation , has become a major part of total power consumption for current and future silicon technologies. FinFET evolving to be a promising technology in this regard .In this the designing, modeling and optimizing the 6-T SRAM cell device is done. Keywords: CMOS, FinFET, Static RAM, Read/Write, Sense Amplifier nanometer process technologies have advanced, Chip I. INTRODUCTION density and operating frequency have increased, that It is found that FinFET-based 6T SRAM cells designed makes power burning up in battery operated portable with built in feedback realize significant improvements devices a major concern. -
Optimization of Monte Carlo Neutron Transport Simulations with Emerging Architectures Yunsong Wang
Optimization of Monte Carlo Neutron Transport Simulations with Emerging Architectures Yunsong Wang To cite this version: Yunsong Wang. Optimization of Monte Carlo Neutron Transport Simulations with Emerging Archi- tectures. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris Saclay (COmUE), 2017. English. NNT : 2017SACLX090. tel-01687913 HAL Id: tel-01687913 https://pastel.archives-ouvertes.fr/tel-01687913 Submitted on 18 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX090 THESE` DE DOCTORAT DE L’UNIVERSITE´ PARIS-SACLAY PREPAR´ E´ A` L’ECOLE´ POLYTECHNIQUE ECOLE´ DOCTORALE No 573 INTERFACES : APPROCHES INTERDISCIPLINAIRES / FONDEMENTS, APPLICATIONS ET INNOVATION Sp´ecialit´ede doctorat: Informatique par M. Yunsong Wang Optimization of Monte Carlo Neutron Transport Simulations by Using Emerging Architectures Th`ese pr´esent´ee et soutenue `a Gif-sur-Yvette, le 14 d´ecembre 2017 : Composition de jury : M. Marc Verderi Directeur de Recherche, CNRS/IN2P3/LLR Pr´esident du jury M. Andrew Siegel Expert Senior, Argonne National Laboratory Rapporteur M. Raymond Namyst Professeur, Universit´ede Bordeaux/LABRI Rapporteur M. David Chamont Charg´ede Recherche, CNRS/IN2P3/LAL Examinateur M. David Riz Ing´enieur,CEA/DAM Examinateur M. -
Design and Analysis of a New Carbon Nanotube Full Adder Cell
Hindawi Publishing Corporation Journal of Nanomaterials Volume 2011, Article ID 906237, 6 pages doi:10.1155/2011/906237 Research Article Design and Analysis of a New Carbon Nanotube Full Adder Cell M. H. Ghadiry,1 Asrulnizam Abd Manaf,1 M. T. Ahmadi,2 Hatef Sadeghi,2 and M. Nadi Senejani3 1 School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 11800 Penang, Malaysia 2 Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia 3 Department of Computer Engineering, Islamic Azad University, Ashtian Branch, 39618-13347 Ashtian, Iran Correspondence should be addressed to M. H. Ghadiry, [email protected] Received 10 January 2011; Accepted 27 February 2011 Academic Editor: Theodorian Borca-Tasciuc Copyright © 2011 M. H. Ghadiry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A novel full adder circuit is presented. The main aim is to reduce power delay product (PDP) in the presented full adder cell. A new method is used in order to design a full-swing full adder cell with low number of transistors. The proposed full adder is implemented in MOSFET-like carbon nanotube technology and the layout is provided based on standard 32 nm technology from MOSIS. The simulation results using HSPICE show that there are substantial improvements in both power and performance of the proposed circuit compared to the latest designs. In addition, the proposed circuit has been implemented in conventional 32 nm process to compare the benefits of using MOSFET-like carbon nanotubes in arithmetic circuits over conventional CMOS technology. -
Challenges and Innovations in Nano‐CMOS Transistor Scaling
Challenges and Innovations in Nano‐CMOS Transistor Scaling Tahir Ghani Intel Fellow Logic Technology Development October, 2009 Nikkei Presentation 1 Outline • Traditional‐Scaling ‐ Traditional Scaling Limiters, Device Implications ‐ Intel’s Response • Post “Traditional‐Scaling” Innovations ‐ Mobility Booster: Uniaxial Strain - Poly Depletion Elimination: Metal Gate - Gate Leakage Reduction: HiK • Future Challenges and Options - Power Limitation - Potential New Transistor Structures and Materials 40+ Years of Moore’s Law at INTEL: From Few to Billions of Transistors 2X transistors every 2 years Transistor Count has Doubled Every Two Years 40+ Years of Moore’s Law at INTEL: From Few to Billions of Transistors 2X transistors every 2 years Traditional Scaling Era END OF TRADITIONAL SCALING ERA ~ 2003 Lasted ~40 YEARS Top “Traditional-Scaling” Enablers R. Dennard et.al. IEEE JSSC, 1974 • Gate Oxide Thickness Scaling - Key enabler for Lgate scaling • Junction Scaling - Another enabler for Lgate scaling - Improved abruptness (REXT reduction) • Vcc Scaling - Reduce XDEP (improve SCE) - However, did not follow const E field 1990’s: Golden Era of Scaling Vcc, Tox & Lg scaling & increasing Idsat Year 2000: INTEL 90nm CMOS Pathfinding End of “Traditional-Scaling” Era Gate oxide running Mobility degrades out of atoms with scaling 1.E+04 Jox limit VLSI Symp. 2000 300 Universal 1.E+03 NA= Mobility 3x1017 ] 1.E+02 SiO 250 2 2 /(V.s) [Lo et. al, EDL97] 2 1.E+01 18 200 1.3x10 [A/cm 130nm 1.E+00 1.8x1018 OX J 1.E-01 18 150 2.5x10 18 1.E-02 Nitrided SiO2 180nm 3.3x10 1.E-03 Mobility (cm 100 0.51.01.52.02.5 0 0.5 1 1.5 TOX Physical [nm] E EFF [MV/cm] • Gate Oxide Leakage • Universal Mobility Model direct tunneling limited • Ionized impurity scattering T. -
Page 1 Last Updated June 02, 2016 Title Dr. First Name Manoj Last Name Saxena Photograph Designation Associate Prof
Last Updated June 02, 2016 Title Dr. First Name Manoj Last Name Saxena Photograph Designation Associate Professor Address Department of Electronics Deen Dayal Upadhyaya College University of Delhi Karampura, New Delhi-110015, India Phone No Office 011 -25458173 Residence 011 -28531418 Mobile 09968393104 Email [email protected], [email protected] Web -Page Education al Qualification s Degree Institution Year Ph.D. Electronics University of Delhi 2006 M. Sc. Electronics University of Delhi 2000 (Gold Medalist ) B. Sc. (H) Electronics University of Delhi 1998 Career Profile • Lecturer, Department of Electronics, Deen Dayal Upadhyaya College, University of Delhi (August 2000 - December 2005) • Assistant Professor, Department of Electronics, Deen Dayal Upadhyaya College, University of Delhi (01/01/2006 – 26/08/2006) • Assistant Professor (Senior Lecturer), Department of Electronics, Deen Dayal Upadhyaya College, University of Delhi (27/08/2006 – 26/08/2009) • Assistant Professor (Reader), Department of Electronics, Deen Dayal Upadhyaya College, University of Delhi (27/08/2009 - Till Date) • Associate Professor, Department of Electronics, Deen Dayal Upadhyaya College, University of Delhi (27/08/2012 - Till Date) Administrative Assignments Year 20 16 – 2017 • Convener-Research Centre • Convener – Science Foundation • Convener – College Research Committee • Convener – Website Committee • Convener – Career Counseling and Placement Cell • Convener – India Today NIELSEN Survey Committee for Science, Commerce and Arts • Election Officer -
A Survey on Multi Gate MOSFETS
ISSN (Online) : 2319 - 8753 ISSN (Print) : 2347 - 6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference on Innovations in Engineering and Technology (ICIET’14) 21st & 22nd March Organized by K.L.N. College of Engineering, Madurai, Tamil Nadu, India A Survey on Multi Gate MOSFETS B.Buvaneswari Department Of CSE , K.L.N College of engineering ,Madurai, , India (small MOSFETs demonstrate higher outflow currents, ABSTRACT— This paper presents the various device and lower output resistance). A multigate device or structure of MOSFETs like SOI-MOSFET, Double gate multiple gate junction transistor (MuGFET) refers to a Mosfet, Trigate mosfet, Multigate mosfet ,Nanowire MOSFET (metal–oxide–semiconductor field-effect Mosfets,High-K Mosfets& their deserves. To grasp transistor) which includes quite one gate into a sole during a easy means, mathematical ideas of device device. The multiple gates could also be controlled by physics skipped. one gate.conductor, whereby the multiple gate surfaces act electrically as one gate, or by freelance gate INDEX TERMS-DG-MOSFET, GAA, MuG electrodes. A multigate device using freelance gate MOSFETS. electrodes is usually referred to as a Multiple Insulated Gate Field impact electronic transistor (MIGFET). Multigate transistors square measure one in every of I.INTRODUCTION quite an few ways being developed by CMOS semiconductor makers to form ever-smaller Over the past decades, the Metal oxide Semiconductor microprocessors and memory cells, conversationally (MOSFET) has repeatedly been scaled down in size[1]; spoken as extending Moore's Law.[1]Development classic MOSFET channel lengths were once many efforts into multigate transistors are reported by AMD, micrometers, however fashionable integrated circuits Hitachi, IBM, Infineon Technologies, Intel Corporation, square measure incorporating MOSFETs with channel TSMC, Free scale Semiconductor, University of lengths of tens of nanometers. -
Prospects for the Application of Nanotechnologies to the Computer System Architecture
JOURNAL OFNANO- AND ELECTRONICPHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ Vol. 4 No 1, 01003(6pp) (2012) Том 4 № 1, 01003(6cc) (2012) Prospects for the Application of Nanotechnologies to the Computer System Architecture J. Partyka1, M. Mazur2,* 1 Faculty of Electrical Engineering and Information Science, Lublin University of Technology 38а, ul. Nadbystrzycka 2 Wyższa Szkoła Ekonomii i Innowacji w Lublinie ul. Mełgiewska 7-9 (Received 26 September 2011; published online 14 March 2012) Computer system architecture essentially influences the comfort of our everyday living. Developmental transition from electromechanical relays to vacuum tubes, from transistors to integrated circuits has sig- nificantly changed technological standards for the architecture of computer systems. Contemporary infor- mation technologies offer huge potential concerning miniaturization of electronic circuits. Presently, a modern integrated circuit includes over a billion of transistors, each of them smaller than 100 nm . Step- ping beyond the symbolic 100 nm limit means that with the onset of the 21 century we have entered a new scientific area that is an era of nanotechnologies. Along with the reduction of transistor dimensions their operation speed and efficiency grow. However, the hitherto observed developmental path of classical elec- tronics with its focus on the miniaturization of transistors and memory cells seems arriving at the limits of technological possibilities because of technical problems as well as physical limitations related to the ap- pearance of -
Design Strategies for Ultralow Power 10Nm Finfets
Rochester Institute of Technology RIT Scholar Works Theses 5-2017 Design Strategies for Ultralow Power 10nm FinFETs Abhijeet M. Walke [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Walke, Abhijeet M., "Design Strategies for Ultralow Power 10nm FinFETs" (2017). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Design Strategies for Ultralow Power 10nm FinFETs by ABHIJEET M. WALKE A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Department of Electrical & Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology Rochester, NY May 2017 i Design Strategies for Ultralow Power 10nm FinFETs ABHIJEET M. WALKE A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Approved by: Dr. Santosh Kurinec Date Professor, (Thesis Advisor) Dr. Karl Hirschman Date Professor, (Committee Member) Dr. Robert Pearson Date Professor, (Committee Member) Dr. Garrett Schlenvogt Date Silvaco, Inc, (External Committee Member) Dr. Sohail Dianat Date Professor, (Department Head) Department of Electrical and Microelectronic Engineering Rochester Institute of Technology Rochester, New York May, 2017 ii Acknowledgements Before getting to the core of this master thesis, I would like to take some time to thank all those people who made this project possible. Firstly, I would like to express my sincere gratitude to my advisor Prof.