China's Progress in Semiconductor Manufacturing Equipment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report 2004
Annual Report 2004 Annual Report 2004 Contents 4 About ASML 5 ASML Corporate Achievements 2004 7 Message to Our Shareholders 10 Report of the Supervisory Board 17 Corporate Governance 34 Information and Investor Relations 35 ASML Worldwide Contact Information 37 Form 20-F In this report the expression “ASML” is sometimes used for convenience in contexts where reference is made to ASML Holding N.V. and/or any of its subsidiaries in general. The expression is also used where no useful purpose is served by identifying the particular company or companies. “Safe Harbor” Statement under the U.S. Private Securities Litigation Reform Act of 1995: the matters discussed in this document may include forward-looking statements that are subject to risks and uncertainties including, but not limited to, economic conditions, product demand and semiconductor equipment industry capacity, worldwide demand and manufacturing capacity utilization for semiconductors (the principal product of our customer base), competitive products and pricing, manufacturing efficiencies, new product development, ability to enforce patents, the outcome of intellectual property litigation, availability of raw materials and critical manufacturing equipment, trade environment, and other risks indicated in ASML’s Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission. © 2005, ASML Holding N.V. All Rights Reserved About ASML ASML is the world’s leading provider of lithography advanced scanners, enabling the delivery of complete systems for the semiconductor industry, manufacturing and integrated mask design to wafer imaging solutions. complex machines critical to the production of integrated circuits or chips. ASML Optics provides precision optical modules for the PAS 5500 and TWINSCAN lithography systems. -
The World's Largest Optical Networking and Communications Event
EXHIBITOR PROSPECTUS The world’s largest optical networking and communications event. of the OFC 2017 exhibit hall is SIGN UP NOW! EXHIBITION: 21-23 March 2017 LOS ANGELES CONVENTION CENTER CALIFORNIA, USA Sponsored by: OFCconference.org OFC 2017 EXHIBIT SPACE IS 96% JOIN 600+ EXHIBITORS AND SOLD OUT—SECURE YOURS TODAY. 13,000 BUYERS AT THE INDUSTRY’S LARGEST EXHIBITION. of exhibit attendees spent 99% of attendees visited the exhibits 32% 10+ hours on the show floor of all attendees have a role 72 countries represented in buying decisions. OFC attendees 13,000 are C-Level ATTENDEES of OFC 96% attendees come exhibitor satisfaction rate with from outside of 41.5 leads per exhibitor. the US OFC is the world’s largest from optical components and devices Exhibiting at OFC grows your A large and dynamic market. Capital and most prestigious to systems, test equipment, software business. expenditures among network event dedicated to and specialty fiber—OFC is where your operators will be nearly $180 billion optical networking and customers and prospects come to make With a solid and expanding base of in 2016, according to market research communications. their purchasing plans. 13,000 attendees from all sectors firm LightCounting. A strong growth of the market—from data center segment is in expansion of data Exhibit at OFC 2017 and be part OFC is Your BEST Opportunity to: end users and service providers and centers, with Google spending $10 of the ONE EVENT that defines carriers, to systems and component billion alone, and over $3 billion in • Connect with buyers the market and brings together vendors—OFC represents the transceiver sales for data centers • Meet decision makers the thought leaders and solution entire supply chain and provides across all customers, according to • Increase sales providers that drive the industry. -
Patent Dispute Settlement; Financial Results Forecast Revision
September 29, 2004 Patent Dispute Settlement; Financial Results Forecast Revision On September 28, 2004 (Japan time), Nikon Corporation (Nikon), ASML Holding N.V. (ASML) and Carl Zeiss SMT AG (SMT) signed a Memorandum of Understanding which provides for a comprehensive settlement of legal proceedings and cross- license of patents between Nikon, ASML and SMT. Accordingly, we have revised the forecast of Financial Results for the Year ending March2005 (April 1, 2004 – March 31, 2005) that was issued on May 10, 2004 (refer to item 4 in this document for a detailed breakdown). 1. Details regarding disputes (prior to settlement) The major events in the disputes between Nikon (and subsidiaries) and ASML (and subsidiaries/affiliates) are as outlined below. On December 21, 2001, Nikon filed a complaint against ASML with the U.S. International Trade Commission (ITC) requesting an exclusion order to prevent any further importation by ASML of infringing stepper and scanner equipment (used in manufacture of semiconductor devices) in the U.S. Since the ITC denied Nikon’s request, Nikon appealed to the Court of Appeals for the Federal Circuit (CAFC) on May 12, 2003. Nikon also pursued patent infringement cases against ASML with the Federal District Court for the Northern District of California (NDCA), with the Tokyo District Court and in Korea as well. As a result of several settlement discussions, Nikon basically agreed to settle the case since it concluded that its goal has been accomplished in principle. The NDCA allowed SMT to join in the case, and therefore, they are party to the Memorandum of Understanding. -
Technology Roadmap for 22Nm CMOS and Beyond
Technology Roadmap for 22nm CMOS and beyond June 1, 2009 IEDST 2009@IIT-Bombay Hiroshi Iwai Tokyo Institute of Technology 1 Outline 1. Scaling 2. ITRS Roadmap 3. Voltage Scaling/ Low Power and Leakage 4. SRAM Cell Scaling 5.Roadmap for further future as a personal view 2 1. Scaling 3 Scaling Method: by R. Dennard in 1974 1 Wdep: Space Charge Region (or Depletion Region) Width 1 1 SDWdep has to be suppressed 1 Otherwise, large leakage Wdep between S and D I Leakage current Potential in space charge region is high, and thus, electrons in source are 0 attracted to the space charge region. 0 V 1 K=0.7 X , Y, Z :K, V :K, Na : 1/K for By the scaling, Wdep is suppressed in proportion, example and thus, leakage can be suppressed. K Good scaled I-V characteristics K K Wdep V/Na K Wdep I I : K : K 0 0K V 4 Downscaling merit: Beautiful! Geometry & L , W g g K Scaling K : K=0.7 for example Supply voltage Tox, Vdd Id = vsatWgCo (Vg‐Vth) Co: gate C per unit area Drive current I d K –1 ‐1 ‐1 in saturation Wg (tox )(Vg‐Vth)= Wgtox (Vg‐Vth)= KK K=K Id per unit Wg Id/µm 1 Id per unit Wg = Id / Wg= 1 Gate capacitance Cg K Cg = εoεoxLgWg/tox KK/K = K Switching speed τ K τ= CgVdd/Id KK/K= K Clock frequency f 1/K f = 1/τ = 1/K Chip area Achip α α: Scaling factor In the past, α>1 for most cases Integration (# of Tr) N α/K2 N α/K2 = 1/K2 , when α=1 Power per chip P α fNCV2/2 K‐1(αK‐2)K (K1 )2= α = 1, when α=1 5 k= 0.7 and α =1 k= 0.72 =0.5 and α =1 Single MOFET Vdd 0.7 Vdd 0.5 Lg 0.7 Lg 0.5 Id 0.7 Id 0.5 Cg 0.7 Cg 0.5 P (Power)/Clock P (Power)/Clock 0.73 = 0.34 0.53 = 0.125 τ (Switching time) 0.7 τ (Switching time) 0.5 Chip N (# of Tr) 1/0.72 = 2 N (# of Tr) 1/0.52 = 4 f (Clock) 1/0.7 = 1.4 f (Clock) 1/0.5 = 2 P (Power) 1 P (Power) 1 6 - The concerns for limits of down-scaling have been announced for every generation. -
An Outlook on EUV Projection and Nanoimprint
Adv. Opt. Techn. 2017; 6(3-4): 159–162 Editorial Jan van Schoot* and Helmut Schift Next-generation lithography – an outlook on EUV projection and nanoimprint DOI 10.1515/aot-2017-0040 But different from expected, the current solutions are still using most of the ingredients of traditional optical Lithography is dead – long live lithography! For years, lithography. In 1986, Hiroo Kinoshita proposed the use of optical lithography has been the workhorse for high- extreme UV (EUV) as the consequent continuation of pho- volume manufacturing (HVM) of sophisticated semicon- tolithography with smaller wavelengths, which means ductor chips used for data processing and storage. The 13.5 nm instead of 193 nm from deep ultraviolet (DUV) [1]. need for smaller and smaller structures has called for new However, instead of transmission lenses, mirrors have to patterning solutions, some of them involving the exten- be used; also, the mask has to be operated in reflective sion of existing optical principles, parallel patterning, and mode. EUV projection lithography (EUVL) will enable step and repeat by covering the surface of silicon wafers to go back to single mask exposure instead of double or with consecutive exposure of identical patterns, projec- quadruple exposure, at least for the coming node N7 and tion of demagnified patterns from a mask onto the wafer later N5 (see also Figure 1) [2]. instead of proximity printing. Others are employing differ- The leading semiconductor manufacturers are ent physical concepts from using massive parallel electron making now the transition toward putting EUV lithogra- beams or even mechanical imprinting of resists, which phy into production [3]. -
American Semiconductor Equipment Technologies
t, f • American Semiconductor Equipment Technologies American Semiconductor Equipment Technologies 6110 Variel Avenue Woodland Hills, California 91367 Telephone: (818) 884-5050 (Thousands of Dollars) Balance Sheet (Fiscal year ending 3/31/86) Working Capital $4,375 Long-Term Debt $2,000 Net Worth $3,446 Current Liability to Net Worth 183.75% Current Liability to Inventory 131.89% Total Liability to Net Worth 241.79% Fixed Assets to Net Worth 241.79% Total Employees 150 Operating performance data are not available Source: Dun & Bradstreet SEMS Industry Econometrics © 1987 Dataquest Incorporated May American Semiconductor Equipment Technologies (Material in this section has been compiled from Dun & Bradstreet financials, Dataquest's SEMS data base, and company literature supplied by ASET. For more information on this start-up company, Dataguest clients are invited to use their inquiry privileges.) > ir THE COMPAMY Background American Semiconductor Equipment Technologies (ASET) was formed in February 1986 to pursue both ongoing and newly developing markets for lithographic systems. The Company was organized by Greg Reyes and Ralph Miller with funding of $3.9 million from four venture capital firms. ASET's product line includes i-line wafer steppers, g-line wafer steppers, substrate steppers, standalone image repeaters and pattern generators, and combination systems. 0perat,^7"g aT«d Strategy ASET Corporation currently serves the semiconductor equipment markets in the image patterning area. The Company also looks to develop business in alternate industries, including laser cards, flat panel displays, and hybrid substrates. ASET maintains research efforts directed toward expanding micro- lithographic technology. ASET acquired the assets of TRE Corporation's wafer stepper and pattern generation manufacturing unit early in 1986. -
Moore's Law: the Future of Si Microelectronics
Moore’s law: the future of Si microelectronics Soon after Bardeen, Brattain, and Shockley invented a solid-state device in 19471 to replace electron vacuum tubes, the microelectronics industry and a revolution started. Since its birth, the industry has experienced four decades of unprecedented explosive growth driven by two factors: Noyce and Kilby inventing the planar integrated circuit2,3 and the advantageous characteristics that result from scaling (shrinking) solid-state devices. Scott E. Thompson and Srivatsan Parthasarathy SWAMP Center, Department of Electrical and Computer Engineering, University of Florida, Gainsville, FL 32611-6130 USA E-mail:[email protected], [email protected] Scaling solid-state devices has the peculiar property of improving approaches under investigation are: (1) nonclassical CMOS, which cost, performance, and power, which has historically given any consists of new channel materials and/or multigate fully depleted company with the latest technology a large competitive device structures; and (2) alternatives to CMOS, such as spintronics, advantage in the market. As a result, the microelectronics single electron devices, and molecular computing8,9. While some of industry has driven transistor feature size scaling from 10 µm to these non-Si research areas are important and will be successful in ~30 nm4-6 during the past 40 years. During most of this time, new applications and markets10, it seems unlikely any of the non-Si scaling simply consisted of reducing the feature size. However, options can replace the Si transistor for the $300 billion during certain periods, there were major changes as with the microelectronics industry in the foreseeable future (perhaps as long industry move from Si bipolar to p-channel metal-oxide- as 30 years). -
Powering Biomedical Devices.Pdf
CHAPTER 11 Introduction The increase of world population is a challenge itself for world resources. The sustainability of food supplies, energy resources, and the environment are being questioned by analysts, while climate change just adds more pressure to the equation. The life expectancy of the world as a whole is rising while the fertility rate is declining. This will create a challenge in health care for the ageing population (Gavrilov and Heuveline, 2003). The United States alone will have 20% of the population over the age of 65 by 2050. In contrast, Europe will see rates close to 30% while Japan will arise to almost 40%, as summarized in Table 1.1. It is anticipated that in the near future, specialized health-care services will be in higher demand due to this increase. This demand will be characterized by medical resources not only to attend to this segment of the population, but also to keep them active as well. Therefore, the monitoring of physiological responses as well as specialized drug or other therapy delivery applications will be needed for portable, wearable, or implantable biomedical autonomous devices. In addition, wireless communication promises new medical applications such as the use of wireless body sensor networks for health monitoring (Jovanov et al., 2005; Hao and Foster, 2008; Varshney, 2007). These biomedical devices, however, come with their own issues, mainly power source challenges. Batteries are commonly used to energize most of these applications, but they have a finite lifetime. As biomedical Table 1.1 Percentage of Population Over 65 Years Olda Region 1950 2000 2050 World 5.2 6.8 16.2 USA 8.3 12.4 21.6 Europe 8.2 14.8 27.4 Japan 4.9 17.2 37.8 aPopulation Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2008 Revision, http://esa.un.org/unpp. -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
New Approaches in Optical Lithography Technology for Subwavelength Resolution
Rochester Institute of Technology RIT Scholar Works Theses 5-2005 New approaches in optical lithography technology for subwavelength resolution Hoyoung Kang Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Kang, Hoyoung, "New approaches in optical lithography technology for subwavelength resolution" (2005). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. NEW APPROACHES IN OPTICAL LITHOGRAPHY TECHNOLOGY FOR SUBW A VELENGTH RESOLUTION by Hoyoung Kang M.S. Hanyang University (1987) A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D. in the Chester F. Carson Center for Imaging Science of the College of Science Rochester Institute of Technology May 2005 Author HoyoungKang Hoyoung Kang . Accepted by CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL Ph. D. DEGREE DISSERTATION The Ph.D. Degree Dissertation of Hoyoung Kang has been examined and approved by the dissertation committee as satisfactory for the dissertation requirement for the Ph.D. degree in Imaging Science Bruce W. Smith Dr. Bruce W. Smith, Thesis Advisor Zoran Ninkov Dr. Zoran Ninkov M. Kotlarchyk Dr. Michael Kotlarchyk Paul Michaloski Paul Michaloski, Date Thesis/Dissertation Author Permission Statement Title of thesis or dissertation: ________________---;- ____ N eu.l I'>.pproecb 1'0 OptIc 0..0 (!'t-b03k=A.phJ Te.cb'Y>C)lo~ y Nrumeofauthor: ____H_D~y~o_U_~ __ ~~ __~~~~~~~~ ___________~ ____ Degree: ph. -
Optimization of Monte Carlo Neutron Transport Simulations with Emerging Architectures Yunsong Wang
Optimization of Monte Carlo Neutron Transport Simulations with Emerging Architectures Yunsong Wang To cite this version: Yunsong Wang. Optimization of Monte Carlo Neutron Transport Simulations with Emerging Archi- tectures. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris Saclay (COmUE), 2017. English. NNT : 2017SACLX090. tel-01687913 HAL Id: tel-01687913 https://pastel.archives-ouvertes.fr/tel-01687913 Submitted on 18 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX090 THESE` DE DOCTORAT DE L’UNIVERSITE´ PARIS-SACLAY PREPAR´ E´ A` L’ECOLE´ POLYTECHNIQUE ECOLE´ DOCTORALE No 573 INTERFACES : APPROCHES INTERDISCIPLINAIRES / FONDEMENTS, APPLICATIONS ET INNOVATION Sp´ecialit´ede doctorat: Informatique par M. Yunsong Wang Optimization of Monte Carlo Neutron Transport Simulations by Using Emerging Architectures Th`ese pr´esent´ee et soutenue `a Gif-sur-Yvette, le 14 d´ecembre 2017 : Composition de jury : M. Marc Verderi Directeur de Recherche, CNRS/IN2P3/LLR Pr´esident du jury M. Andrew Siegel Expert Senior, Argonne National Laboratory Rapporteur M. Raymond Namyst Professeur, Universit´ede Bordeaux/LABRI Rapporteur M. David Chamont Charg´ede Recherche, CNRS/IN2P3/LAL Examinateur M. David Riz Ing´enieur,CEA/DAM Examinateur M. -
Lithography Reading: Jaeger, Chap
EE143 – Fall 2016 Microfabrication Technologies Lecture 3: Lithography Reading: Jaeger, Chap. 2 Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) 1-1 The lithographic process 1-2 1 Photolithographic Process (a) Substrate covered with silicon dioxide barrier layer (b) Positive photoresist applied to wafer surface (c) Mask in close proximity to surface (d) Substrate following resist exposure and development (e) Substrate after etching of oxide layer (f) Oxide barrier on surface after resist removal (g) View of substrate with silicon dioxide pattern on the surface 1-3 Photomasks - CAD Layout • Composite drawing of the masks for a simple integrated circuit using a four-mask process • Drawn with computer layout system • Complex state-of-the- art CMOS processes may use 25 masks or more 1-4 2 Photo Masks • Example of 10X reticle for the metal mask - this particular mask is ten times final size (10 µm minimum feature size - huge!) • Used in step-and-repeat operation • One mask for each lithography level in process 1-5 Lithographic Process 1-6 3 Printing Techniques Contact Proximity Projection • Contact printing printing printing printing damages the mask and the wafer and limits the number of times the mask can be used • Proximity printing eliminates damage • Projection printing can operate in reduction mode with direct step- on-wafer 1-7 Contact Printing hv Photo photoresist Mask Plate wafer Resolution R < 0.5µm mask plate is easily damaged or accumulates defects 1-8 4 Proximity Printing Light g ~ 20µm Photoresist Wafer Exposed Resolution � ∝ & �� �: wavelength of the light source �: g ~ 1µm for visible photons, much smaller for X-ray lithography 1-9 Projection Printing hv De-Magnification: nX 10X stepper 4X stepper lens 1X stepper focal plane P.R .