Technology Roadmap for 22Nm CMOS and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Technology Roadmap for 22Nm CMOS and Beyond Technology Roadmap for 22nm CMOS and beyond June 1, 2009 IEDST 2009@IIT-Bombay Hiroshi Iwai Tokyo Institute of Technology 1 Outline 1. Scaling 2. ITRS Roadmap 3. Voltage Scaling/ Low Power and Leakage 4. SRAM Cell Scaling 5.Roadmap for further future as a personal view 2 1. Scaling 3 Scaling Method: by R. Dennard in 1974 1 Wdep: Space Charge Region (or Depletion Region) Width 1 1 SDWdep has to be suppressed 1 Otherwise, large leakage Wdep between S and D I Leakage current Potential in space charge region is high, and thus, electrons in source are 0 attracted to the space charge region. 0 V 1 K=0.7 X , Y, Z :K, V :K, Na : 1/K for By the scaling, Wdep is suppressed in proportion, example and thus, leakage can be suppressed. K Good scaled I-V characteristics K K Wdep V/Na K Wdep I I : K : K 0 0K V 4 Downscaling merit: Beautiful! Geometry & L , W g g K Scaling K : K=0.7 for example Supply voltage Tox, Vdd Id = vsatWgCo (Vg‐Vth) Co: gate C per unit area Drive current I d K –1 ‐1 ‐1 in saturation Wg (tox )(Vg‐Vth)= Wgtox (Vg‐Vth)= KK K=K Id per unit Wg Id/µm 1 Id per unit Wg = Id / Wg= 1 Gate capacitance Cg K Cg = εoεoxLgWg/tox KK/K = K Switching speed τ K τ= CgVdd/Id KK/K= K Clock frequency f 1/K f = 1/τ = 1/K Chip area Achip α α: Scaling factor In the past, α>1 for most cases Integration (# of Tr) N α/K2 N α/K2 = 1/K2 , when α=1 Power per chip P α fNCV2/2 K‐1(αK‐2)K (K1 )2= α = 1, when α=1 5 k= 0.7 and α =1 k= 0.72 =0.5 and α =1 Single MOFET Vdd 0.7 Vdd 0.5 Lg 0.7 Lg 0.5 Id 0.7 Id 0.5 Cg 0.7 Cg 0.5 P (Power)/Clock P (Power)/Clock 0.73 = 0.34 0.53 = 0.125 τ (Switching time) 0.7 τ (Switching time) 0.5 Chip N (# of Tr) 1/0.72 = 2 N (# of Tr) 1/0.52 = 4 f (Clock) 1/0.7 = 1.4 f (Clock) 1/0.5 = 2 P (Power) 1 P (Power) 1 6 - The concerns for limits of down-scaling have been announced for every generation. - However, down-scaling of CMOS is still the ‘royal road’* for high performance and low power. - Effort for the down-scaling has to be continued by all means. *Euclid of Alexandria (325BC?-265BC?) ‘There is no royal road to Geometry’ Mencius (Meng-zi), China (372BC?-289BC?) (Rule of right vs. Rule of military) 7 Actual past downscaling trend until year 2000 10 2 Past 30 years scaling Minimum logic Vdd (V) 10 3 10 1 Merit: N, f increase M 2 ) z) PU (mm H L ize (M X g (µm ip s cy 10 0 j (µm ) ch uen Demerit: P increase ) 10 1 req Id/µm k f (mA/µm) loc ) c S (W s -1 IP r or 10 t M ist ox (µm owe ns ) -1 p ra V scaling insufficient 10 f t dd -2 r o 10 be m Nu 10 -3 10 -3 Additional significant 1970 1980 1990 2000 1970 1980 1990 2000 increase in Source. Iwai and S. Ohmi, Microelectronics Reliability 42 (2002), pp.1251-1268 I , f, P Change in 30 years d Ideal Real Ideal Real Ideal Real scaling Change scaling Change scaling Change ‐2 Lg K 10 –2 ‐1 –2 ‐2 Id K (10 ) 10 f 1/K(10 2) 103 tox K(10 ) 10 –2 10‐1 I /µm 1 101 Vdd K(10 ) d P α(10 1) 105 2 5 4 2 Achip α 101 N α/K (10 ) 10 = fαNCV Vd scaling insufficient, α increased N, Id, f, P increased significantly 8 - Now, power and/or heat generation are the limiting factors of the down-scaling - Supply voltage reduction is becoming difficult, because Vth cannot be decreased any more, as described later. - Growth rate in clock frequency and chip area becomes smaller. 9 2. ITRS Roadmap (for 22 nm CMOS logic) 10 What is a roadmap? What is ITRS? Roadmap: Prediction of future technologies ITRS: International Technology Roadmap for Semiconductors made by SIA (Semiconductor Industry Association with Collaboration with Japan, Europe, Korea and Taiwan) 1000 100 Gateゲート長 Gateゲート絶縁膜厚 length oxide 1992 100 10 1994 thickness 2001 1992 40nm 2003 1997 1994 1999 1999 EOTEOT [nm] [nm] 1.5nm 2001 10 1 1997 2003 2005 2005 Physical Gate Length [nm] [nm] Length Length Gate Gate Physical Physical 1 0.1 1995 2005 2015 1995 2005 2015 11 1992 -1997:NTRS (National Technology Roadmap) 1998 - : ITRS (International Technology Roadmap) 2008 ITRS update 2007 ITRS 2006 ITRS update ITRS Roadmap does change every year! 2007 Edition 2003 Edition 2006 Update 2002 Update 2005 Edition 2001 Edition 2004 Update 2000 Update http://www.itrs.net/reports.html 13 HP, LOP, LSTP for Logic CMOS 100 e) 10 1 Operation Frequency (a.u.) Subthreshold Leakage (A/µm) Source: 2007 ITRS Winter Public Conf. 14 What does ‘45 nm’ mean in 45 nm CMOS Logic? ‘XX nm CMOS Technology ITRS (Likely in 2008 Update) Commercial Logic CMOS products for High Performance Logic Physical Technology Starting Year Half Pitch st Gate Length name Year (1 Metal) 45 nm 2007 2007 68 nm 32 nm 2008 59 nm 29 nm 32 nm 2009?2009 52 nm 27 nm 2010 45 nm 24 nm ‘XX nm’ CMOS Logic Technology: - In general, there is no common corresponding parameter with ‘XX nm’ in ITRS table, which stands for ‘XX nm’ CMOS. 15 What does ‘45 nm’ mean in 45 nm CMOS Logic? 8µm Æ 6µm Æ 4µm Æ 3µm Æ 2µm Æ 1.2µm Æ 0.8µm Æ 0.5µm - Originally, ‘XX’ means lithography resolution. - Thus, ‘XX’ was the gate length, and half pitch of lines - ‘XX’ had shrunk 0.7 in 3 years in average (0.5 in 6 years) those days. Logic 1st Metal Half Pitch 16 What does ‘45 nm’ mean in 45 nm CMOS Logic? Æ 350nm Æ 250nm Æ 180nm Æ 130nm Æ 90nm Æ 65nm Æ 45nm -‘XX’ values were established by NTRS* and ITRS with the term of ‘Technology Node**’ and ‘Cycle***’ using typical ‘half pitch value’. - The gate length of logic CMOS became smaller with one or two generations from the half pitch, and ‘XX’ names ahead of generations have been used for logic CMOS. Resist Ashing Resist - Memory still keeps the half pitch as the value of ‘XX’ 17 For example, Typical Half Pitches at ITRS 2007 Resist Ashing Resist Source: 2008 ITRS Summer Public Conf. 18 Physical gate length in past ITRSmance was too logic aggressive. will shift by 3-5 yrs. The dissociation from commercial product prediction will be adjusted. Physical gate length of High-Perfor Correspond32nm to 22nm Logic CMOS 45nm X0.71 / 3 Year ITRS 2007 Print Lg 2008 Update Print Lg X0.71 / 3 Year 32nm 27nm 22nm 2008 Update Phys. Lg X0.71 / 3.8 Year 25nm 20nm 16nm ITRS 2007 Phys. Lg X0.71 / 3 Year 3 year shift 19 Summer Public Conf. Source: 2008 ITRS EOT and Xj shift backward, corresponding to Lg shift EOT: 0.55 nm Æ 0.88 nm, Xj: 8 nm Æ 11 nm @ 22nm CMOS Likely in 2008 Update Correspond to 22nm Source: 2008/ ITRS Summer Public Conf. Likely in 2008 Update Likely in 2008 Update 8 Likely in 2008 Update non-steady trend filled in for metal gate EOT for 2009/10 corrected based on latest conference presentations 20 What does ‘22 nm’ mean in 22 nm CMOS Logic? ‘XX nm CMOS Technology ITRS (Likely in 2008 Update) Commercial Logic CMOS products for High Performance Logic Physical Technology Starting Year Half Pitch st Gate Length name Year (1 Metal) 45 nm 2007 2007 68 nm 32 nm 2008 59 nm 29 nm 32 nm 2009?2009 52 nm 27 nm 2010 45 nm 24 nm 22 nm 2011?~ 2011 40 nm 22 nm 2012? 2012 36 nm 20 nm 16 nm 2013?~ 2013 32 nm 18 nm 2014? 2014 29 nm 16 nm Source: 2008 ITRS Summer Public Conf. From ITRS2008 Update, maybe XX nm stands for the physical Gate length 21 Clock frequency does not increase aggressively anymore. Even decreased! Advantage in SISC Era for ‘out of order’ Multi Core Advantage in RISC Clock ≠ Simple configuration Performance Source: Mitsuo Saito, Toshiba 22 ITRS2007 Continued? Core Clock Cell Broadband Engine Frequency Chip Freq uen cy 6GHz capability Source: 2007 ITRS for SRAM Winter Public Conf. Source: IBM, Toshiba, Sony ISSCC2008 and 08 23 Clock frequency Change in the past ITRS (Max on chip frequency or ‘Core clock’) 001 ITRS2 ITRS2003 ITRS2005 15%/Year 8%/Y ITRS ear 2007 22 nm: 6 GHz? Source: 2008 ITRS Summer Public Conf. 24 Structure and technology innovation (ITRS 2007) Source: 2008 ITRS Summer Public Conf. 25 Timing of CMOS innovations shifts backward. Bulk CMOS has longer life now! Correspond to 22nm Logic CMOS Bulk extends 4 years! Multi G delays 4 years! Source: 2008 ITRS Summer Public Conf. 26 Wafer size (ITRS 2007) Correspond to 22nm Source: ITRS 2007 ?? Maybe delay?? 27 ITRS2008 Low-k Roadmap Update Correspond to 22nm Logic ITRS 2007 Update 2008 ITRS 2007 Update 2007 Source: 2008 ITRS Summer Public Conf. k value increases by 0.1 ~ 0.3 28 Historical Transition of ITRS Low-k Roadmap ITRS2003 ITRS2005 ITRS2007,8 ITRS2001 ITRS1999 Source: 2008 ITRS Summer Public Conf.
Recommended publications
  • Resonance-Enhanced Waveguide-Coupled Silicon-Germanium Detector L
    Resonance-enhanced waveguide-coupled silicon-germanium detector L. Alloatti and R. J. Ram Citation: Applied Physics Letters 108, 071105 (2016); doi: 10.1063/1.4941995 View online: http://dx.doi.org/10.1063/1.4941995 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/7?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Waveguide-coupled detector in zero-change complementary metal–oxide–semiconductor Appl. Phys. Lett. 107, 041104 (2015); 10.1063/1.4927393 Efficient evanescent wave coupling conditions for waveguide-integrated thin-film Si/Ge photodetectors on silicon- on-insulator/germanium-on-insulator substrates J. Appl. Phys. 110, 083115 (2011); 10.1063/1.3642943 Metal-semiconductor-metal Ge photodetectors integrated in silicon waveguides Appl. Phys. Lett. 92, 151114 (2008); 10.1063/1.2909590 Guided-wave near-infrared detector in polycrystalline germanium on silicon Appl. Phys. Lett. 87, 203507 (2005); 10.1063/1.2131175 Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers Appl. Phys. Lett. 85, 3286 (2004); 10.1063/1.1805706 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. IP: 18.62.22.131 On: Mon, 07 Mar 2016 17:12:57 APPLIED PHYSICS LETTERS 108, 071105 (2016) Resonance-enhanced waveguide-coupled silicon-germanium detector L. Alloattia),b) and R. J. Ram Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 5 January 2016; accepted 3 February 2016; published online 16 February 2016) A photodiode with 0.55 6 0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process.
    [Show full text]
  • China's Progress in Semiconductor Manufacturing Equipment
    MARCH 2021 China’s Progress in Semiconductor Manufacturing Equipment Accelerants and Policy Implications CSET Policy Brief AUTHORS Will Hunt Saif M. Khan Dahlia Peterson Executive Summary China has a chip problem. It depends entirely on the United States and U.S. allies for access to advanced commercial semiconductors, which underpin all modern technologies, from smartphones to fighter jets to artificial intelligence. China’s current chip dependence allows the United States and its allies to control the export of advanced chips to Chinese state and private actors whose activities threaten human rights and international security. Chip dependence is also expensive: China currently depends on imports for most of the chips it consumes. China has therefore prioritized indigenizing advanced semiconductor manufacturing equipment (SME), which chip factories require to make leading-edge chips. But indigenizing advanced SME will be hard since Chinese firms have serious weaknesses in almost all SME sub-sectors, especially photolithography, metrology, and inspection. Meanwhile, the top global SME firms—based in the United States, Japan, and the Netherlands—enjoy wide moats of intellectual property and world- class teams of engineers, making it exceptionally difficult for newcomers to the SME industry to catch up to the leading edge. But for a country with China’s resources and political will, catching up in SME is not impossible. Whether China manages to close this gap will depend on its access to five technological accelerants: 1. Equipment components. Building advanced SME often requires access to a range of complex components, which SME firms often buy from third party suppliers and then assemble into finished SME.
    [Show full text]
  • Nanoelectronics the Original Positronic Brain?
    Nanoelectronics the Original Positronic Brain? Dan Hammerstrom Department of Electrical and Computer Engineering Portland State University Maseeh College of Engineering 12/13/08 1 and Computer Science Wikipedia: “A positronic brain is a fictional technological device, originally conceived by science fiction writer Isaac Asimov “Its role is to serve as a central computer for a robot, and, in some unspecified way, to provide it with a form of consciousness recognizable to humans” How close are we? You can judge the algorithms, in this talk I will focus on hardware and what the future might hold Maseeh College of Engineering 12/13/08 Hammerstrom 2 and Computer Science Moore’s Law: The number of transistors doubles every 18-24 months No discussion of computing is complete without addressing Moore’s law The semiconductor industry has been following it for almost 30 years It is not really a physical law, but one of faith The fruits of a hyper-competitive $300 billion global industry Then there is Moore’s lesser known 2nd law st The 1 law requires exponentially increasing investment And what I call Moore’s 3rd law st The 1 law results in exponentially increasing design errata Maseeh College of Engineering 12/13/08 Hammerstrom 3 and Computer Science Intel is now manufacturing in their new, innovative 45 nm process Effective gate lengths of 37 nm (HkMG) And they recently announced a 32 nm scaling of the 45 nm process Transistors of this size are no longer acting like ideal switches And there are other problems … 45 nm Transistor
    [Show full text]
  • Which Is the Best Dual-Port SRAM in 45-Nm Process Technology? – 8T, 10T Single End, and 10T Differential –
    Which is the Best Dual-Port SRAM in 45-nm Process Technology? – 8T, 10T Single End, and 10T Differential – Hiroki Noguchi†, Shunsuke Okumura†, Yusuke Iguchi†, Hidehiro Fujiwara†, Yasuhiro Morita†, Koji Nii†,††, Hiroshi Kawaguchi†, and Masahiko Yoshimoto† † Kobe University, Kobe, 657-8501 Japan. †† Renesas Technology Corporation, Itami, 664-0005 Japan. Phone: +81-78-803-6234, E-mail: [email protected] read ports. The next section describes their cell topologies. Abstract— This paper compares readout powers and operating frequencies among dual-port SRAMs: an 8T SRAM, 10T II. CELL TOPOLOGIES single-end SRAM, and 10T differential SRAM. The conventional 8T SRAM has the least transistor count, and is the most area A. 8T SRAM efficient. However, the readout power becomes large and the (a) cycle time increases due to peripheral circuits. The 10T Precharge Precharge circuit single-end SRAM is our proposed SRAM, in which a dedicated signal MC inverter and transmission gate are appended as a single-end read Bitline leakage port. The readout power of the 10T single-end SRAM is reduced by 75% and the operating frequency is increased by 95%, over the 8T SRAM. On the other hand the 10T differential SRAM can MC Memory cell (MC) operate fastest, because its small differential voltage of 50 mV RWL achieves the high-speed operation. In terms of the power WWL Readout current efficiency, however, the sense amplifier and precharge circuits lead to the power overhead. As a result, the 10T single-end P1 P2 Bitline keeper SRAM always consumes lowest readout power compared to the 8T and the 10T differential SRAM.
    [Show full text]
  • Moore's Law: the Future of Si Microelectronics
    Moore’s law: the future of Si microelectronics Soon after Bardeen, Brattain, and Shockley invented a solid-state device in 19471 to replace electron vacuum tubes, the microelectronics industry and a revolution started. Since its birth, the industry has experienced four decades of unprecedented explosive growth driven by two factors: Noyce and Kilby inventing the planar integrated circuit2,3 and the advantageous characteristics that result from scaling (shrinking) solid-state devices. Scott E. Thompson and Srivatsan Parthasarathy SWAMP Center, Department of Electrical and Computer Engineering, University of Florida, Gainsville, FL 32611-6130 USA E-mail:[email protected], [email protected] Scaling solid-state devices has the peculiar property of improving approaches under investigation are: (1) nonclassical CMOS, which cost, performance, and power, which has historically given any consists of new channel materials and/or multigate fully depleted company with the latest technology a large competitive device structures; and (2) alternatives to CMOS, such as spintronics, advantage in the market. As a result, the microelectronics single electron devices, and molecular computing8,9. While some of industry has driven transistor feature size scaling from 10 µm to these non-Si research areas are important and will be successful in ~30 nm4-6 during the past 40 years. During most of this time, new applications and markets10, it seems unlikely any of the non-Si scaling simply consisted of reducing the feature size. However, options can replace the Si transistor for the $300 billion during certain periods, there were major changes as with the microelectronics industry in the foreseeable future (perhaps as long industry move from Si bipolar to p-channel metal-oxide- as 30 years).
    [Show full text]
  • A Study of the Foundry Industry Dynamics
    A Study of the Foundry Industry Dynamics by Sang Jin Oh B.S. Industrial Engineering Seoul National University, 2003 SUBMITTED TO THE MIT SLOAN SCHOOL OF MANAGEMENT IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MANAGEMENT STUDIES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARCHVES JUNE 2010 MASSACHUSETTS INSTiUTE OF TECHNOLOGY © 2010 Sang Jin Oh. All Rights Reserved. The author hereby grants MIT permission to reproduce JUN 082010 and to distribute publicly paper and electronic LIBRARIES copies of this thesis document in whole or in part in any medium now known and hereafter created. Signature of Author Sang Jin Oh Master of Science in Management Studies May 7, 2010 Certified by (7 Michael A. Cusumano SMR Distinguished Professor of Management Thesis Supervisor Accepted by (I Michael A. Cusumano Faculty Director, M.S. in Management Studies Program MIT Sloan School of Management A Study of the Foundry Industry Dynamics By Sang Jin Oh Submitted to the MIT Sloan School of Management On May 7, 2010 In Partial Fulfillment of the Requirements for the Degree of Master of Science in Management Studies Abstract In the process of industrial evolution, it is a general tendency that companies which specialize in a specific value chain have emerged. These companies should construct a business eco-system based on their own platform to compete successfully with vertically integrated companies and other specialized companies. They continue to sustain their competitive advantage only when they share their ability to create value with other eco-system partners. The thesis analyzes the dynamics of the foundry industry.
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • Optimization of Monte Carlo Neutron Transport Simulations with Emerging Architectures Yunsong Wang
    Optimization of Monte Carlo Neutron Transport Simulations with Emerging Architectures Yunsong Wang To cite this version: Yunsong Wang. Optimization of Monte Carlo Neutron Transport Simulations with Emerging Archi- tectures. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris Saclay (COmUE), 2017. English. NNT : 2017SACLX090. tel-01687913 HAL Id: tel-01687913 https://pastel.archives-ouvertes.fr/tel-01687913 Submitted on 18 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX090 THESE` DE DOCTORAT DE L’UNIVERSITE´ PARIS-SACLAY PREPAR´ E´ A` L’ECOLE´ POLYTECHNIQUE ECOLE´ DOCTORALE No 573 INTERFACES : APPROCHES INTERDISCIPLINAIRES / FONDEMENTS, APPLICATIONS ET INNOVATION Sp´ecialit´ede doctorat: Informatique par M. Yunsong Wang Optimization of Monte Carlo Neutron Transport Simulations by Using Emerging Architectures Th`ese pr´esent´ee et soutenue `a Gif-sur-Yvette, le 14 d´ecembre 2017 : Composition de jury : M. Marc Verderi Directeur de Recherche, CNRS/IN2P3/LLR Pr´esident du jury M. Andrew Siegel Expert Senior, Argonne National Laboratory Rapporteur M. Raymond Namyst Professeur, Universit´ede Bordeaux/LABRI Rapporteur M. David Chamont Charg´ede Recherche, CNRS/IN2P3/LAL Examinateur M. David Riz Ing´enieur,CEA/DAM Examinateur M.
    [Show full text]
  • Design and Analysis of a New Carbon Nanotube Full Adder Cell
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2011, Article ID 906237, 6 pages doi:10.1155/2011/906237 Research Article Design and Analysis of a New Carbon Nanotube Full Adder Cell M. H. Ghadiry,1 Asrulnizam Abd Manaf,1 M. T. Ahmadi,2 Hatef Sadeghi,2 and M. Nadi Senejani3 1 School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 11800 Penang, Malaysia 2 Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia 3 Department of Computer Engineering, Islamic Azad University, Ashtian Branch, 39618-13347 Ashtian, Iran Correspondence should be addressed to M. H. Ghadiry, [email protected] Received 10 January 2011; Accepted 27 February 2011 Academic Editor: Theodorian Borca-Tasciuc Copyright © 2011 M. H. Ghadiry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A novel full adder circuit is presented. The main aim is to reduce power delay product (PDP) in the presented full adder cell. A new method is used in order to design a full-swing full adder cell with low number of transistors. The proposed full adder is implemented in MOSFET-like carbon nanotube technology and the layout is provided based on standard 32 nm technology from MOSIS. The simulation results using HSPICE show that there are substantial improvements in both power and performance of the proposed circuit compared to the latest designs. In addition, the proposed circuit has been implemented in conventional 32 nm process to compare the benefits of using MOSFET-like carbon nanotubes in arithmetic circuits over conventional CMOS technology.
    [Show full text]
  • AN-Introducing 45Nm Technology in Microwind
    Introducing 45 nm technology in Microwind3 MICROWIND APPLICATION NOTE Introducing 45 nm technology in Microwind3 Etienne SICARD Syed Mahfuzul Aziz Professor School of Electrical & Information Engineering INSA-Dgei, 135 Av de Rangueil University of South Australia 31077 Toulouse – France Mawson Lakes, SA 5095, Australia www.microwind.org www.unisa.edu.au email: [email protected] email: [email protected] This paper describes the improvements related to the CMOS 45 nm technology and the implementation of this technology in Microwind3. The main novelties related to the 45 nm technology such as the high-k gate oxide, metal- gate and very low-K interconnect dielectric is described. The performances of a ring oscillator layout and a 6- transistor RAM memory layout are also analyzed. 1. Recent trends in CMOS technology Firstly, we give an overview of the evolution of important parameters such as the integrated circuit (IC) complexity, gate length, switching delay and supply voltage with a prospective vision down to the 22 nm CMOS technology. The trend of CMOS technology improvement continues to be driven by the need to integrate more functions within a given silicon area. Table 1 gives an overview of the key parameters for technological nodes from 180 nm, introduced in 1999, down to 22 nm, which is supposed to be in production around 2011. Demonstration chips using 45-nm technology have been reported starting in 2004. Mass market manufacturing with this technology is scheduled for late 2007. Technology node 130 nm 90 nm 65 nm 45 nm 32 nm 22 nm First production 2001 2003 2005 2007 2009 2011 Effective gate 70 nm 50 nm 35 nm 25 nm 17 nm 12 nm length Gate material Poly Poly Poly Metal Metal Metal Gate dielectric SiO2 SiO2 SiON High K High K High K Kgates/mm2 240 480 900 1500 2800 4500 Memory point (2) 2.4 1.3 0.6 0.3 0.15 0.08 Table 1: Technological evolution and forecast up to 2011 The gate material has long been polysilicon, with silicon dioxide (SiO2) as the insulator between the gate and the channel (Fig.
    [Show full text]
  • Challenges and Innovations in Nano‐CMOS Transistor Scaling
    Challenges and Innovations in Nano‐CMOS Transistor Scaling Tahir Ghani Intel Fellow Logic Technology Development October, 2009 Nikkei Presentation 1 Outline • Traditional‐Scaling ‐ Traditional Scaling Limiters, Device Implications ‐ Intel’s Response • Post “Traditional‐Scaling” Innovations ‐ Mobility Booster: Uniaxial Strain - Poly Depletion Elimination: Metal Gate - Gate Leakage Reduction: HiK • Future Challenges and Options - Power Limitation - Potential New Transistor Structures and Materials 40+ Years of Moore’s Law at INTEL: From Few to Billions of Transistors 2X transistors every 2 years Transistor Count has Doubled Every Two Years 40+ Years of Moore’s Law at INTEL: From Few to Billions of Transistors 2X transistors every 2 years Traditional Scaling Era END OF TRADITIONAL SCALING ERA ~ 2003 Lasted ~40 YEARS Top “Traditional-Scaling” Enablers R. Dennard et.al. IEEE JSSC, 1974 • Gate Oxide Thickness Scaling - Key enabler for Lgate scaling • Junction Scaling - Another enabler for Lgate scaling - Improved abruptness (REXT reduction) • Vcc Scaling - Reduce XDEP (improve SCE) - However, did not follow const E field 1990’s: Golden Era of Scaling Vcc, Tox & Lg scaling & increasing Idsat Year 2000: INTEL 90nm CMOS Pathfinding End of “Traditional-Scaling” Era Gate oxide running Mobility degrades out of atoms with scaling 1.E+04 Jox limit VLSI Symp. 2000 300 Universal 1.E+03 NA= Mobility 3x1017 ] 1.E+02 SiO 250 2 2 /(V.s) [Lo et. al, EDL97] 2 1.E+01 18 200 1.3x10 [A/cm 130nm 1.E+00 1.8x1018 OX J 1.E-01 18 150 2.5x10 18 1.E-02 Nitrided SiO2 180nm 3.3x10 1.E-03 Mobility (cm 100 0.51.01.52.02.5 0 0.5 1 1.5 TOX Physical [nm] E EFF [MV/cm] • Gate Oxide Leakage • Universal Mobility Model direct tunneling limited • Ionized impurity scattering T.
    [Show full text]
  • The New Era of Scaling in an Soc World
    2009 ISSCC The New Era of Scaling in an SoC World Mark Bohr Intel Senior Fellow Logic Technology Development 1 The End of Scaling is Near? “Optical lithography will reach its limits in the range of 0.75-0.50 microns” “Minimum geometries will saturate in the range of 0.3 to 0.5 microns” “X-ray lithography will be needed below 1 micron” “Minimum gate oxide thickness is limited to ~2 nm” “Copper interconnects will never work” “Scaling will end in ~10 years” Perceived barriers are meant to be surmounted, circumvented or tunneled through 2 Outline • Transistor Scaling • Microprocessor Evolution • Vision of the Future 3 Scaling Trends 10 CPU Transistor Count 10 9 2x every 2 years 1 10 7 Microns 0.1 10 5 3 0.01 10 1970 1980 1990 2000 2010 2020 Transistor dimensions scale to improve performance, reduce power and reduce cost per transistor 4 Scaling Trends 10 CPU Transistor Count 10 9 2x every 2 years 1 10 7 Microns 0.1 65nm 10 5 45nm Feature Size 32nm 0.7x every 2 years 3 0.01 10 1970 1980 1990 2000 2010 2020 Transistor dimensions scale to improve performance, reduce power and reduce cost per transistor 5 MOSFET Scaling Device or Circuit Parameter Scaling Factor Device dimension tox, L, W 1/ κ Doping concentration Na κ Voltage V 1/ κ Current I 1/ κ Capacitance εA/t 1/ κ Delay time/circuit VC/I 1/ κ Power dissipation/circuit VI 1/ κ2 Power density VI/A 1 R. Dennard, IEEE JSSC, 1974 Classical MOSFET scaling was first described in 1974 6 30 Years of MOSFET Scaling Dennard 1974 Intel 2005 1 µm Gate Length: 1.0 µm 35 nm Gate Oxide Thickness: 35 nm
    [Show full text]