A Change of Pace for the Semiconductor Industry?

Total Page:16

File Type:pdf, Size:1020Kb

A Change of Pace for the Semiconductor Industry? Technology, Media & Telecommunications A change of pace for the semiconductor industry? pwc A change of pace for the semiconductor industry? Edited by PricewaterhouseCoopers By Werner Ballhaus, Dr Alessandro Pagella and Constantin Vogel All rights reserved. Reproductions, microfilming, storage and processing in electronic media are not permitted without the publisher’s approval. Typesetting Nina Irmer, Digitale Gestaltung & Medienproduktion, Frankfurt am Main Published by Kohlhammer und Wallishauser GmbH, Druckerei und Verlag, Hechingen Printed in Germany © November 2009 PricewaterhouseCoopers refers to the German firm PricewaterhouseCoopers AG Wirtschafts- pruefungsgesellschaft and the other member firms of PricewaterhouseCoopers International Limited, each of which is a separate and independent legal entity. A change of pace for the semiconductor industry? Preface Preface Innovation drives the semiconductor industry, and in turn its chips form the heart of modern industrial societies. Chips are at the essential core of mobile telephones, computers, flat-screen monitors and television sets, a wide range of medical procedures including CT scans, ultrasound and X-rays, and they play an enormous role in today’s sophisticated cars and aircraft. The number of installed semiconductor components expands constantly, so it would be easy to assume that the semiconductor industry is experiencing a golden era. However, despite the increasing demand for chips, hardly any other sector has been hit so hard by the current economic crisis. How will the market for chips develop in the next few years? What business models will prove to be robust during the crisis and beyond? Where are the current opportunities? What are the critical factors of success? This study considers those and other essential questions. Apart from an analysis of the production process and the subsequent value chain, this study comprises a benchmark analysis of the main segments of the semiconductor industry. Experts who offer their view of technological and economic developments in interviews include Professor Doris Schmitt- Landsiedel, Technische Universität München; Professor Jürgen Becker and Professor Michael Siegel, Karlsruher Institut für Technologie; Peter Wennink, ASML; Andrea Cuomo, STMicroelectronics; and Herbert Halamek, Continental. In addition to the interviews, we had fruitful discussions with Carla Sinanian, NXP Semiconductors; Dr Peter Hardt, Infineon Technologies; and Dr Helmut Lagger and Ulrich Schoen, Nokia Siemens Networks. We appreciate all these contributions and thank the participants for their cooperation and wisdom. We particularly thank Peter Bauer, Infineon Technologies, who has enhanced our study with a guest article. The aim of this study is to identify issues which will be the driving force behind the market in the next few years and to use this analysis to recommend action for semiconductor companies (some of which have already acted and are now well poised to meet the challenges of the future). Which products, which components and which regions have to be considered is the subject of our sales forecast. Our study focuses particularly on the European perspective. Are there indications of a change of pace for the semiconductor industry? Join our journey into the complex world of the semiconductor industry. If you would like further information, or to discuss any of the findings in our report and how they might impact your business, please do not hesitate to contact either of us ([email protected] or [email protected]) or any member of our technology team listed in the back of this document. Düsseldorf, November 2009 Raman Chitkara Werner Ballhaus Global Technology Leader German Technology, Media and Telecommunications Leader 3 Contents A change of pace for the semiconductor industry? Contents Preface .................................................................................................................3 Figures .................................................................................................................6 Tables...................................................................................................................7 Abbreviations........................................................................................................8 A Summary ......................................................................................................10 1 The main results – an overview ...................................................................10 2 Structure of the study...................................................................................11 Guest article by Peter Bauer, CEO, Infineon Technologies AG ........................12 B The semiconductor industry .........................................................................14 1 Market structure ...........................................................................................14 2 Semiconductors in the crisis ........................................................................19 Related discussion: the semiconductor value chain ..........................................23 3 Analysis of the competition ..........................................................................27 4 Summary of results and outlook ..................................................................31 C Technology and trends.................................................................................33 1 Production capacity......................................................................................33 Related discussion: complementary metal-oxide semiconductors (CMOS)......34 2 Feature sizes................................................................................................34 3 Enhanced functionality.................................................................................38 4 Wafer sizes ..................................................................................................40 D Sales forecasts .............................................................................................42 1 The semiconductor market according to applications..................................42 2 The semiconductor market according to installed components...................46 3 The semiconductor market: a regional comparison.....................................49 E Conclusion and outlook ................................................................................52 4 A change of pace for the semiconductor industry? Contents F Methodology.................................................................................................54 1 Sales forecast ..............................................................................................54 2 Interviews with experts ................................................................................54 3 Analysis of the competition..........................................................................54 4 Peers in the analysis of competition ............................................................55 Worldwide contacts for technology ....................................................................56 About PricewaterhouseCoopers ........................................................................59 Authors...............................................................................................................60 5 Figures A change of pace for the semiconductor industry? Figures Fig. 1 The semiconductor industry and its environment ............................15 Fig. 2 Product families of integrated circuits ..............................................16 Fig. 3 Comparison of standard and customer-specific products, as well as typical factors of success .....................................................17 Fig. 4 Semiconductor sales........................................................................19 Fig. 5 Value chain according to Porter.......................................................23 Fig. 6 Front-end production processes ......................................................25 Fig. 7 Back-end production processes.......................................................26 Fig. 8 Breakdown of sales according to semiconductor business models..............................................................................................28 Fig. 9 EBITDA margin broken down according to business models..........28 Fig. 10 EBIT margin broken down according to business models...............29 Fig. 11 Research and development spending broken down according to business models...........................................................................29 Fig. 12 Selling and administrative expenses broken down according to business models...........................................................................30 Fig. 13 Consolidation of the results of the analysis of competition ..............31 Fig. 14 Example of technology cycle for the changeover to new technologies in semiconductor production.......................................36 Fig. 15 Breakdown of the installed worldwide production capacity by wafer size .........................................................................................41 6 A change of pace for the semiconductor industry? Tables Tables Tab. 1 Comparison of profit margins in 2007 and 2008 for different business models ..............................................................................31 Tab. 2 Distribution of the installed worldwide CMOS production capacity according to smallest possible
Recommended publications
  • Quantum Imaging for Semiconductor Industry
    Quantum Imaging for Semiconductor Industry Anna V. Paterova1,*, Hongzhi Yang1, Zi S. D. Toa1, Leonid A. Krivitsky1, ** 1Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore *[email protected] **[email protected] Abstract Infrared (IR) imaging is one of the significant tools for the quality control measurements of fabricated samples. Standard IR imaging techniques use direct measurements, where light sources and detectors operate at IR range. Due to the limited choices of IR light sources or detectors, challenges in reaching specific IR wavelengths may arise. In our work, we perform indirect IR microscopy based on the quantum imaging technique. This method allows us to probe the sample with IR light, while the detection is shifted into the visible or near-IR range. Thus, we demonstrate IR quantum imaging of the silicon chips at different magnifications, wherein a sample is probed at 1550 nm wavelength, but the detection is performed at 810 nm. We also analyze the possible measurement conditions of the technique and estimate the time needed to perform quality control checks of samples. Infrared (IR) metrology plays a significant role in areas ranging from biological imaging1-5 to materials characterisation6 and microelectronics7. For example, the semiconductor industry utilizes IR radiation for non-destructive microscopy of silicon-based devices. However, IR optical components, such as synchrotrons8, quantum cascade lasers, and HgCdTe (also known as MCT) photodetectors, are expensive. Some of these components, in order to maximize the signal-to-noise ratio, may require cryogenic cooling, which further increases costs over the operational lifetime.
    [Show full text]
  • Global Semiconductor Industry | Accenture
    GLOBALITY AND COMPLEXITY of the Semiconductor Ecosystem The semiconductor industry is a truly global affair. Around the world, semiconductor chip designers use intellectual property (IP) licenses and design verification to provide designs to wafer fabricators, which use raw silicon, photomasks, and equipment to create chips for package manufacturing to assemble with printed circuit board (PCB) substrates for delivery to end customers. In fact, components for a chip could travel more than 25,000 miles by the time it finds its way into a television set, mobile phone, automobile, computer, or any of the millions of products that now rely on chips to operate (Figure 1). 2 | Globality and Complexity of the Semiconductor Ecosystem Figure 1: Components for a chip could travel more than 25,000 miles before completion IP Licenses Euipment Modules Package Raw Silicon Manufacturing PC Substrates Asembly Standard Products and Test components Wafer Fabrication Equipment Chip Design Design Verification Photomask Wafer Manufacturing Fabrication The Global Semiconductor Alliance (GSA) and Accenture have teamed up to conduct a joint study on the globality and complexity of the semiconductor ecosystem to explore the interdependencies and benefits of the cross-border partnerships required to produce semiconductors, as well as to illustrate what’s needed to keep this global ecosystem operating efficiently and profitably. Industry executives can use this study to inform their company strategies, as well as to educate non-semiconductor partners, including policy makers, on the nature of their business to promote a better understanding of the important role semiconductors play in everyday life and on the globe-spanning ecosystem that’s needed to produce them.
    [Show full text]
  • Resonance-Enhanced Waveguide-Coupled Silicon-Germanium Detector L
    Resonance-enhanced waveguide-coupled silicon-germanium detector L. Alloatti and R. J. Ram Citation: Applied Physics Letters 108, 071105 (2016); doi: 10.1063/1.4941995 View online: http://dx.doi.org/10.1063/1.4941995 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/7?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Waveguide-coupled detector in zero-change complementary metal–oxide–semiconductor Appl. Phys. Lett. 107, 041104 (2015); 10.1063/1.4927393 Efficient evanescent wave coupling conditions for waveguide-integrated thin-film Si/Ge photodetectors on silicon- on-insulator/germanium-on-insulator substrates J. Appl. Phys. 110, 083115 (2011); 10.1063/1.3642943 Metal-semiconductor-metal Ge photodetectors integrated in silicon waveguides Appl. Phys. Lett. 92, 151114 (2008); 10.1063/1.2909590 Guided-wave near-infrared detector in polycrystalline germanium on silicon Appl. Phys. Lett. 87, 203507 (2005); 10.1063/1.2131175 Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers Appl. Phys. Lett. 85, 3286 (2004); 10.1063/1.1805706 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. IP: 18.62.22.131 On: Mon, 07 Mar 2016 17:12:57 APPLIED PHYSICS LETTERS 108, 071105 (2016) Resonance-enhanced waveguide-coupled silicon-germanium detector L. Alloattia),b) and R. J. Ram Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 5 January 2016; accepted 3 February 2016; published online 16 February 2016) A photodiode with 0.55 6 0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process.
    [Show full text]
  • Nanoelectronics the Original Positronic Brain?
    Nanoelectronics the Original Positronic Brain? Dan Hammerstrom Department of Electrical and Computer Engineering Portland State University Maseeh College of Engineering 12/13/08 1 and Computer Science Wikipedia: “A positronic brain is a fictional technological device, originally conceived by science fiction writer Isaac Asimov “Its role is to serve as a central computer for a robot, and, in some unspecified way, to provide it with a form of consciousness recognizable to humans” How close are we? You can judge the algorithms, in this talk I will focus on hardware and what the future might hold Maseeh College of Engineering 12/13/08 Hammerstrom 2 and Computer Science Moore’s Law: The number of transistors doubles every 18-24 months No discussion of computing is complete without addressing Moore’s law The semiconductor industry has been following it for almost 30 years It is not really a physical law, but one of faith The fruits of a hyper-competitive $300 billion global industry Then there is Moore’s lesser known 2nd law st The 1 law requires exponentially increasing investment And what I call Moore’s 3rd law st The 1 law results in exponentially increasing design errata Maseeh College of Engineering 12/13/08 Hammerstrom 3 and Computer Science Intel is now manufacturing in their new, innovative 45 nm process Effective gate lengths of 37 nm (HkMG) And they recently announced a 32 nm scaling of the 45 nm process Transistors of this size are no longer acting like ideal switches And there are other problems … 45 nm Transistor
    [Show full text]
  • Which Is the Best Dual-Port SRAM in 45-Nm Process Technology? – 8T, 10T Single End, and 10T Differential –
    Which is the Best Dual-Port SRAM in 45-nm Process Technology? – 8T, 10T Single End, and 10T Differential – Hiroki Noguchi†, Shunsuke Okumura†, Yusuke Iguchi†, Hidehiro Fujiwara†, Yasuhiro Morita†, Koji Nii†,††, Hiroshi Kawaguchi†, and Masahiko Yoshimoto† † Kobe University, Kobe, 657-8501 Japan. †† Renesas Technology Corporation, Itami, 664-0005 Japan. Phone: +81-78-803-6234, E-mail: [email protected] read ports. The next section describes their cell topologies. Abstract— This paper compares readout powers and operating frequencies among dual-port SRAMs: an 8T SRAM, 10T II. CELL TOPOLOGIES single-end SRAM, and 10T differential SRAM. The conventional 8T SRAM has the least transistor count, and is the most area A. 8T SRAM efficient. However, the readout power becomes large and the (a) cycle time increases due to peripheral circuits. The 10T Precharge Precharge circuit single-end SRAM is our proposed SRAM, in which a dedicated signal MC inverter and transmission gate are appended as a single-end read Bitline leakage port. The readout power of the 10T single-end SRAM is reduced by 75% and the operating frequency is increased by 95%, over the 8T SRAM. On the other hand the 10T differential SRAM can MC Memory cell (MC) operate fastest, because its small differential voltage of 50 mV RWL achieves the high-speed operation. In terms of the power WWL Readout current efficiency, however, the sense amplifier and precharge circuits lead to the power overhead. As a result, the 10T single-end P1 P2 Bitline keeper SRAM always consumes lowest readout power compared to the 8T and the 10T differential SRAM.
    [Show full text]
  • Technology Roadmap for 22Nm CMOS and Beyond
    Technology Roadmap for 22nm CMOS and beyond June 1, 2009 IEDST 2009@IIT-Bombay Hiroshi Iwai Tokyo Institute of Technology 1 Outline 1. Scaling 2. ITRS Roadmap 3. Voltage Scaling/ Low Power and Leakage 4. SRAM Cell Scaling 5.Roadmap for further future as a personal view 2 1. Scaling 3 Scaling Method: by R. Dennard in 1974 1 Wdep: Space Charge Region (or Depletion Region) Width 1 1 SDWdep has to be suppressed 1 Otherwise, large leakage Wdep between S and D I Leakage current Potential in space charge region is high, and thus, electrons in source are 0 attracted to the space charge region. 0 V 1 K=0.7 X , Y, Z :K, V :K, Na : 1/K for By the scaling, Wdep is suppressed in proportion, example and thus, leakage can be suppressed. K Good scaled I-V characteristics K K Wdep V/Na K Wdep I I : K : K 0 0K V 4 Downscaling merit: Beautiful! Geometry & L , W g g K Scaling K : K=0.7 for example Supply voltage Tox, Vdd Id = vsatWgCo (Vg‐Vth) Co: gate C per unit area Drive current I d K –1 ‐1 ‐1 in saturation Wg (tox )(Vg‐Vth)= Wgtox (Vg‐Vth)= KK K=K Id per unit Wg Id/µm 1 Id per unit Wg = Id / Wg= 1 Gate capacitance Cg K Cg = εoεoxLgWg/tox KK/K = K Switching speed τ K τ= CgVdd/Id KK/K= K Clock frequency f 1/K f = 1/τ = 1/K Chip area Achip α α: Scaling factor In the past, α>1 for most cases Integration (# of Tr) N α/K2 N α/K2 = 1/K2 , when α=1 Power per chip P α fNCV2/2 K‐1(αK‐2)K (K1 )2= α = 1, when α=1 5 k= 0.7 and α =1 k= 0.72 =0.5 and α =1 Single MOFET Vdd 0.7 Vdd 0.5 Lg 0.7 Lg 0.5 Id 0.7 Id 0.5 Cg 0.7 Cg 0.5 P (Power)/Clock P (Power)/Clock 0.73 = 0.34 0.53 = 0.125 τ (Switching time) 0.7 τ (Switching time) 0.5 Chip N (# of Tr) 1/0.72 = 2 N (# of Tr) 1/0.52 = 4 f (Clock) 1/0.7 = 1.4 f (Clock) 1/0.5 = 2 P (Power) 1 P (Power) 1 6 - The concerns for limits of down-scaling have been announced for every generation.
    [Show full text]
  • A Study of the Foundry Industry Dynamics
    A Study of the Foundry Industry Dynamics by Sang Jin Oh B.S. Industrial Engineering Seoul National University, 2003 SUBMITTED TO THE MIT SLOAN SCHOOL OF MANAGEMENT IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MANAGEMENT STUDIES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARCHVES JUNE 2010 MASSACHUSETTS INSTiUTE OF TECHNOLOGY © 2010 Sang Jin Oh. All Rights Reserved. The author hereby grants MIT permission to reproduce JUN 082010 and to distribute publicly paper and electronic LIBRARIES copies of this thesis document in whole or in part in any medium now known and hereafter created. Signature of Author Sang Jin Oh Master of Science in Management Studies May 7, 2010 Certified by (7 Michael A. Cusumano SMR Distinguished Professor of Management Thesis Supervisor Accepted by (I Michael A. Cusumano Faculty Director, M.S. in Management Studies Program MIT Sloan School of Management A Study of the Foundry Industry Dynamics By Sang Jin Oh Submitted to the MIT Sloan School of Management On May 7, 2010 In Partial Fulfillment of the Requirements for the Degree of Master of Science in Management Studies Abstract In the process of industrial evolution, it is a general tendency that companies which specialize in a specific value chain have emerged. These companies should construct a business eco-system based on their own platform to compete successfully with vertically integrated companies and other specialized companies. They continue to sustain their competitive advantage only when they share their ability to create value with other eco-system partners. The thesis analyzes the dynamics of the foundry industry.
    [Show full text]
  • The Next Growth Engine for the Semiconductor Industry
    www.pwc.com The Internet of Things: The next growth engine for the semiconductor industry A study of global semi­ conductor trends and powerful drivers behind them – special focus on the impacts of Internet of Things. The Internet of Things: The next growth engine for the semiconductor industry A study of global semi­ conductor trends and powerful drivers behind them – special focus on the impacts of Internet of Things. The Internet of Things: The next growth engine for the semiconductor industry Published by PricewaterhouseCoopers AG Wirtschaftsprüfungsgesellschaft By Raman Chitkara, Werner Ballhaus, Olaf Acker, Dr. Bin Song, Anand Sundaram and Maria Popova May 2015, 36 pages, 8 figures The results of this survey and the contributions from our experts are meant to serve as a general reference for our clients. For advice on individual cases, please refer to the sources cited in this study or consult one of the PwC contacts listed at the end of the publication. Publications express the opinions of the authors. All rights reserved. Reproduction, microfilming, storing or processing in electronic media is not allowed without the permission of the publishers. Printed in Germany © May 2015 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details. MW-15-2285 Preface Preface The ever-expanding array of cutting-edge devices such as smartphones, tablets, ultramobile, electric cars, new aircraft, and wearable devices, is driving a constant expansion of the number of semiconductor components we use in our daily lives.
    [Show full text]
  • Semiconductor Science for Clean Energy Technologies
    LEVERAGING SEMICONDUCTOR SCIENCE FOR CLEAN ENERGY TECHNOLOGIES Keeping the lights on in the United States consumes 350 billion kilowatt hours of electricity annu- ally. Most of that light still comes from incandescent bulbs, which haven’t changed much since Thomas Edison invented them 140 years ago. But now a dramatically more efficient lighting tech- nology is seeing rapid adoption: semiconductor devices known as light-emitting diodes (LEDs) use 85 percent less energy than incandescent bulbs, last 25 times as long, and have the potential to save U.S. consumers a huge portion of the electricity now used for lighting. High-performance solar power plant in Alamosa, Colorado. It generates electricity with multi-layer solar cells, developed by the National Renewable Energy Laboratory, that absorb and utilize more of the sun’s energy. (Dennis Schroeder / National Renewable Energy Laboratory) How we generate electricity is also changing. The costs of to produce an electrical current. The challenge has been solar cells that convert light from the sun into electricity to improve the efficiency with which solar cells convert have come down dramatically over the past decade. As a sunlight to electricity and to reduce their cost for commer- result, solar power installations have grown rapidly, and cial applications. Initially, solar cell production techniques in 2016 accounted for a significant share of all the new borrowed heavily from the semiconductor industry. Silicon electrical generating capacity installed in the U.S. This solar cells are built on wafers cut from ingots of crystal- grid-scale power market is dominated by silicon solar cells, line silicon, just as are the chips that drive computers.
    [Show full text]
  • Semiconductor Industry
    Semiconductor industry Heat transfer solutions for the semiconductor manufacturing industry In the microelectronics industry a the cleanroom, an area where the The following applications are all semiconductor fabrication plant environment is controlled to manufactured in a semicon fab: (commonly called a fab) is a factory eliminate all dust – even a single where devices such as integrated speck can ruin a microcircuit, which Microchips: Manufacturing of chips circuits are manufactured. A business has features much smaller than with integrated circuits. that operates a semiconductor fab for dust. The cleanroom must also be LED lighting: Manufacturing of LED the purpose of fabricating the designs dampened against vibration and lamps for lighting purposes. of other companies, such as fabless kept within narrow bands of PV industry: Manufacturing of solar semiconductor companies, is known temperature and humidity. cells, based on Si wafer technology or as a foundry. If a foundry does not also thin film technology. produce its own designs, it is known Controlling temperature and Flat panel displays: Manufacturing of as a pure-play semiconductor foundry. humidity is critical for minimizing flat panels for everything from mobile static electricity. phones and other handheld devices, Fabs require many expensive devices up to large size TV monitors. to function. The central part of a fab is Electronics: Manufacturing of printed circuit boards (PCB), computer and electronic components. Semiconductor plant Waste treatment The cleanroom Processing equipment Preparation of acids and chemicals Utility equipment Wafer preparation Water treatment PCW Water treatment UPW The principal layout and functions of would be the least complex, requiring capacities. Unique materials combined the fab are similar in all the industries.
    [Show full text]
  • Mckinsey on Semiconductors
    McKinsey on Semiconductors Creating value, pursuing innovation, and optimizing operations Number 7, October 2019 McKinsey on Semiconductors is Editorial Board: McKinsey Practice Publications written by experts and practitioners Ondrej Burkacky, Peter Kenevan, in McKinsey & Company’s Abhijit Mahindroo Editor in Chief: Semiconductors Practice along with Lucia Rahilly other McKinsey colleagues. Editor: Eileen Hannigan Executive Editors: To send comments or request Art Direction and Design: Michael T. Borruso, copies, email us: Leff Communications Bill Javetski, McKinsey_on_ Semiconductors@ Mark Staples McKinsey.com. Data Visualization: Richard Johnson, Copyright © 2019 McKinsey & Cover image: Jonathon Rivait Company. All rights reserved. © scanrail/Getty Images Managing Editors: This publication is not intended to Heather Byer, Venetia Simcock be used as the basis for trading in the shares of any company or for Editorial Production: undertaking any other complex or Elizabeth Brown, Roger Draper, significant financial transaction Gwyn Herbein, Pamela Norton, without consulting appropriate Katya Petriwsky, Charmaine Rice, professional advisers. John C. Sanchez, Dana Sand, Sneha Vats, Pooja Yadav, Belinda Yu No part of this publication may be copied or redistributed in any form without the prior written consent of McKinsey & Company. Table of contents What’s next for semiconductor How will changes in the 3 profits and value creation? 47 automotive-component Semiconductor profits have been market affect semiconductor strong over the past few years. companies? Could recent changes within the The rise of domain control units industry stall their progress? (DCUs) will open new opportunities for semiconductor companies. Artificial-intelligence hardware: Right product, right time, 16 New opportunities for 50 right location: Quantifying the semiconductor companies semiconductor supply chain Artificial intelligence is opening Problems along the the best opportunities for semiconductor supply chain semiconductor companies in are difficult to diagnose.
    [Show full text]
  • Building America's Innovation Economy
    BUILDING AMERICA’S INNOVATION ECONOMY Maintaining a vibrant U.S. semiconductor industry is critical to America’s continued strength. For over 40 years, SIA has represented the semiconductor industry, one of America’s top export sectors and a key driver of our country’s economic strength, national security, and global technology leadership. SIA members account for 95 percent of U.S. industry sales and 78 percent of all global sales. SEMICONDUCTORS ARE THE BRAINS OF MODERN ELECTRONICS, enabling advances in medical devices and health care, communications, computing, defense, transportation, clean energy, and technologies of the future such as artificial intelligence, quantum computing, and advanced wireless networks. THE U.S. SEMICONDUCTOR INDUSTRY IS THE WORLDWIDE INDUSTRY LEADER with about half of global market share and sales of $193 billion in 2019. THE SEMICONDUCTOR INDUSTRY DIRECTLY EMPLOYS NEARLY A QUARTER OF A MILLION PEOPLE IN THE U.S. and supports more than one million additional U.S. jobs. NEARLY HALF OF U.S. SEMICONDUCTOR MANUFACTURERS' PRODUCTION IS DONE IN THE UNITED STATES, and 19 states are home to major semiconductor manufacturing facilities. SEMICONDUCTORS ARE A TOP-5 U.S. EXPORT, and more than 80% of U.S. semiconductor companies’ sales are to overseas customers. The United States exported $46 billion in semiconductors in 2019 and maintains a consistent trade surplus in semiconductors, including with major trading partners such as China. THE U.S. SEMICONDUCTOR INDUSTRY ANNUALLY INVESTS ABOUT ONE-FIFTH OF ITS REVENUE INTO R&D ($40 billion in 2019), which is the second-highest share of any major U.S. industry, behind only the pharmaceutical industry.
    [Show full text]