The Actomyosin Interaction and Its Control by Tropomyosin

Total Page:16

File Type:pdf, Size:1020Kb

The Actomyosin Interaction and Its Control by Tropomyosin 2s Biophysical Journal Volume 68 April 1995 2s-7s The Actomyosin Interaction and Its Control by Tropomyosin Kenneth C. Holmes Max Planck Institute for Medical Research, 69120 Heidelberg, Germany An atomic model for actomyosin has been proposed the strongly bound state is created in a strained conformation (Rayment et al., 1993b) in which the actin and nucleotide from the weakly bound form. Because the strongly bound binding sites of S1 are linked by a cleft that may close on state has at equilibrium a different gross orientation to the binding to F-actin. The initial actomyosin contact probably actin filament (450) but is tethered by its attachment to the involves only part ofthe interface (a postulated stereospecific myosin filament to remain in the initial 900 position, in the weak interaction); the full rigor complex develops on closure new conformational state it is strained. Release of strain en- of the cleft. These states appear similar in properties to the ergy brings about the rowing-like sweep. A and R states described by Geeves (1992). Central to this kind ofcycle is the idea that the cross-bridge By analysis of the low-angle x-ray diffraction from rabbit must first bind in an unstrained conformation (weak) and muscle at nonoverlap with and without Ca21 (Poole et al., then undergo an isomerization to the strained (strong) form. 1994) the positions of tropomyosin can be derived. Com- Hill (1974) emphasized that the work done in sliding the bining these with the atomic model of actomyosin shows that filament, often referred to as the power stroke, should not with tropomyosin in the "off' state (no Ca21) the weak ste- occur between two states but within a state so that the stored reospecific binding would be inhibited. In the presence of energy can be smoothly given up into the muscle filament Ca21 the weak stereospecific interaction would be allowed. lattice. The process is modulated by the status of the nucle- However, the development of the full rigor interface would ne- otide binding site, in particular by the presence or absence cessitate a further small movement ofthe tropomyosin to permit of the y-phosphate. This is the heart of the contraction pro- the cleft to shut. These three states of the thin filament may be cess. A key question that we wish to address is a possible tentatively equated with the states "blocked," "closed," and structural basis for the weak-to-strong isomerization. "open" identified by McKillop and Geeves (1993). THE ISOMERIZATION BETWEEN A AND THE CROSS-BRIDGE CYCLE R STATES A widely accepted theory to explain the mutual sliding The initial attachment is weak in the sense that the bound of actin and myosin filaments is the cross-bridge theory of cross-bridge is in rapid equilibrium with the dissociated muscle contraction (see H. E. Huxley, 1969; A. F. Huxley, form. However, it should be stereospecific binding; other- 1974). This theory suggests that the sliding process is driven wise it would not be possible to provide a structural basis for by the myosin cross-bridges, which extend from the myosin the ensuing isomerization to the strong binding state. The filament and cyclically interact with the actin filament by a stereospecific weak binding to actin is required to enable rowing motion of the myosin head or part of the head as ATP (catalyze) the transition to the strong binding state. This se- is hydrolyzed. The Lymn-Taylor cycle for the hydrolysis of quence provides the necessary vectoriality to the process ATP by actomyosin (Lymn and Taylor, 1971) may easily be (Jencks, 1980). Without this property the cross-bridge would incorporated into the cross-bridge theory. This resulting bind unstrained in the strong state and nothing would happen. cycle has been elaborated by Eisenberg and Green (1980) to This scheme is not a unique paradigm for achieving a strained incorporate the fact that release from actin is not an obliga- bound cross-bridge. However, the two-step binding of S1 to tory step in the hydrolysis ofATP. In their cross-bridge cycle actin is in accordance with the biochemical data (Taylor, each sweep of an oarlike cross-bridge cycle is not linked 1991; Geeves, 1992) and provides a good starting model. rigorously to a biochemical event but the myosin cross- Geeves calls the two states the A and R states. The following bridge alternates between a weak binding conformation and quote from Geeves' paper gives the essential properties of a strong binding conformation, which differ in the structural this isomerization: way in which they interact with actin. In the muscle lattice "Studies of the interaction of actin and myosin S1 in solution have shown that the association reaction takes place in at least two steps. Initially the association is relatively weak to form a complex called the A state which can isomerise into the R state. The rate and equilibrium constants for the isomerisation have been measured and are shown to depend upon the nucle- Address reprint requests to Dr. Kenneth C. Max Holmes, Planck Institute otide bound to the Sl ATPase site; with ATP bound the A state is preferred for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany. Tel.: but as ATP is hydrolyzed and the products are sequentially released then the 49-9221-486270; Fax: 49-6221-486437; E-mail: holmes@mpimf- complex gradually shifts to the R state. An extensive series of heidelberg.mpg.de. experiments ... have shown the isomerisation ... to be closely linked with the key events C) 1995 by the Biophysical Society in the ATP-driven contraction cycle: the conformational change can be 0006-3495/95/04/02s/06 $2.00 monitored by probes on either actin or the nucleotide; the isomerisation can Holmes The Actomyosin Interaction and Its Control by Tropomyosin 3s be perturbed by an increase in hydrostatic pressure, the actin-induced ac- separates the upper and lower 50K fragments. Examination celeration of the product release from myosin is coupled to the A to R of the acto-myosin interface suggests that there are poten- isomerisation; tropomyosin may control actin and myosin interaction by three of interaction with actin: an ionic controlling the isomerisation step and finally pressure perturbations of con- tially types initially tracting muscle fibres shows there to be a close coupling between the isom- interaction involving the disordered 50-20K loop; secondly, erisation of acto-Sl and the force generating event of muscle contraction" a stereospecific interaction involving hydrophobic residues (Geeves, 1992, p. 63). that we associate with the weak A state; and thirdly, a strengthening of this interaction by the recruitment of more THE LOW IONIC STRENGTH INTERACTION MAY hydrophobic interactions allowed by the coming together of BE A PRE-WEAK STATE the 50K upper and lower fragments, which could produce the strong rigor interaction. Although the weak state we discuss here is conceptually The segment between residues 626 and 647 (50/20Kjunc- similar to the weak state discussed by Eisenberg and Green tion), which is disordered in the three-dimensional structure, (1980) it may not be the same as the weak states found at low contains five lysines and nine glycines (depending on the ionic strength (Brenner et al., 1982) since it has been shown, species). However, these lysine residues are protected from e.g., by Pollard et al. (1993) that at low ionic strength the proteolysis in the presence of actin, which suggests that while cross-bridges take up all possible orientations with respect to they are flexible in solution they are physically protected by the actin filament and appear therefore not to be stereospe- actin in the rigor complex (Mornet et al., 1979, 1981) or only cifically bound to actin. The interactions are presumably adopt a distinct conformation when bound in the actomyosin electrostatic in nature and appear to be incompetent to make interface. From their location the residues between 626 and the transition to the strong state (for discussion, see Wray 647 may interact with the negatively charged residues 1-4 on et al. (1988)). Such electrostatic weak states should be actin. It is expected that this interaction will be predomi- viewed rather as the cross-bridge making short-lived colli- nately ionic (five lysines in the loop and four carboxylic acid sion complexes with actin. Since the N-terminus of actin, groups near the N-terminus of actin) and therefore would be which is somewhat disordered, is highly negatively charged sensitive to ionic strength. The main contact of myosin with and the 50-20K myosin loop (see below), which is unstruc- actin involves the heavy chain segment from 525 to 552. This tured, is highly positively charged one could easily foresee consists of a helix that extends from 516 to 542, a loop from an interaction between these components ofactin and myosin 543 to 546, and a second helix from 547 to 558. The first leading to nonspecific complexes. helix, of which only part is in the actin binding site, contains a prominent bulge at residue 529. These two helices run at NAMING OF PARTS an angle of 10° to each other and are located at the end of the lower 50 K domain. These secondary structural elements Myosin S1 can be split by trypsin into three fragments are in close proximity to residues 341-354 and 144-146 of (Mornet et al., 1979) (25K, 50K, 20K from N- to C-termi- actin. This interface has a considerable hydrophobic com- nus), which were thought to be domains. Rayment et al. ponent. In addition residues 552 and 558 of myosin are close (1993a) show that these "domains" do not reflect structural enough to make contact with residues 40-42 in the actin divisions but rather that the trypsin-sensitive sequences lie in subunit below that, which forms the major interaction.
Recommended publications
  • Postmortem Changes in the Myofibrillar and Other Cytoskeletal Proteins in Muscle
    BIOCHEMISTRY - IMPACT ON MEAT TENDERNESS Postmortem Changes in the Myofibrillar and Other C'oskeletal Proteins in Muscle RICHARD M. ROBSON*, ELISABETH HUFF-LONERGAN', FREDERICK C. PARRISH, JR., CHIUNG-YING HO, MARVIN H. STROMER, TED W. HUIATT, ROBERT M. BELLIN and SUZANNE W. SERNETT introduction filaments (titin), and integral Z-line region (a-actinin, Cap Z), as well as proteins of the intermediate filaments (desmin, The cytoskeleton of "typical" vertebrate cells contains paranemin, and synemin), Z-line periphery (filamin) and three protein filament systems, namely the -7-nm diameter costameres underlying the cell membrane (filamin, actin-containing microfilaments, the -1 0-nm diameter in- dystrophin, talin, and vinculin) are listed along with an esti- termediate filaments (IFs), and the -23-nm diameter tubu- mate of their abundance, approximate molecular weights, lin-containing microtubules (Robson, 1989, 1995; Robson and number of subunits per molecule. Because the myofibrils et al., 1991 ).The contractile myofibrils, which are by far the are the overwhelming components of the skeletal muscle cell major components of developed skeletal muscle cells and cytoskeleton, the approximate percentages of the cytoskel- are responsible for most of the desirable qualities of muscle eton listed for the myofibrillar proteins (e.g., myosin, actin, foods (Robson et al., 1981,1984, 1991 1, can be considered tropomyosin, a-actinin, etc.) also would represent their ap- the highly expanded corollary of the microfilament system proximate percentages of total myofibrillar protein. of non-muscle cells. The myofibrils, IFs, cell membrane skel- eton (complex protein-lattice subjacent to the sarcolemma), Some Important Characteristics, Possible and attachment sites connecting these elements will be con- Roles, and Postmortem Changes of Key sidered as comprising the muscle cell cytoskeleton in this Cytoskeletal Proteins review.
    [Show full text]
  • Functional Analysis of Tropomyosin Isoforms in Vivo
    FUNCTIONAL ANALYSIS OF TROPOMYOSIN ISOFORMS IN VIVO by Aeri Cho A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2015 Abstract Precise regulation of a dynamic actin cytoskeleton is an essential function of animal cells without which vesicle trafficking, cytokinesis, cell adhesion and cell movement would be impossible. Therefore, understanding the mechanisms underlying actin dynamics is fundamental for understanding basic cellular biology as well as gaining insight into mechanisms of embryonic development, tissue homeostasis and regeneration, and pathological processes such as inflammation and tumor metastasis. Actin filaments are a major source of the protrusive and contractile forces that drive many cellular behaviors. Contractile forces require the action of non-muscle myosin II, which assembles onto actin filaments to form acto-myosin. The interaction between actin and myosin can occur spontaneously in vitro, but in cells it is regulated by accessory proteins including Tropomyosins (Tms). A complete understanding of Tm function has been elusive due in part to the large number of isoforms: 44 predicted isoforms from 4 genes in humans. The goal of this study was to decipher the functional roles of different Tm isoforms at the molecular, cellular and tissue levels in vivo. Drosophila egg chambers are a genetically tractable system that expresses far fewer Tm isoforms than mammalian cells. We identified three tropomyosin isoforms expressed in follicle cells, including one previously annotated as muscle-specific. We generated and characterized isoform- specific antibodies, RNAi lines, and mutant alleles, and discovered that they function non-redundantly in the two cell types we studied: border cells, a well-studied example of collective migration, and epithelial follicle cells, which develop contractile stress fibers that shape the egg chamber.
    [Show full text]
  • Titin N2A Domain and Its Interactions at the Sarcomere
    International Journal of Molecular Sciences Review Titin N2A Domain and Its Interactions at the Sarcomere Adeleye O. Adewale and Young-Hoon Ahn * Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(313)-577-1384 Abstract: Titin is a giant protein in the sarcomere that plays an essential role in muscle contraction with actin and myosin filaments. However, its utility goes beyond mechanical functions, extending to versatile and complex roles in sarcomere organization and maintenance, passive force, mechanosens- ing, and signaling. Titin’s multiple functions are in part attributed to its large size and modular structures that interact with a myriad of protein partners. Among titin’s domains, the N2A element is one of titin’s unique segments that contributes to titin’s functions in compliance, contraction, structural stability, and signaling via protein–protein interactions with actin filament, chaperones, stress-sensing proteins, and proteases. Considering the significance of N2A, this review highlights structural conformations of N2A, its predisposition for protein–protein interactions, and its multiple interacting protein partners that allow the modulation of titin’s biological effects. Lastly, the nature of N2A for interactions with chaperones and proteases is included, presenting it as an important node that impacts titin’s structural and functional integrity. Keywords: titin; N2A domain; protein–protein interaction 1. Introduction Citation: Adewale, A.O.; Ahn, Y.-H. The complexity of striated muscle is defined by the intricate organization of its com- Titin N2A Domain and Its ponents [1]. The involuntary cardiac and voluntary skeletal muscles are the primary types Interactions at the Sarcomere.
    [Show full text]
  • Tropomyosin) Using Food Processing Methods Adeseye Lasekan University of Maine, [email protected]
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-11-2017 Attenuating the Antibody Reactivity of the Shrimp Major Allergen (Tropomyosin) using Food Processing Methods Adeseye Lasekan University of Maine, [email protected] Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Food Chemistry Commons, Food Processing Commons, and the Other Food Science Commons Recommended Citation Lasekan, Adeseye, "Attenuating the Antibody Reactivity of the Shrimp Major Allergen (Tropomyosin) using Food Processing Methods" (2017). Electronic Theses and Dissertations. 2732. http://digitalcommons.library.umaine.edu/etd/2732 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ATTENUATING THE ANTIBODY REACTIVITY OF THE SHRIMP MAJOR ALLERGEN (TROPOMYOSIN) USING FOOD PROCESSING METHODS By Adeseye O. Lasekan B.Sc. Federal University of Agriculture Abeokuta, 2007 M.S. Universiti Putra Malaysia, 2013 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Food and Nutrition Sciences) The Graduate School The University of Maine August 2017 Advisory Committee: Balunkeswar Nayak, Assistant Professor of Food Processing, Advisor Soheila Maleki, Lead Scientist, USDA-ARS, Southern Regional Research Center Dorothy Klimis-Zacas, Professor of Clinical Nutrition Eric Gallandt, Professor of Weed Ecology Denise Skonberg, Associate Professor of Food Science Vivian Wu, Research Leader, USDA-ARS, Western Regional Research Center © 2017 Adeseye O. Lasekan All Rights Reserved ii ATTENUATING THE ANTIBODY REACTIVITY OF THE SHRIMP MAJOR ALLERGEN (TROPOMYOSIN) USING FOOD PROCESSING METHODS By Adeseye Lasekan Dissertation Advisor: Dr.
    [Show full text]
  • TNNT2 Mutations in the Tropomyosin Binding Region of TNT1 Disrupt Its Role in Contractile Inhibition and Stimulate Cardiac Dysfunction
    TNNT2 mutations in the tropomyosin binding region of TNT1 disrupt its role in contractile inhibition and stimulate cardiac dysfunction Aditi Madana, Meera C. Viswanathana, Kathleen C. Woulfeb, William Schmidta, Agnes Sidora, Ting Liua, Tran H. Nguyena, Bosco Trinhc, Cortney Wilsonb, Sineej Madathild, Georg Voglerc, Brian O’Rourkea, Brandon J. Biesiadeckie,f, Larry S. Tobacmand, and Anthony Cammaratoa,g,1 aDepartment of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205; bDepartment of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045; cDevelopment, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; dDepartment of Medicine, University of Illinois College of Medicine, Chicago, IL 60612; eDepartment of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210; fThe Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210; and gDepartment of Physiology, Johns Hopkins University, Baltimore, MD 21205 Edited by Edwin W. Taylor, The University of Chicago, Chicago, IL, and approved June 15, 2020 (received for review January 28, 2020) Muscle contraction is regulated by the movement of end-to-end- “closed” C-state position, which partially uncovers myosin binding linked troponin−tropomyosin complexes over the thin filament sur- sites. Subsequent binding of a small population of myosin cross- face, which uncovers or blocks myosin binding sites along F-actin. bridges further displaces Tpm to an “open” M-state position, The N-terminal half of troponin T (TnT), TNT1, independently pro- completely exposing neighboring binding sites, leading to coop- motes tropomyosin-based, steric inhibition of acto-myosin associa- erative, full filament activation.
    [Show full text]
  • Tropomyosin Movement Is Described by a Quantitative High‑Resolution Model of X‑Ray Diffraction of Contracting Muscle
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Tropomyosin movement is described by a quantitative high‑resolution model of X‑ray diffraction of contracting muscle Koubassova, Natalia A.; Bershitsky, Sergey Y.; Ferenczi, Michael Alan; Narayanan, Theyencheri; Tsaturyan, Andrey K. 2016 Koubassova, N. A., Bershitsky, S. Y., Ferenczi, M. A., Narayanan, T., & Tsaturyan, A. K. (2017). Tropomyosin movement is described by a quantitative high‑resolution model of X‑ray diffraction of contracting muscle. European Biophysics Journal, 46(4), 335‑342. https://hdl.handle.net/10356/82598 https://doi.org/10.1007/s00249‑016‑1174‑6 © 2016 European Biophysical Societies' Association. This is the author created version of a work that has been peer reviewed and accepted for publication in European Biophysics Journal, published by Springer Berlin Heidelberg on behalf of European Biophysical Societies' Association. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1007/s00249‑016‑1174‑6]. Downloaded on 26 Sep 2021 21:50:01 SGT Tropomyosin movement is described by a quantitative high resolution model of x- ray diffraction of contracting muscle Pre-publication : not for distribution Koubassova N.A.1, Bershitsky S.Y.2, Ferenczi M.A.3, Narayanan T.4, Tsaturyan A.K.1 1Institute of Mechanics, M.V. Lomonosov Moscow University, Moscow, Russia; 2Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia; 3Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore 4European Synchrotron Radiation Facility, Grenoble, France Contact information: Dr.
    [Show full text]
  • Tropomyosin (CH1): Sc-58868
    SANTA CRUZ BIOTECHNOLOGY, INC. Tropomyosin (CH1): sc-58868 BACKGROUND STORAGE Tropomyosins are a group of structural proteins. Tropomyosins are present in Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of virtually all eukaryotic cells, both muscle and non-muscle, where they bind shipment. Non-hazardous. No MSDS required. Actin filaments and function to modulate Actin-Myosin interaction and stabi- lize Actin filament structure. Tropomyosin α is encoded by the TPM1 gene, DATA which maps to human chromosome 15q22.2 and undergoes alternative splic- ing to generate at least four isoforms, including skeletal muscle (isoform 1), AB CD 52 K – smooth muscle (isoform 2), fibroblast/TM3 (isoform 3) and isoform 4. 55 K – Tropomyosin β is encoded by the TPM2 gene, which maps to human chromo- < Tropomyosin some 9p13.3 and undergoes alternative splicing to generate three isoforms, 43 K – 35 K – including skeletal muscle (isoform 1), non-muscle/fibroblast TM36/epithelial Tropomyosin TMe1 (isoform 2) and non-muscle (isoform 3). Troponin I binds Tropomyosin 34K– 21K– at a specific region and the association of Tropomyosin-Troponin with Actin filaments may increase the rigidity of Actin filaments. Tropomyosin also interacts with Caldesmon to regulate smooth muscle contraction. Tropomyosin (CH1): sc-58868. Western blot analysisof Tropomyosin (CH1): sc-58868. Western blot analysisof Tropomyosin expressioninL8(A)wholecell lysate, rat Tropomyosin expressioninrat hearttissueextract. skeletal muscle (B), and human heart (C,D) tissue CHROMOSOMAL LOCATION extract, underreducing (A,B,C)andnon-reducing (D) conditions. Genetic locus: TPM1 (human) mapping to 15q22.2; Tpm1 (mouse) mapping to 9 C. SELECT PRODUCT CITATIONS 1.
    [Show full text]
  • Cytoskeletal Proteins in Neurological Disorders
    cells Review Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders Diana C. Muñoz-Lasso 1 , Carlos Romá-Mateo 2,3,4, Federico V. Pallardó 2,3,4 and Pilar Gonzalez-Cabo 2,3,4,* 1 Department of Oncogenomics, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, 46010 Valencia, Spain; [email protected] (C.R.-M.); [email protected] (F.V.P.) 3 CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain 4 Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-395-036 Received: 10 December 2019; Accepted: 29 January 2020; Published: 4 February 2020 Abstract: Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
    [Show full text]
  • Electrophoresis (100-A Filaments/Muscle Contractile Proteins/Two-Dimensional Isoelectric Focusing/Sodium Dodecyl Sulfate Gel Electrophoresis) JONATHAN G
    Proc. Nat!. Acad. Sci. USA Vol. 74, No. 4, pp. 1450-1454, April 1974 Biochemistry Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two-dimensional gel electrophoresis (100-A filaments/muscle contractile proteins/two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis) JONATHAN G. IZANT* AND ELIAS LAZARIDES*tS * Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309; and t Division of Biology, California Institute of Technology, Pasadena, California 91125 Communicated by William B. Wood, January 17, 1977 ABSTRACT A two-dimensional gel electrophoresis system the amino-acid sequences of selected tryptic peptides of muscle is used to investigate some of the properties of desmin, the major subunit of the 1o0-A filaments from chick muscle cells, and to and nonmuscle actins (15), by tryptic peptide analysis (16), by compare these properties to those of the other major contractile sodium dodecyl sulfate (NaDodSO4)/urea/polyacrylamide gel and regulatory proteins of muscle. Desmin from embryonic and electrophoresis (PAGE) (17, 18), and by two- dimensional iso- adult smooth, skeletal, and cardiac muscle cells is resolved into electric-focusing (IEF) in conjunction with in vitro protein two isoelectric variants, a and fl, which possess slightly different synthesis to detect isoelectric variants of actin in differentiating electrophoretic mobilities in sodium dodecyl sulfate/polyac- cultured muscle cells (19). The results suggest that distinct genes rylamide gel electrophoresis. Both the a and the # variants from code for the muscle and all six preparations appear to be identical in isoelectric point nonmuscle forms of actin.
    [Show full text]
  • Molecular Interactions Among the Intermediate Filament Proteins Paranemin, Synemin and Desmin and Their Localization During Skeletal Muscle Cell Development
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2002 Molecular interactions among the intermediate filament proteins paranemin, synemin and desmin and their localization during skeletal muscle cell development Stephanie Ann Lex Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Lex, Stephanie Ann, "Molecular interactions among the intermediate filament proteins paranemin, synemin and desmin and their localization during skeletal muscle cell development" (2002). Retrospective Theses and Dissertations. 20141. https://lib.dr.iastate.edu/rtd/20141 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Molecular interactions among the intermediate filament proteins paranemin, synemin and desmin and their localization during skeletal muscle cell development by Stephanie Ann Lex A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Biochemistry Program of Study Committee: Richard M. Robson, Major Professor Elizabeth J. Huff-Lonergan Ted W. Huiatt Marvin H. Stromer Iowa State University Ames, Iowa 2002 11 Graduate College Iowa State University
    [Show full text]
  • Troponin T Is Essential for Sarcomere Assembly in Zebrafish Skeletal Muscle
    Research Article 565 Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle Maria I. Ferrante*, Rebecka M. Kiff, David A. Goulding and Derek L. Stemple‡ Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK *Present Address: Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ‡Author for correspondence ([email protected]) Accepted 6 October 2010 Journal of Cell Science 124, 565-577 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.071274 Summary In striated muscle, the basic contractile unit is the sarcomere, which comprises myosin-rich thick filaments intercalated with thin filaments made of actin, tropomyosin and troponin. Troponin is required to regulate Ca2+-dependent contraction, and mutant forms of troponins are associated with muscle diseases. We have disrupted several genes simultaneously in zebrafish embryos and have followed the progression of muscle degeneration in the absence of troponin. Complete loss of troponin T activity leads to loss of sarcomere structure, in part owing to the destructive nature of deregulated actin–myosin activity. When troponin T and myosin activity are simultaneously disrupted, immature sarcomeres are rescued. However, tropomyosin fails to localise to sarcomeres, and intercalating thin filaments are missing from electron microscopic cross-sections, indicating that loss of troponin T affects thin filament composition. If troponin activity is only partially disrupted, myofibrils are formed but eventually disintegrate owing to deregulated actin–myosin activity. We conclude that the troponin complex has at least two distinct activities: regulation of actin–myosin activity and, independently, a role in the proper assembly of thin filaments. Our results also indicate that sarcomere assembly can occur in the absence of normal thin filaments.
    [Show full text]
  • Actinin and Tropomyosin in Muscle and Nonmuscle Systems Judith Vance Schollmeyer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Localization of [alpha]-actinin and tropomyosin in muscle and nonmuscle systems Judith Vance Schollmeyer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biology Commons Recommended Citation Schollmeyer, Judith Vance, "Localization of [alpha]-actinin and tropomyosin in muscle and nonmuscle systems " (1976). Retrospective Theses and Dissertations. 5703. https://lib.dr.iastate.edu/rtd/5703 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]