Sarcomere Structure: the Importance of Desmin Protein in Muscle Atrophy
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Desmin Interacts Directly with Mitochondria
International Journal of Molecular Sciences Article Desmin Interacts Directly with Mitochondria Alexander A. Dayal 1, Natalia V. Medvedeva 1, Tatiana M. Nekrasova 1, Sergey D. Duhalin 1, Alexey K. Surin 1,2 and Alexander A. Minin 1,* 1 Institute of Protein Research of Russian Academy of Sciences, Vavilova st., 34, 119334 Moscow, Russia; [email protected] (A.A.D.); [email protected] (N.V.M.); [email protected] (T.M.N.); [email protected] (S.D.D.); [email protected] (A.K.S.) 2 Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected] Received: 14 October 2020; Accepted: 26 October 2020; Published: 30 October 2020 Abstract: Desmin intermediate filaments (IFs) play an important role in maintaining the structural and functional integrity of muscle cells. They connect contractile myofibrils to plasma membrane, nuclei, and mitochondria. Disturbance of their network due to desmin mutations or deficiency leads to an infringement of myofibril organization and to a deterioration of mitochondrial distribution, morphology, and functions. The nature of the interaction of desmin IFs with mitochondria is not clear. To elucidate the possibility that desmin can directly bind to mitochondria, we have undertaken the study of their interaction in vitro. Using desmin mutant Des(Y122L) that forms unit-length filaments (ULFs) but is incapable of forming long filaments and, therefore, could be effectively separated from mitochondria by centrifugation through sucrose gradient, we probed the interaction of recombinant human desmin with mitochondria isolated from rat liver. Our data show that desmin can directly bind to mitochondria, and this binding depends on its N-terminal domain. -
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Haploinsufficiency of the Schizophrenia and Autism Risk Gene
Haan et al. Translational Psychiatry (2021) 11:313 https://doi.org/10.1038/s41398-021-01415-6 Translational Psychiatry ARTICLE Open Access Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms Niels Haan 1,LauraJ.Westacott1, Jenny Carter1,MichaelJ.Owen 1, William P. Gray1,2,3, Jeremy Hall 1,3 and Lawrence S. Wilkinson1,3,4 Abstract Genetic risk factors can significantly increase chances of developing psychiatric disorders, but the underlying biological processes through which this risk is effected remain largely unknown. Here we show that haploinsufficiency of Cyfip1, a candidate risk gene present in the pathogenic 15q11.2(BP1–BP2) deletion may impact on psychopathology via abnormalities in cell survival and migration of newborn neurons during postnatal hippocampal neurogenesis. We demonstrate that haploinsufficiency of Cyfip1 leads to increased numbers of adult-born hippocampal neurons due to reduced apoptosis, without altering proliferation. We show this is due to a cell autonomous failure of microglia to induce apoptosis through the secretion of the appropriate factors, a previously undescribed mechanism. Furthermore, we show an abnormal migration of adult-born neurons due to altered Arp2/3 mediated actin dynamics. Together, our findings throw new light on how the genetic risk candidate Cyfip1 may influence the hippocampus, a brain region 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; with strong evidence for involvement in psychopathology. Introduction (BP1–BP2) psychiatric phenotype due to evidence of Many psychiatric conditions show high heritability. CYFIP1’s involvement in a range of synaptic functions, Recent genetic studies in schizophrenia for example have including key roles in dendritic spine morphology and – identified up to 160 loci that increase risk for the dis- branching9 11. -
Differential Expression of Two Neuronal Intermediate-Filament Proteins, Peripherin and the Low-Molecular-Mass Neurofilament Prot
The Journal of Neuroscience, March 1990, fO(3): 764-764 Differential Expression of Two Neuronal Intermediate-Filament Proteins, Peripherin and the Low-Molecular-Mass Neurofilament Protein (NF-L), During the Development of the Rat Michel Escurat,’ Karima Djabali,’ Madeleine Gumpel,2 Franqois Gras,’ and Marie-Madeleine Portier’ lCollBne de France, Biochimie Cellulaire, 75231 Paris Cedex 05, France, *HBpital de la Salpktricke, Unite INSERM 134, 75651Paris Cedex 13, France The expression of peripherin, an intermediate filament pro- and Freeman, 1978), now more generally referred to respectively tein, had been shown by biochemical methods to be local- as high-, middle-, and low-molecular-mass NFP (NF-H, NF-M, ized in the neurons of the PNS. Using immunohistochemical and NF-L). These proteins are expressed in most mature neu- methods, we analyzed this expression more extensively dur- ronal populations belonging either to the CNS or to the PNS; ing the development of the rat and compared it with that of developing neurons generally do not express any of them until the low-molecular-mass neurofilament protein (NF-L), which they become postmitotic (Tapscott et al., 198 la). is expressed in every neuron of the CNS and PNS. We, however, described another IFP with a molecular weight The immunoreactivity of NF-L is first apparent at the 25 of about 57 kDa, which we had first observed in mouse neu- somite stage (about 11 d) in the ventral horn of the spinal roblastoma cell lines and which was also expressed in rat pheo- medulla and in the posterior part of the rhombencephalon. chromocytoma PC1 2 cell line. -
The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts. -
Structural Biology of the Dystrophin-Deficient Muscle Fiber
Dystrophin-deficient muscle fiber REVIEW ISSN- 0102-9010145 STRUCTURAL BIOLOGY OF THE DYSTROPHIN-DEFICIENT MUSCLE FIBER Maria Julia Marques Department of Anatomy, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil. ABSTRACT The discovery of dystrophin and its gene has led to major advances in our understanding of the molecular basis of Duchenne, Becker and other muscular dystrophies related to the dystrophin-associated protein complex. The concept that dystrophin has a mechanical function in stabilizing the muscle fiber membrane has expanded in the last five years. The dystrophin-glycoprotein complex is now considered a multifunctional complex that contains molecules involved in signal transduction cascades important for cell survival. The roles of dystrophin and the dystrophin- glycoprotein complex in positioning and anchoring receptors and ion channels is also important, and much of what is known about these functions is based on studies of the neuromuscular synapse. In this review, we discuss the components and the cellular signaling molecules associated with the dystrophin-glycoprotein complex. We then focus on the molecular organization of the neuromuscular junction and its structural organization in the dystrophin-deficient muscle fibers of mdx mice, a well-established experimental model of Duchenne muscular dystrophy. Key words: Confocal microscopy, Duchenne muscular dystrophy, mdx, neuromuscular junction INTRODUCTION that can improve the quality of life of the patients, Duchenne muscular dystrophy (DMD) is an X- death usually occurs in the early twenties, as a result linked recessive, progressive muscle-wasting disease of cardiac and/or respiratory failures [24]. that affects primarily skeletal and cardiac muscle. Several other muscular dystrophies have been DMD was first reported in 1868 by Dr. -
Absence of NEFL in Patient-Specific Neurons in Early-Onset Charcot-Marie-Tooth Neuropathy Markus T
ARTICLE OPEN ACCESS Absence of NEFL in patient-specific neurons in early-onset Charcot-Marie-Tooth neuropathy Markus T. Sainio, MSc, Emil Ylikallio, MD, PhD, Laura M¨aenp¨a¨a, MSc, Jenni Lahtela, PhD, Pirkko Mattila, PhD, Correspondence Mari Auranen, MD, PhD, Johanna Palmio, MD, PhD, and Henna Tyynismaa, PhD Dr. Tyynismaa [email protected] Neurol Genet 2018;4:e244. doi:10.1212/NXG.0000000000000244 Abstract Objective We used patient-specific neuronal cultures to characterize the molecular genetic mechanism of recessive nonsense mutations in neurofilament light (NEFL) underlying early-onset Charcot- Marie-Tooth (CMT) disease. Methods Motor neurons were differentiated from induced pluripotent stem cells of a patient with early- onset CMT carrying a novel homozygous nonsense mutation in NEFL. Quantitative PCR, protein analytics, immunocytochemistry, electron microscopy, and single-cell transcriptomics were used to investigate patient and control neurons. Results We show that the recessive nonsense mutation causes a nearly total loss of NEFL messenger RNA (mRNA), leading to the complete absence of NEFL protein in patient’s cultured neurons. Yet the cultured neurons were able to differentiate and form neuronal networks and neuro- filaments. Single-neuron gene expression fingerprinting pinpointed NEFL as the most down- regulated gene in the patient neurons and provided data of intermediate filament transcript abundancy and dynamics in cultured neurons. Blocking of nonsense-mediated decay partially rescued the loss of NEFL mRNA. Conclusions The strict neuronal specificity of neurofilament has hindered the mechanistic studies of re- cessive NEFL nonsense mutations. Here, we show that such mutation leads to the absence of NEFL, causing childhood-onset neuropathy through a loss-of-function mechanism. -
BD Horizon™ V450 Mouse Anti-Nestin
BD Horizon™ Technical Data Sheet V450 Mouse anti-Nestin Product Information Material Number: 561551 Size: 50 tests Vol. per Test: 5 µl Clone: 25/NESTIN Immunogen: Rat Nestin aa. 402-604 Recombinant Protein Isotype: Mouse IgG1, κ Reactivity: QC Testing: Rat Reported: Human Storage Buffer: Aqueous buffered solution containing protein stabilizer and ≤0.09% sodium azide. Description The cytoskeleton consists primarily of core structural proteins that include microfilaments, microtubules, and intermediate filaments (IFs). IFs contain more than 50 distinct proteins that are organized into six different subtypes: Type I/II keratins expressed in epithelia, type III vimentin/desmin, type IV neurofilament proteins, type V nuclear lamins, and type VI nestin expressed primarily in embryonic cells. Nestin has a conserved core region (amino acids 7 to 314), which contains an α helical domain that is involved in coiled-coil assembly of IFs. The C-terminal region of nestin is similar to type IV IFs, since it contains highly charged amino acids, many glutamate residues, and an 11 amino acid repeat motif. Nestin is expressed in the cerebrum during embryonic development, in the cerebellum during early postnatal development, and in dermatomal cells and myoblasts during myogenesis. In vitro, nestin forms homodimers and homotetramers, but not IFs, and can co-assemble with type III vimentin and type IV internexin proteins. Thus, nestin is a core IF protein that is essential for proper cytoskeletal formation during neurogenesis and myogenesis. The antibody is conjugated to BD Horizon™ V450, which has been developed for use in multicolor flow cytometry experiments and is available exclusively from BD Biosciences. -
Influence of Nebulin on the Assembly Mechanics Of
INFLUENCE OF NEBULIN ON THE ASSEMBLY MECHANICS OF DESMIN An Undergraduate Research Scholars Thesis by MARC ADRIAN CARAGEA Submitted to Honors and Undergraduate Research Texas A&M University In partial fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Adviser: Gloria M. Conover, Ph.D. May 2014 Major: Biomedical Sciences TABLE OF CONTENTS Page ABSTRACT ............................................................................................................................... 1 ACKNOWLEDGMENTS ........................................................................................................... 2 NOMENCLATURE .................................................................................................................... 3 CHAPTER I INTRODUCTION ............................................................................................... 4 II MATERIALS AND METHODS ......................................................................... 8 Affinity purification of WT and mutant desmin proteins from bacteria ................ 8 Affinity purification of recombinant Nebulin M160 – 164 ................................... 9 Assembly protocol for desmin precursors into filaments in vitro ...................... 11 Sample preparation for atomic force microscopy ............................................... 11 Single desmin filament length acquisition and analysis ..................................... 13 Determination of Young’s modulus for desmin filament networks ................... -
Control of Molecular Motor Motility in Electrical Devices
Control of Molecular Motor Motility in Electrical Devices Thesis submitted in accordance with the requirements of The University of Liverpool for the degree of Doctor in Philosophy By Laurence Charles Ramsey Department of Electrical Engineering & Electronics April 2014 i Abstract In the last decade there has been increased interest in the study of molecular motors. Motor proteins in particular have gained a large following due to their high efficiency of force generation and the ability to incorporate the motors into linear device designs. Much of the recent research centres on using these protein systems to transport cargo around the surface of a device. The studies carried out in this thesis aim to investigate the use of molecular motors in lab- on-a-chip devices. Two distinct motor protein systems are used to show the viability of utilising these nanoscale machines as a highly specific and controllable method of transporting molecules around the surface of a lab-on-a-chip device. Improved reaction kinetics and increased detection sensitivity are just two advantages that could be achieved if a motor protein system could be incorporated and appropriately controlled within a device such as an immunoassay or microarray technologies. The first study focuses on the motor protein system Kinesin. This highly processive motor is able to propel microtubules across a surface and has shown promise as an in vitro nanoscale transport system. A novel device design is presented where the motility of microtubules is controlled using the combination of a structured surface and a thermoresponsive polymer. Both topographic confinement of the motility and the creation of localised ‘gates’ are used to show a method for the control and guidance of microtubules. -
Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact
G C A T T A C G G C A T genes Communication Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team Gil Rodas 1 ,Víctor Moreno-Pérez 2, Juan Del Coso 3,* , Daniel Florit 1, Lourdes Osaba 4 and Alejandro Lucia 5,6,* 1 Medical Department, Futbol Club Barcelona, Barça Innovation Hub, 08028 Barcelona, Spain; [email protected] (G.R.); daniel.fl[email protected] (D.F.) 2 Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Miguel Hernandez University of Elche, 03202 Elche, Spain; [email protected] 3 Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain 4 Progenika Biopharma, A Grifols Company, 48160 Derio, Spain; [email protected] 5 Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain 6 Research Institute Imas12, Hospital 12 de Octubre, 28041 Madrid, Spain * Correspondence: [email protected] (J.D.C.); [email protected] (A.L.) Abstract: There are recent data suggesting an association between the R577X polymorphism (rs1815 739) in the gene encoding α-actinin-3 (ACTN3) and the risk of musculoskeletal injuries. The purpose of this study was to analyze the association of rs1815739 with risk of, and recovery time from non- Citation: Rodas, G.; Moreno-Pérez, contact soft-tissue muscle injuries in professional soccer players. Forty-six (22 male and 24 female) V.; Del Coso, J.; Florit, D.; Osaba, L.; players from a top-level professional soccer team were assessed during five consecutive seasons: Lucia, A. -
Contralateral Recurrence of Aggressive Fibromatosis in a Young Woman: a Case Report and Review of the Literature
ONCOLOGY LETTERS 10: 325-328, 2015 Contralateral recurrence of aggressive fibromatosis in a young woman: A case report and review of the literature CHRISTOPHER J. SCHMOYER, HARMAR D. BRERETON and ERIC W. BLOMAIN Clinical Faculty, Department of Medicine, The Commonwealth Medical College, Scranton, PA 18509, USA Received August 9, 2014; Accepted April 24, 2015 DOI: 10.3892/ol.2015.3215 Abstract. Aggressive fibromatosis (AF) is a benign and shoulder girdle. Individuals with familial adenomatous non-encapsulated tumor of mesenchymal origin, with a polyposis (FAP) or Gardner's syndrome have a 1,000 times tendency for local spread along fascial planes. Local inva- greater risk for developing the disease due to inheritance of sion can lead to extensive morbidity and even mortality due the adenomatous polyposis coli (APC) gene (3). These patients to destruction of the bones, organs and soft tissues. This rare may present with intra-abdominal lesions following colonic lesion is observed 1,000 times more frequently in patients with resection (4). While AF does not metastasize, local recurrence familial adenomatous polyposis or Gardner's syndrome due to is common. Distant recurrence is extremely rare, but is typi- the inheritance of the adenomatous polyposis coli (APC) gene. cally observed in those with a new primary tumor associated While AF does not metastasize, local recurrence is common. with the APC mutation. The present study reports the case of Distant recurrence is extremely rare, but is observed in those a 20-year-old female with sporadic contralateral recurrence of with a germ line APC mutation. The present study details clinically diagnosed AF and no familial predisposition.