StructureoftheRigor Actin-Tropomyosin-Myosin Complex Elmar Behrmann,1 Mirco Mu¨ller,2 Pawel A. Penczek,3 Hans Georg Mannherz,1,4 Dietmar J. Manstein,2,* and Stefan Raunser1,* 1Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany 2Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany 3Department of Biochemistry and Molecular Biology, The University of Texas, Houston Medical School, Houston, TX 77030, USA 4Department of Anatomy and Molecular Embryology, Ruhr-University, 44801 Bochum, Germany *Correspondence:
[email protected] (D.J.M.),
[email protected] (S.R.) http://dx.doi.org/10.1016/j.cell.2012.05.037 SUMMARY states of the actomyosin complex (Sweeney and Houdusse, 2010). It has only been partially characterized at the structural Regulation of myosin and filamentous actin interac- level. Crystal structures of myosin motor domains in the absence tion by tropomyosin is a central feature of contractile or presence of nucleotides or nucleotide analogs provide events in muscle and nonmuscle cells. However, little detailed insights into states, in which myosin is dissociated is known about molecular interactions within the from the actin filament (Figure 1A) (Coureux et al., 2004; complex and the trajectory of tropomyosin move- Houdusse et al., 2000). However, because the complex of fila- ment between its ‘‘open’’ and ‘‘closed’’ positions on mentous (F)-actin with myosin (Figure 1A) is refractory to crystal- lization, structural information on the actin-myosin complex was the actin filament. Here, we report the 8 A˚ resolution only obtained at medium resolution from X-ray fiber diffraction structure of the rigor (nucleotide-free) actin-tropo- (Huxley et al., 1980; Irving et al., 2000) and cryo-electron micro- myosin-myosin complex determined by cryo-elec- scopic (cryo-EM) studies (Holmes et al., 2003; Rayment et al., tron microscopy.