Postmortem Changes in the Myofibrillar and Other Cytoskeletal Proteins in Muscle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Protein Materials Balance Strength, Robustness and Adaptability
How Protein Materials Balance Strength, Robustness And Adaptability The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Buehler, Markus J., and Yu Ching Yung. “How protein materials balance strength, robustness, and adaptability.” HFSP Journal 4.1 (2010): 26-40. As Published http://dx.doi.org/10.2976/1.3267779 Publisher American Institute of Physics Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/67894 Terms of Use Attribution-Noncommercial-Share Alike 3.0 Unported Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ How protein materials balance strength, robustness and adaptability Markus J. Buehler1,2,3*, Yu Ching Yung1 1Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, 77 Massachusetts Ave. Room 1-235A&B, Cambridge, MA, USA 2Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA 3Center for Computational Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA * E-mail: [email protected], Lab URL: http://web.mit.edu/mbuehler/www/ Abstract: Proteins form the basis of a wide range of biological materials such as hair, skin, bone, spider silk or cells, which play an important role in providing key functions to biological systems. The focus of this article is to discuss how protein materials are capable of balancing multiple, seemingly incompatible properties such as strength, robustness and adaptability. Here we review bottom-up materiomics studies focused on the mechanical behavior of protein materials at multiple scales, from nano to macro. -
Nebulette Is a Powerful Cytolinker Organizing Desmin and Actin in Mouse Hearts
M BoC | ARTICLE Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts Daniel A. Hernandeza,†, Christina M. Bennetta,†, Lyubov Dunina-Barkovskayaa, Tatjana Wedigb, Yassemi Capetanakic, Harald Herrmannb,d, and Gloria M. Conovera,* aDepartment of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474; bDivision of Molecular Genetics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; cCenter of Basic Research, Biomedi- cal Research Foundation Academy of Athens, Athens 11527, Greece; dInstitute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany ABSTRACT In the hearts of patients bearing nebulette mutations, a severe general disorgani- Monitoring Editor zation in cardiomyocytes of the extrasarcomeric desmin intermediate filament system is fre- Robert D. Goldman quently observed. However, the molecular and functional relationship between the desmin Northwestern University cytoskeleton and nebulette-containing sarcomeres is still unclear. Here we report a high-affinity Received: Apr 18, 2016 in vitro interaction between nebulette and desmin filaments. A major interaction site has been Revised: Aug 31, 2016 mapped to the desmin α-helical rod domain, indicating that the filament core is directly in- Accepted: Oct 5, 2016 volved in the binding of nebulette. The disease-mutant desmin variants E245D and T453I ex- hibited increased binding affinity for nebulette, delayed filament assembly kinetics, and caused significant weakening of networks. In isolated chick cardiomyocytes and sections from canine heart, we revealed by ground-state depletion and confocal microscopies that module 5 of nebulette extends outward from Z-disk–associated desmin filaments toward the center of the sarcomere. Accordingly, in the myocardium of Des−/− mice, elevated levels of cardiac actin cor- related with alterations in the distribution of nebulette. -
The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts. -
Genetic Mutations and Mechanisms in Dilated Cardiomyopathy
Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz J Clin Invest. 2013;123(1):19-26. https://doi.org/10.1172/JCI62862. Review Series Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia. Find the latest version: https://jci.me/62862/pdf Review series Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, Jessica R. Golbus, and Megan J. Puckelwartz Department of Human Genetics, University of Chicago, Chicago, Illinois, USA. Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of conges- tive heart failure. -
Mutations in Desmin's Carboxy-Terminal “Tail” Domain Severely Modify Filament and Network Mechanics
doi:10.1016/j.jmb.2010.02.024 J. Mol. Biol. (2010) 397, 1188–1198 Available online at www.sciencedirect.com Mutations in Desmin's Carboxy-Terminal “Tail” Domain Severely Modify Filament and Network Mechanics Harald Bär1,2†, Michael Schopferer3†, Sarika Sharma1,2, Bernhard Hochstein3, Norbert Mücke4, Harald Herrmann2 and Norbert Willenbacher3⁎ 1Department of Cardiology, Inherited mutations in the gene coding for the intermediate filament protein University of Heidelberg, desmin have been demonstrated to cause severe skeletal and cardiac 69120 Heidelberg, Germany myopathies. Unexpectedly, some of the mutated desmins, in particular those carrying single amino acid alterations in the non-α-helical carboxy- 2Group Functional Architecture terminal domain (“tail”), have been demonstrated to form apparently of the Cell, German Cancer normal filaments both in vitro and in transfected cells. Thus, it is not clear if Research Center, filament properties are affected by these mutations at all. For this reason, we 69120 Heidelberg, Germany performed oscillatory shear experiments with six different desmin “tail” 3Institute of Mechanical Process mutants in order to characterize the mesh size of filament networks and Engineering and Mechanics, their strain stiffening properties. Moreover, we have carried out high- University of Karlsruhe, frequency oscillatory squeeze flow measurements to determine the bending Gotthard-Franz-Straße 3, 76131 stiffness of the respective filaments, characterized by the persistence length Karlsruhe, Germany lp. Interestingly, mesh size was not altered for the mutant filament 4 networks, except for the mutant DesR454W, which apparently did not Division of Biophysics of form proper filament networks. Also, the values for bending stiffness were Macromolecules, German “ ” – μ in the same range for both the tail mutants (lp =1.0 2.0 m) and the wild- Cancer Research Center, μ type desmin (lp =1.1±0.5 m). -
List of Genes Associated with Sudden Cardiac Death (Scdgseta) Gene
List of genes associated with sudden cardiac death (SCDgseta) mRNA expression in normal human heart Entrez_I Gene symbol Gene name Uniprot ID Uniprot name fromb D GTEx BioGPS SAGE c d e ATP-binding cassette subfamily B ABCB1 P08183 MDR1_HUMAN 5243 √ √ member 1 ATP-binding cassette subfamily C ABCC9 O60706 ABCC9_HUMAN 10060 √ √ member 9 ACE Angiotensin I–converting enzyme P12821 ACE_HUMAN 1636 √ √ ACE2 Angiotensin I–converting enzyme 2 Q9BYF1 ACE2_HUMAN 59272 √ √ Acetylcholinesterase (Cartwright ACHE P22303 ACES_HUMAN 43 √ √ blood group) ACTC1 Actin, alpha, cardiac muscle 1 P68032 ACTC_HUMAN 70 √ √ ACTN2 Actinin alpha 2 P35609 ACTN2_HUMAN 88 √ √ √ ACTN4 Actinin alpha 4 O43707 ACTN4_HUMAN 81 √ √ √ ADRA2B Adrenoceptor alpha 2B P18089 ADA2B_HUMAN 151 √ √ AGT Angiotensinogen P01019 ANGT_HUMAN 183 √ √ √ AGTR1 Angiotensin II receptor type 1 P30556 AGTR1_HUMAN 185 √ √ AGTR2 Angiotensin II receptor type 2 P50052 AGTR2_HUMAN 186 √ √ AKAP9 A-kinase anchoring protein 9 Q99996 AKAP9_HUMAN 10142 √ √ √ ANK2/ANKB/ANKYRI Ankyrin 2 Q01484 ANK2_HUMAN 287 √ √ √ N B ANKRD1 Ankyrin repeat domain 1 Q15327 ANKR1_HUMAN 27063 √ √ √ ANKRD9 Ankyrin repeat domain 9 Q96BM1 ANKR9_HUMAN 122416 √ √ ARHGAP24 Rho GTPase–activating protein 24 Q8N264 RHG24_HUMAN 83478 √ √ ATPase Na+/K+–transporting ATP1B1 P05026 AT1B1_HUMAN 481 √ √ √ subunit beta 1 ATPase sarcoplasmic/endoplasmic ATP2A2 P16615 AT2A2_HUMAN 488 √ √ √ reticulum Ca2+ transporting 2 AZIN1 Antizyme inhibitor 1 O14977 AZIN1_HUMAN 51582 √ √ √ UDP-GlcNAc: betaGal B3GNT7 beta-1,3-N-acetylglucosaminyltransfe Q8NFL0 -
Influence of Nebulin on the Assembly Mechanics Of
INFLUENCE OF NEBULIN ON THE ASSEMBLY MECHANICS OF DESMIN An Undergraduate Research Scholars Thesis by MARC ADRIAN CARAGEA Submitted to Honors and Undergraduate Research Texas A&M University In partial fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Adviser: Gloria M. Conover, Ph.D. May 2014 Major: Biomedical Sciences TABLE OF CONTENTS Page ABSTRACT ............................................................................................................................... 1 ACKNOWLEDGMENTS ........................................................................................................... 2 NOMENCLATURE .................................................................................................................... 3 CHAPTER I INTRODUCTION ............................................................................................... 4 II MATERIALS AND METHODS ......................................................................... 8 Affinity purification of WT and mutant desmin proteins from bacteria ................ 8 Affinity purification of recombinant Nebulin M160 – 164 ................................... 9 Assembly protocol for desmin precursors into filaments in vitro ...................... 11 Sample preparation for atomic force microscopy ............................................... 11 Single desmin filament length acquisition and analysis ..................................... 13 Determination of Young’s modulus for desmin filament networks ................... -
Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation
This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Cellular/Molecular Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation Omotola F. Omotade1,3, Yanfang Rui1,3, Wenliang Lei1,3, Kuai Yu1, H. Criss Hartzell1, Velia M. Fowler4 and James Q. Zheng1,2,3 1Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322. 2Department of Neurology 3Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322. 4Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037 DOI: 10.1523/JNEUROSCI.3325-17.2018 Received: 22 November 2017 Revised: 25 September 2018 Accepted: 2 October 2018 Published: 9 October 2018 Author contributions: O.F.O. and J.Q.Z. designed research; O.F.O., Y.R., W.L., and K.Y. performed research; O.F.O. and J.Q.Z. analyzed data; O.F.O. and J.Q.Z. wrote the paper; Y.R., H.C.H., V.M.F., and J.Q.Z. edited the paper; V.M.F. contributed unpublished reagents/analytic tools. Conflict of Interest: The authors declare no competing financial interests. This research project was supported in part by research grants from National Institutes of Health to JQZ (GM083889, MH104632, and MH108025), OFO (5F31NS092437-03), VMF (EY017724) and HCH (EY014852, AR067786), as well as by the Emory University Integrated Cellular Imaging Microscopy Core of the Emory Neuroscience NINDS Core Facilities grant (5P30NS055077). We would like to thank Dr. Kenneth Myers for his technical expertise and help throughout the project. We also thank Drs. -
Profiling of the Muscle-Specific Dystroglycan Interactome Reveals the Role of Hippo Signaling in Muscular Dystrophy and Age-Dependent Muscle Atrophy Andriy S
Yatsenko et al. BMC Medicine (2020) 18:8 https://doi.org/10.1186/s12916-019-1478-3 RESEARCH ARTICLE Open Access Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy Andriy S. Yatsenko1†, Mariya M. Kucherenko2,3,4†, Yuanbin Xie2,5†, Dina Aweida6, Henning Urlaub7,8, Renate J. Scheibe1, Shenhav Cohen6 and Halyna R. Shcherbata1,2* Abstract Background: Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. Methods: To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors. -
Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics
International Journal of Molecular Sciences Review Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics Martijn van de Locht , Tamara C. Borsboom, Josine M. Winter and Coen A. C. Ottenheijm * Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands; [email protected] (M.v.d.L.); [email protected] (T.C.B.); [email protected] (J.M.W.) * Correspondence: [email protected]; Tel.: +31-(0)-20-444-8123 Abstract: The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of Citation: van de Locht, M.; treatment strategies. -
Physiologist Physiologist
Published by The American Physiological Society Integrating the Life Sciences from Molecule to Organism The PhysiologistPhysiologist Generating Support for Science INSIDE in the 111th Congress Rebecca Osthus APS Science Policy Analyst APS The 2008 election cycle brings a new is somewhat more promising. There is a administration to Washington, DC this plan to double the agency’s budget over Bylaw Changes January and also ushers in the 111th the next several years as part of the p. 240 Congress. With many new Members of America COMPETES Act, but so far Congress in both the House of yearly increases have not lived up to Representatives and the Senate, now is the goals laid out by Congress. Annual Meeting of the time for APS members to reach out Lawmakers are also making deci- the Nebraska and communicate the importance of sions about what regulations govern Physiological supporting biomedical research the use of animals in research, whether through strong federal funding and federally funded scientists should con- Society sound policy making. While scientists tinue to consult for and own stock in p. 243 carry out research in labs across the pharmaceutical and biotechnology com- country, many decisions are being made in APS Membership Washington, DC that Statistics will affect how they do p. 244 their jobs. The current fiscal cri- sis means that it is Starting a Lab: more important than How to Develop a ever before to make a strong case for federal Budget and Buy investment in research. Equipment Since the completion of p. 252 the doubling of the NIH budget, yearly increas- es have failed to keep Congress Extends pace with inflation, Current Levels of causing success rates for extramural grants Research Funding to fall into the teens. -
Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy
Journal of Clinical Medicine Review Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy Matthias Eden 1,2 and Norbert Frey 1,2,* 1 Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; [email protected] 2 German Centre for Cardiovascular Research, Partner Site Heidelberg, 69120 Heidelberg, Germany * Correspondence: [email protected] Abstract: Over the past decades, there has been tremendous progress in understanding genetic alterations that can result in different phenotypes of human cardiomyopathies. More than a thousand mutations in various genes have been identified, indicating that distinct genetic alterations, or combi- nations of genetic alterations, can cause either hypertrophic (HCM), dilated (DCM), restrictive (RCM), or arrhythmogenic cardiomyopathies (ARVC). Translation of these results from “bench to bedside” can potentially group affected patients according to their molecular etiology and identify subclinical individuals at high risk for developing cardiomyopathy or patients with overt phenotypes at high risk for cardiac deterioration or sudden cardiac death. These advances provide not only mechanistic insights into the earliest manifestations of cardiomyopathy, but such efforts also hold the promise that mutation-specific pathophysiology might result in novel “personalized” therapeutic possibilities. Recently, the FLNC gene encoding the sarcomeric protein filamin C has gained special interest since FLNC mutations were found in several distinct and possibly overlapping cardiomyopathy phenotypes. Specifically, mutations in FLNC were initially only linked to myofibrillar myopathy (MFM), but are now increasingly found in various forms of human cardiomyopathy. FLNC thereby Citation: Eden, M.; Frey, N. Cardiac represents another example for the complex genetic and phenotypic continuum of these diseases.