Troponin T Is Essential for Sarcomere Assembly in Zebrafish Skeletal Muscle

Total Page:16

File Type:pdf, Size:1020Kb

Troponin T Is Essential for Sarcomere Assembly in Zebrafish Skeletal Muscle Research Article 565 Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle Maria I. Ferrante*, Rebecka M. Kiff, David A. Goulding and Derek L. Stemple‡ Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK *Present Address: Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ‡Author for correspondence ([email protected]) Accepted 6 October 2010 Journal of Cell Science 124, 565-577 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.071274 Summary In striated muscle, the basic contractile unit is the sarcomere, which comprises myosin-rich thick filaments intercalated with thin filaments made of actin, tropomyosin and troponin. Troponin is required to regulate Ca2+-dependent contraction, and mutant forms of troponins are associated with muscle diseases. We have disrupted several genes simultaneously in zebrafish embryos and have followed the progression of muscle degeneration in the absence of troponin. Complete loss of troponin T activity leads to loss of sarcomere structure, in part owing to the destructive nature of deregulated actin–myosin activity. When troponin T and myosin activity are simultaneously disrupted, immature sarcomeres are rescued. However, tropomyosin fails to localise to sarcomeres, and intercalating thin filaments are missing from electron microscopic cross-sections, indicating that loss of troponin T affects thin filament composition. If troponin activity is only partially disrupted, myofibrils are formed but eventually disintegrate owing to deregulated actin–myosin activity. We conclude that the troponin complex has at least two distinct activities: regulation of actin–myosin activity and, independently, a role in the proper assembly of thin filaments. Our results also indicate that sarcomere assembly can occur in the absence of normal thin filaments. Key words: Muscle, Sarcomere, Troponin, Zebrafish Introduction clenched fist, overlapping fingers, ulnar deviation and positional Muscle cells possess an elaborate cytoskeletal structure, which is foot deformities. Mutations affecting the three cardiac subunits of essential for the coordination of contraction and the generation of the complex (TNNC1, TNNT2 and TNNI3) are also associated with force. The basic machinery of contraction is organised into bundles a variety of cardiomyopathies (Kimura et al., 1997; Landstrom et Journal of Cell Science of long myofibrils, which are each made of stacks of sarcomeres. al., 2008; Mogensen et al., 2003; Mogensen et al., 2004; Murphy Sarcomeres consist of thin filaments, attached to Z discs, and thick et al., 2004; Peddy et al., 2006; Thierfelder et al., 1994). filaments, attached to M lines. Filamentous actin associates with In addition to the known role in the regulation of contraction, tropomyosin, troponin and other proteins to form thin filaments, there is some evidence that troponin is required for formation and which intercalate with thick filaments that are predominantly made maintenance of sarcomeres. In zebrafish, mutations of the silent of myosin. The contraction of striated muscle is regulated by the heart locus, which encodes cardiac troponin T2, lead to sarcomere troponin protein complex, which mediates the Ca2+-dependent loss and myocyte disarray, attributed to coordinate reduction of interaction of actin and myosin within the sarcomere. The troponin thin filament gene expression (Sehnert et al., 2002). A similar complex possesses three subunits: troponin C, troponin I and disruption of sarcomere assembly was observed in Tnnt2–/– mice, troponin T. Troponin T anchors the complex to the thin filament which die during embryogenesis due to failure of cardiac by binding to tropomyosin. Following stimulation, calcium ions contraction (Ahmad et al., 2008; Nishii et al., 2008). Body wall released from the sarcoplasmic reticulum bind to troponin C and muscle contraction and sarcomere organisation are disrupted in this leads to conformational changes of the complex. Troponin I Caenorhabditis elegans mutants defective for genes encoding consequently relieves its inhibition, which allows the binding of troponin T or troponin I (Burkeen et al., 2004; Myers et al., 1996). myosin to actin. Simultaneously, troponin T and tropomyosin alter In Drosophila melanogaster, severe mutant alleles of troponin T conformation, allowing myosin-binding sites on actin to be exposed lead to a failure of sarcomere assembly, whereas hypomorphic (Alberts et al., 2007; Galinska-Rakoczy et al., 2008; Phillips et al., troponin mutant alleles initially develop normal muscle and then 1986; Zot and Potter, 1987). undergo muscle damage (Fyrberg et al., 1990). In humans, loss of function of the slow-twitch-muscle-specific We have used zebrafish to investigate the role of thin filament troponin T isoform TNNT1 causes a recessive form of Nemaline proteins in the process of sarcomere assembly. Zebrafish myopathy (OMIM 605355), a genetically heterogeneous disease development is rapid, with muscle fully differentiated by 48 hours resulting from mutations in thin filament genes and characterised post-fertilisation (hpf) (Kimmel et al., 1995). Zebrafish muscle has by muscle weakness and rod-like inclusions in muscle fibres a similar composition to human muscle, in comparison with (Johnston et al., 2000). Dominant mutations in the fast-twitch invertebrates (Bassett et al., 2003). Moreover, the optical properties skeletal troponin T isoform TNNT3 or the troponin I isoform of the embryo make it highly amenable to light microscopy. Like TNNI2 are responsible for a disorder called distal arthrogryposis in mouse and human, the troponin genes in zebrafish exist in type 2B (OMIM 601680) (Sung et al., 2003), characterised by several isoforms, differentially expressed in cardiac, slow-twitch 566 Journal of Cell Science 124 (4) or fast-twitch skeletal muscle (Fu et al., 2009; Hsiao et al., 2003). somitogenesis and is downregulated from 36 hpf, whereas the Additionally, troponin genes have been duplicated in the zebrafish tnnt3a and the tnnt3b genes are expressed from 18 hpf and 24 hpf, genome relative to mammalian genomes. The opportunity to respectively (Hsiao et al., 2003; Thisse and Thisse, 2005). We simultaneously knockdown expression of different genes using knocked down expression of all three genes simultaneously with combinations of antisense morpholino oligonucleotides (MOs) in translation-blocking MOs. Embryos injected with triple tnnt MOs zebrafish allows us to overcome this genetic redundancy were shorter than embryos injected with a single MO and were (Nasevicius and Ekker, 2000). occasionally bent, with abnormally shaped somites and pericardial We disrupted expression of different members of the troponin T oedema but with beating hearts, which indicated that the cardiac family. In fast-twitch muscle, redundant expression of three muscle in these embryos was functional. At 28 hpf, embryos were different troponin T genes (tnnt2c, tnnt3a and tnnt3b) guarantees immotile, and myofibrils in fast-twitch muscle depleted of tnnt2c, normal assembly in single loss-of-function experiments, but the tnnt3a and tnnt3b were markedly disorganised and very rarely concomitant knockdown of all three genes leads to a block in possessed any striations (Fig. 1A,B), indicating that functional normal myofibrillogenesis. We demonstrate that it is the loss of troponin T is required for sarcomere assembly in fast-twitch muscle. regulation of the actin–myosin activity that leads to failure of When analysed at 48 hpf, fast-twitch muscle in the triple MO- sarcomere assembly. When we block myosin function with the injected embryos showed a reduced level of filamentous actin, myosin inhibitor blebbistatin, striations are recovered but an which was distributed in small foci. This was coupled with a loss additional effect of the loss of troponin T function on thin filament of striation, as indicated by the anti-titin antibody T12, which assembly is unmasked. Finally, we have identified a second class recognises an epitope in proximity of the Z line (Fig. 1C,D). of phenotype that results when only single troponin genes are Phalloidin staining for actin, coupled with antibody staining for - disrupted. Depletion of tnnt3a or tnnt3b by MOs, or loss of tnni4a.2 actinin, showed colocalisation of the two proteins in foci, although through mutation, allows assembly but leads to sarcomere actin also appeared in aggregates without -actinin (Fig. 2C; disintegration, which is completely suppressed by inhibition of supplementary material Fig. S2C). Interestingly, other markers myosin activity. indicated that, although myofibrils were substantially disorganised, not all sarcomeric components were completely delocalised. We Results used a second anti-titin antibody T11, which recognises an epitope Depletion of troponin T activity in fast-twitch muscle at the boundary between the I-band and A-band (Trombitas and disrupts sarcomere assembly Pollack, 1993), and detected some regions with short stretches of In the zebrafish trunk skeletal musculature, slow-twitch fibres and periodic T11 staining in the embryos injected with triple tnnt MOs fast-twitch fibres are separated. Mononucleate slow-twitch fibres (Fig. 1E,F). Similarly, an antibody directed against myomesin, a are superficially located, immediately under the skin, and are major component of M lines, showed that M lines also partially parallel to the anteroposterior axis, whereas multinucleated fast- maintained regular spaced distribution in some regions (Fig. 1G,H). twitch
Recommended publications
  • The Muscular System
    THE MUSCULAR SYSTEM COMPILED BY HOWIE BAUM 1 Muscles make up the bulk of the body and account for 1/3 of its weight.!! Blood vessels and nerves run to every muscle, helping control and regulate each muscle’s function. The muscular system creates body heat and also moves the: Bones of the Skeletal system Food through Digestive system Blood through the Circulatory system Fluids through the Excretory system MUSCLE TISSUE The body has 3 main types of muscle tissue 1) Skeletal, 2) Smooth, and 3) Cardiac SKELETAL MUSCLE SMOOTH MUSCLE CARDIAC MUSCLE Skeletal muscles attach to and move bones by contracting and relaxing in response to voluntary messages from the nervous system. Skeletal muscle tissue is composed of long cells called muscle fibers that have a striated appearance. Muscle fibers are organized into bundles supplied by blood vessels and innervated by motor neurons. Muscle structure Skeletal (striated or voluntary) muscle consists of densely packed groups of hugely elongated cells known as myofibers. These are grouped into bundles (fascicles). A typical myofiber is 2–3 centimeters ( 3/4–1 1/5 in) long and 0.05millimeters (1/500 inch) in diameter and is composed of narrower structures – myofibrils. These contain thick and thin myofilaments made up mainly of the proteins actin and myosin. Numerous capillaries keep the muscle supplied with the oxygen and glucose needed to fuel contraction. Skeletal Muscles • Skeletal muscles attach to bones by tendons (connective tissue) and enable movement. • Skeletal muscles are mostly voluntary Feel the back of your ankle to feel your Achilles tendon - the largest tendon in your body.
    [Show full text]
  • Appropriate Roles of Cardiac Troponins in Evaluating Patients with Chest Pain
    J Am Board Fam Pract: first published as 10.3122/jabfm.12.3.214 on 1 May 1999. Downloaded from MEDICAL PRACTICE Appropriate Roles of Cardiac Troponins in Evaluating Patients With Chest Pain Matthew S. Rice, MD, CPT, Me, USA, and David C. MacDonald, DO, Me, USA Background: Diagnosis of acute myocardial infarction relies upon the clinical history, interpretation of the electrocardiogram, and measurement of serum levels of cardiac enzymes. Newer biochemical markers of myocardial injury, such as cardiac troponin I and cardiac troponin T, are now being used instead of or along with the standard markers, the MB isoenzyme of creatine kinase (CK-MB) and lactate dehydrogenase. Methods: We performed a MEDLINE literature search (1987 to 1997) using the key words "troponin I," "troponin T," and "acute myocardial infarction." We reviewed selected articles related to the diagnostic and prognostic usefulness of these cardiac markers in evaluating patients with suspected myocardial infarction. Results: We found that (1) troponin I is a better cardiac marker than CK-MB for myocardial infarction because it is equally sensitive yet more specific for myocardial injury; (2) troponin T is a relatively poorer cardiac marker than CK-MB because it is less sensitive and less specific for myocardial injury; and (3) both troponin I and troponin T may be used as independent prognosticators of future cardiac events. Conclusions: Troponin I is a sensitive and specific marker for myocardial injury and can be used to predict the likelihood of future cardiac events. It is not much more expensive to measure than CK-MB. Over­ all, troponin I is a better cardiac marker than CK-MB and should become the preferred cardiac enzyme when evaluating patients with suspected myocardial infarction.
    [Show full text]
  • Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D
    American Journal of Gastroenterology ISSN 0002-9270 C 2006 by Am. Coll. of Gastroenterology doi: 10.1111/j.1572-0241.2006.00375.x Published by Blackwell Publishing CME Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D. Foulkes, M.B., Ph.D.2 1Division of Gastroenterology, Department of Medicine, The Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada, and 2Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Familial adenomatous polyposis (FAP) is an autosomal-dominant colorectal cancer syndrome, caused by a germline mutation in the adenomatous polyposis coli (APC) gene, on chromosome 5q21. It is characterized by hundreds of adenomatous colorectal polyps, with an almost inevitable progression to colorectal cancer at an average age of 35 to 40 yr. Associated features include upper gastrointestinal tract polyps, congenital hypertrophy of the retinal pigment epithelium, desmoid tumors, and other extracolonic malignancies. Gardner syndrome is more of a historical subdivision of FAP, characterized by osteomas, dental anomalies, epidermal cysts, and soft tissue tumors. Other specified variants include Turcot syndrome (associated with central nervous system malignancies) and hereditary desmoid disease. Several genotype–phenotype correlations have been observed. Attenuated FAP is a phenotypically distinct entity, presenting with fewer than 100 adenomas. Multiple colorectal adenomas can also be caused by mutations in the human MutY homologue (MYH) gene, in an autosomal recessive condition referred to as MYH associated polyposis (MAP). Endoscopic screening of FAP probands and relatives is advocated as early as the ages of 10–12 yr, with the objective of reducing the occurrence of colorectal cancer.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • Alpha-Actinin-3 R577X
    Annals of Applied Sport Science, vol. 4, no. 4, pp. 01-06, Winter 2016 DOI: 10.18869/acadpub.aassjournal.4.4.1 Short Communication www.aassjournal.com www.AESAsport.com ISSN (Online): 2322 – 4479 Received: 20/03/2016 ISSN (Print): 2476–4981 Accepted: 10/06/2016 Alpha-actinin-3 R577X Polymorphism Profile of Turkish Professional Hip-Hop and Latin Dancers 1,2 * 1 1 2 1 1 Korkut Ulucan , Betul Biyik, Sezgin Kapici, Canan Sercan, Oznur Yilmaz, Tunc Catal 1Üsküdar Univerity, Haluk Turksoy Sok. No:14, Altunizade, Üsküdar, İstanbul, Turkey. 2Marmara University, BAsibuyuk Yolu 9/3 MAltepe Saglık Yerleşkesi, MAltepe, Istanbul, Turkey. ABSTRACT Actins are small globular filaments functioning in cell processes like muscle contraction, and stabilized to the sarcomeric Z- discs by actin binding proteins (actinins). One of the important gene coding for actin binding proteins in fast twitch fibers is alpha- actinin- 3 (ACTN3). In this research, we have conducted a gene profile study investigating the genotype and allele distributions of ACTN3 R577X polymorphism in Turkish professional hip- hop and latin dancers and compared them to non-dancers as a control group. 30 professional dancers and non-dancers were recruited for the study. A genotyping procedure was carried out by a newly introduced four-primer PCR methodology. For statistical analysis, the Chi-square test was used to compare data between the groups (p<0,05 evaluated as significant). Numbers and the percentages of dancers were 2 (7%), 21 (70%) and 7(23%) for RR, RX and XX genotypes, respectively. The same numbers and the percentages were 15 (50%), 8 (15%) and 7 (23%) for RR, RX and XX genotypes, respectively, for the controls.
    [Show full text]
  • Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics
    International Journal of Molecular Sciences Review Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics Martijn van de Locht , Tamara C. Borsboom, Josine M. Winter and Coen A. C. Ottenheijm * Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands; [email protected] (M.v.d.L.); [email protected] (T.C.B.); [email protected] (J.M.W.) * Correspondence: [email protected]; Tel.: +31-(0)-20-444-8123 Abstract: The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of Citation: van de Locht, M.; treatment strategies.
    [Show full text]
  • Actin-Troponin-Tropomyosin Complex (Muscle Relaxation/Cooperativity/Regulated Actin) Lois E
    Proc. Nati. Acad. Sci. USA Vol. 77, No. 5, pp. 2616-2620, May 1980 Biochemistry Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex (muscle relaxation/cooperativity/regulated actin) Lois E. GREENE AND EVAN EISENBERG Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20205 Communicated by Terrell L. Hill, February 22, 1980 ABSTRACT The binding of myosin subfragment-1 (S-i) to of a few S-1 molecules, free of ATP, to the actin filament and the F-actin-troponin-tropomyosin complex (regulated F-actin). pushing the tropomyosin away from its inhibitory position, thus was examined in the presence of ADP (ionic strength, 0.23 M; preventing inhibition of the ATPase activity even in the absence 220C) by using the ultracentrifuge and S-1 blocked at SHI with iodo["4C]acetamide. S-1ADP binds with positive cooperativity of Ca2+. Cooperative responses have also been observed in the to regulated F-actin, both in the presence and absence of cal- presence of Ca2+. Weber and coworkers (6) found that at high cium; it binds independently to unregulated actin. With and S-1 concentration the ATPase activity of regulated acto-S-1 can without CaO+ at very low levels of occupancy of the regulated be potentiated so that it is higher than the ATPase activity of actin by S-19ADP, S-1*ADP binds to the regulated actin with acto*S-1 in the absence of troponin-tropomyosin. <1% of the strength that it binds to unregulated actin, whereas The cooperative responses observed with regulated actin are at high levels of occupancy of the regulated actin by S-1-ADP, S-1ADP binds about 3-fold more strongly to the regulated actin fundamental to our understanding of the biochemical basis of than it does to unregulated actin.
    [Show full text]
  • Postmortem Changes in the Myofibrillar and Other Cytoskeletal Proteins in Muscle
    BIOCHEMISTRY - IMPACT ON MEAT TENDERNESS Postmortem Changes in the Myofibrillar and Other C'oskeletal Proteins in Muscle RICHARD M. ROBSON*, ELISABETH HUFF-LONERGAN', FREDERICK C. PARRISH, JR., CHIUNG-YING HO, MARVIN H. STROMER, TED W. HUIATT, ROBERT M. BELLIN and SUZANNE W. SERNETT introduction filaments (titin), and integral Z-line region (a-actinin, Cap Z), as well as proteins of the intermediate filaments (desmin, The cytoskeleton of "typical" vertebrate cells contains paranemin, and synemin), Z-line periphery (filamin) and three protein filament systems, namely the -7-nm diameter costameres underlying the cell membrane (filamin, actin-containing microfilaments, the -1 0-nm diameter in- dystrophin, talin, and vinculin) are listed along with an esti- termediate filaments (IFs), and the -23-nm diameter tubu- mate of their abundance, approximate molecular weights, lin-containing microtubules (Robson, 1989, 1995; Robson and number of subunits per molecule. Because the myofibrils et al., 1991 ).The contractile myofibrils, which are by far the are the overwhelming components of the skeletal muscle cell major components of developed skeletal muscle cells and cytoskeleton, the approximate percentages of the cytoskel- are responsible for most of the desirable qualities of muscle eton listed for the myofibrillar proteins (e.g., myosin, actin, foods (Robson et al., 1981,1984, 1991 1, can be considered tropomyosin, a-actinin, etc.) also would represent their ap- the highly expanded corollary of the microfilament system proximate percentages of total myofibrillar protein. of non-muscle cells. The myofibrils, IFs, cell membrane skel- eton (complex protein-lattice subjacent to the sarcolemma), Some Important Characteristics, Possible and attachment sites connecting these elements will be con- Roles, and Postmortem Changes of Key sidered as comprising the muscle cell cytoskeleton in this Cytoskeletal Proteins review.
    [Show full text]
  • Α-Actinin/Titin Interaction: a Dynamic and Mechanically Stable Cluster of Bonds in the Muscle Z-Disk
    α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk Marco Grisona, Ulrich Merkela, Julius Kostanb, Kristina Djinovic-Carugob,c, and Matthias Riefa,d,1 aPhysik Department E22, Technische Universität München, 85748 Garching, Germany; bDepartment of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria; cDepartment of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; and dMunich Center for Integrated Protein Science, 81377 Munich, Germany Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved December 16, 2016 (received for review August 2, 2016) Stable anchoring of titin within the muscle Z-disk is essential for In humans, the isoforms of titin exhibit four to seven Z-repeats preserving muscle integrity during passive stretching. One of the (15, 16, 20). The structure of the EF3-4 hands complex with titin main candidates for anchoring titin in the Z-disk is the actin cross- Z-repeat 7 shows the bound Z-repeat in an α-helical confor- linker α-actinin. The calmodulin-like domain of α-actinin binds to mation (21). In solution assays, binding affinities of various the Z-repeats of titin. However, the mechanical and kinetic prop- Z-repeats to EF3-4 were determined to lie in the micromolar erties of this important interaction are still unknown. Here, we use range (22). Micromolar affinity points only to a moderately a dual-beam optical tweezers assay to study the mechanics of this stable interaction, the kinetics of which are unknown.
    [Show full text]
  • Laboratory Methodology for the Histological Study of Skeletal Muscle
    ReviewArtículo original Laboratory methodology for the histological study of skeletal muscle Fernando Leiva-Cepas1,2,3, Ignacio Ruz-Caracuel1,2*, María A. Peña-Toledo2,3, Antonio Agüera-Vega1,2, Ignacio Jimena1,2,3, Evelio Luque1,3, José Peña1,2,3 1Departamento de Ciencias Morfológicas. Universidad de Córdoba. Córdoba. 2Grupo de Investigación en Regeneración Muscular. Universidad de Córdoba. 3Instituto Maimónides de Investigación Biomédica de Córdoba. IMIBIC. Córdoba. *Servicio de Anatomía Patológica. Hospital Universitario La Paz, IDIPAZ, Madrid. Received: 11.12.2017 Summary Accepted: 15.02.2018 Skeletal muscle is a malleable and dynamic tissue capable of a high degree of plasticity in regards to its histological confi- guration. In this sense, microscopic study is an important and essential tool for the analysis of adaptive processes -such as hypertrophy or changes of fiber types- and the regeneration or repair of skeletal muscle after injury, in the fields of sports medicine and traumatology respectively. While light microscopy addresses the study of the different constitutive elements into the skeletal muscle and their relationships with each other that determine the organ histoarchitecture, with electron microscopy an ultrastructural analysis is carried out that allows to relate the structure and function of the individual cells. This article illustrates a pragmatic and practical approach, based on personal experience and a review of the literature, from the conditions in obtaining and sending samples of skeletal muscle to the laboratory to the procedures to prepare them for histological study (sections of cryostat, paraffin sections and electron microscopy). Especially we focus on the description of Key words: the processing by freezing and recommendations to follow, as this is the ideal method for this tissue.
    [Show full text]
  • Functional Analysis of Tropomyosin Isoforms in Vivo
    FUNCTIONAL ANALYSIS OF TROPOMYOSIN ISOFORMS IN VIVO by Aeri Cho A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2015 Abstract Precise regulation of a dynamic actin cytoskeleton is an essential function of animal cells without which vesicle trafficking, cytokinesis, cell adhesion and cell movement would be impossible. Therefore, understanding the mechanisms underlying actin dynamics is fundamental for understanding basic cellular biology as well as gaining insight into mechanisms of embryonic development, tissue homeostasis and regeneration, and pathological processes such as inflammation and tumor metastasis. Actin filaments are a major source of the protrusive and contractile forces that drive many cellular behaviors. Contractile forces require the action of non-muscle myosin II, which assembles onto actin filaments to form acto-myosin. The interaction between actin and myosin can occur spontaneously in vitro, but in cells it is regulated by accessory proteins including Tropomyosins (Tms). A complete understanding of Tm function has been elusive due in part to the large number of isoforms: 44 predicted isoforms from 4 genes in humans. The goal of this study was to decipher the functional roles of different Tm isoforms at the molecular, cellular and tissue levels in vivo. Drosophila egg chambers are a genetically tractable system that expresses far fewer Tm isoforms than mammalian cells. We identified three tropomyosin isoforms expressed in follicle cells, including one previously annotated as muscle-specific. We generated and characterized isoform- specific antibodies, RNAi lines, and mutant alleles, and discovered that they function non-redundantly in the two cell types we studied: border cells, a well-studied example of collective migration, and epithelial follicle cells, which develop contractile stress fibers that shape the egg chamber.
    [Show full text]
  • Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies
    International Journal of Molecular Sciences Review Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies Ilaria Pecorari 1, Luisa Mestroni 2 and Orfeo Sbaizero 1,* 1 Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; [email protected] 2 University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-040-5583770 Received: 15 July 2020; Accepted: 10 August 2020; Published: 15 August 2020 Abstract: Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
    [Show full text]