Α-Actinin/Titin Interaction: a Dynamic and Mechanically Stable Cluster of Bonds in the Muscle Z-Disk

Total Page:16

File Type:pdf, Size:1020Kb

Α-Actinin/Titin Interaction: a Dynamic and Mechanically Stable Cluster of Bonds in the Muscle Z-Disk α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk Marco Grisona, Ulrich Merkela, Julius Kostanb, Kristina Djinovic-Carugob,c, and Matthias Riefa,d,1 aPhysik Department E22, Technische Universität München, 85748 Garching, Germany; bDepartment of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria; cDepartment of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; and dMunich Center for Integrated Protein Science, 81377 Munich, Germany Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved December 16, 2016 (received for review August 2, 2016) Stable anchoring of titin within the muscle Z-disk is essential for In humans, the isoforms of titin exhibit four to seven Z-repeats preserving muscle integrity during passive stretching. One of the (15, 16, 20). The structure of the EF3-4 hands complex with titin main candidates for anchoring titin in the Z-disk is the actin cross- Z-repeat 7 shows the bound Z-repeat in an α-helical confor- linker α-actinin. The calmodulin-like domain of α-actinin binds to mation (21). In solution assays, binding affinities of various the Z-repeats of titin. However, the mechanical and kinetic prop- Z-repeats to EF3-4 were determined to lie in the micromolar erties of this important interaction are still unknown. Here, we use range (22). Micromolar affinity points only to a moderately a dual-beam optical tweezers assay to study the mechanics of this stable interaction, the kinetics of which are unknown. This raises interaction at the single-molecule level. A single interaction of the question of how such a relatively weak interaction can α -actinin and titin turns out to be surprisingly weak if force is achieve the task of firmly anchoring titin within the Z-disk even applied. Depending on the direction of force application, the un- under applied mechanical loads. To answer this question, we set binding forces can more than triple. Our results suggest a model out to investigate the mechanical as well as kinetic stability of α where multiple -actinin/Z-repeat interactions cooperate to en- this interaction directly in a single-molecule mechanical experi- sure long-term stable titin anchoring while allowing the individual ment. We provide evidence that the concerted action of several components to exchange dynamically. α-actinin/Z-repeat bonds can establish long-term mechanically stable anchoring, whereas the individual bonds can break and α-actinin | titin Z-repeats | Z-disk mechanics | optical tweezers reform on the second timescale. uscle is the tissue that is constantly subjected to high me- Results Mchanical loads. Whereas thick and thin filaments are re- Interaction Between α-Actinin and Titin Z-Repeat 7 (PullA-T7 Geometry). sponsible for active force production, the passive elasticity of To probe the mechanical strength of the interaction between muscle is dominated by titin/connectin filaments (1). Hence, α-actinin and titin Z-repeat 7 (T7), we prepared a construct where under passive stretching conditions the integrity of muscle relies 23 residues of T7 (21) were fused to the C terminus of EF3-4 of the ’ on titin s being firmly anchored within the sarcomere, preventing CaMD of α-actinin 2 via a 4 × (GGS) linker. To apply load to this A the interdigitated muscle filaments from falling apart (Fig. 1 ). fusion construct we tethered dsDNA linkers to cysteine residues at Whereas titin is firmly attached to thick filaments in the A-band the termini (Fig. 1C) that could be attached to 1-μm-sized beads in – and the M-line (2 6), it is much less clear how stable anchoring is the optical tweezers. For details on the assay see Materials and achieved in the Z-disk, where adjacent sarcomeres overlap. The Methods and SI Materials and Methods. Note that in this construct superstable titin/telethonin interaction within the Z-disk was α – the force propagates through both the -actinin EF3-4 domain and considered important for titin anchoring (7 9), but knockout the T7 peptide, mimicking how force propagates in the Z-disk (Fig. mutants later showed that it is not essential for muscle integrity 1B). We therefore called this construct PullA-T7. (10–12). Apart from a direct interaction between actin filaments BIOPHYSICS AND and titin at the Z-disk edge (13), the most prominent candidate COMPUTATIONAL BIOLOGY Significance for the anchoring of titin within the Z-disk is its interaction with α-actinin (Fig. 1B) (6, 12, 14). Four isoforms of human α-actinin have been identified: the Muscle is the tissue in our body experiencing most extreme calcium-insensitive muscle isoforms 2 and 3, which cross-link mechanical forces. The mechanism of active force generation actin filaments in sarcomere-delimiting Z-disk complexes, and has been investigated for more than 50 y and is fairly well calcium-sensitive nonmuscle isoforms 1 and 4. α-Actinin is an understood. However, despite its physiological significance, it antiparallel homodimer whose most prominent task is cross- is still unknown what mechanical linkages hold together the linking actin filaments of neighboring sarcomeres in the Z-disk muscle machinery under passive stretching forces. In this pa- B per, we show with direct mechanical single-molecule mea- (Fig. 1 ; reviewed in ref. 14). In each subunit, a flexible region α called the neck separates the actin binding domain (ABD) from surements that an array of titin/ -actinin bonds composes a four spectrin-like repeats (SR) forming the rod region (Fig. 1B dynamic network that can provide stable anchoring, main- and Fig. S1). The rod regions of the two subunits interact and taining the integrity of the muscle Z-disk even under load. This dynamic network explains how components of the Z-disk are provide a rigid spacer between the actin filaments. At the other able to rapidly rearrange and, at the same time, form a long- end of each subunit a calmodulin-like domain (CaMD) formed term stable mechanical structure. by two pairs of EF-hands (EF1-2 and EF3-4) is able to bind a – Z-disk region of titin formed by the so-called Z-repeats (15 17). Author contributions: M.G., K.D.-C., and M.R. designed research; M.G. performed re- The current model for α-actinin 2 dynamic regulation suggests search; U.M. and J.K. contributed new reagents/analytic tools; M.G. and M.R. analyzed that EF3-4 hands of one subunit bind to the neck region of the data; and M.G., K.D.-C., and M.R. wrote the paper. juxtaposed subunit, thus not being available for the interaction The authors declare no conflict of interest. with titin Z-repeats (Fig. S1) (18, 19). Upon activation of α-actinin This article is a PNAS Direct Submission. in the Z-disk by phosphatidylinositol 4,5-biphosphate (PIP2), EF3-4 1To whom correspondence should be addressed. Email: [email protected]. is released from the neck and binding of titin can be achieved in this This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. open conformation of α-actinin. 1073/pnas.1612681114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1612681114 PNAS | January 31, 2017 | vol. 114 | no. 5 | 1015–1020 Downloaded by guest on September 26, 2021 A D B E F G H I C Fig. 1. Interaction between α-actinin EF3-4 and titin Z-repeat 7 in PullA-T7 geometry. (A) Schematic of the sarcomere organization under stretching con- ditions, showing titin elongation. (B) Arrangement of actin, titin, telethonin, and α-actinin within the Z-disk. (C) Schematic of the dual-beam optical tweezers experimental setup with a fusion construct [Protein Data Bank (PDB) ID code 1h8h]. Yellow dots mark cysteine residues, here and elsewhere. (D) Force- extension trace obtained by moving the beads apart at a constant velocity, here for the PullA-T7 fusion construct. Gray dots are full bandwidth data, and black dots are smoothed data. Dotted lines are WLC fits (SI Materials and Methods). (E) Passive-mode time trace of 5 s at an average force of 3.7 pN. Gray dots are full-bandwidth data, on which HMM analysis was performed assuming the kinetic network on the right. For clarity, smoothed data are colored, based on HMM-assigned states. (Top Right) Zoom of 1 s, where full-bandwidth data are colored and smoothed data are in black. (F) Force-dependent transition rates from UU to FU (red) and from FU to UU (green). Solid lines are fits that allow extrapolation to zero-force rates (SI Materials and Methods). (G) Same for transition rates from FB to FU (purple) and from FU to FB (green). (H) Population probability of the three states as a function of force, and fits as described in SI Materials and Methods.(I) Competition assay performed by addition of T7 in solution to evaluate the dissociation constant. A passive-mode sample trace of 5 s shows that the solution binding event (cyan) has the same force (and contour length) as the FU state but can be identified by the different lifetime. When force is applied to PullA-T7, unbinding/unfolding We used a hidden Markov model (HMM) algorithm (23) to transitions occur already at surprisingly low forces, as shown in identify the transitions between this three-state system on the Fig. 1D. At the low pulling speed of 10 nm/s, only transitions unfiltered traces. From the dwell-time distributions we calculated between the fully folded/peptide-bound state and the unfolded/ transition rates assuming the transition network shown in Fig.
Recommended publications
  • The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
    International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
    [Show full text]
  • Appropriate Roles of Cardiac Troponins in Evaluating Patients with Chest Pain
    J Am Board Fam Pract: first published as 10.3122/jabfm.12.3.214 on 1 May 1999. Downloaded from MEDICAL PRACTICE Appropriate Roles of Cardiac Troponins in Evaluating Patients With Chest Pain Matthew S. Rice, MD, CPT, Me, USA, and David C. MacDonald, DO, Me, USA Background: Diagnosis of acute myocardial infarction relies upon the clinical history, interpretation of the electrocardiogram, and measurement of serum levels of cardiac enzymes. Newer biochemical markers of myocardial injury, such as cardiac troponin I and cardiac troponin T, are now being used instead of or along with the standard markers, the MB isoenzyme of creatine kinase (CK-MB) and lactate dehydrogenase. Methods: We performed a MEDLINE literature search (1987 to 1997) using the key words "troponin I," "troponin T," and "acute myocardial infarction." We reviewed selected articles related to the diagnostic and prognostic usefulness of these cardiac markers in evaluating patients with suspected myocardial infarction. Results: We found that (1) troponin I is a better cardiac marker than CK-MB for myocardial infarction because it is equally sensitive yet more specific for myocardial injury; (2) troponin T is a relatively poorer cardiac marker than CK-MB because it is less sensitive and less specific for myocardial injury; and (3) both troponin I and troponin T may be used as independent prognosticators of future cardiac events. Conclusions: Troponin I is a sensitive and specific marker for myocardial injury and can be used to predict the likelihood of future cardiac events. It is not much more expensive to measure than CK-MB. Over­ all, troponin I is a better cardiac marker than CK-MB and should become the preferred cardiac enzyme when evaluating patients with suspected myocardial infarction.
    [Show full text]
  • Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D
    American Journal of Gastroenterology ISSN 0002-9270 C 2006 by Am. Coll. of Gastroenterology doi: 10.1111/j.1572-0241.2006.00375.x Published by Blackwell Publishing CME Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D. Foulkes, M.B., Ph.D.2 1Division of Gastroenterology, Department of Medicine, The Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada, and 2Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Familial adenomatous polyposis (FAP) is an autosomal-dominant colorectal cancer syndrome, caused by a germline mutation in the adenomatous polyposis coli (APC) gene, on chromosome 5q21. It is characterized by hundreds of adenomatous colorectal polyps, with an almost inevitable progression to colorectal cancer at an average age of 35 to 40 yr. Associated features include upper gastrointestinal tract polyps, congenital hypertrophy of the retinal pigment epithelium, desmoid tumors, and other extracolonic malignancies. Gardner syndrome is more of a historical subdivision of FAP, characterized by osteomas, dental anomalies, epidermal cysts, and soft tissue tumors. Other specified variants include Turcot syndrome (associated with central nervous system malignancies) and hereditary desmoid disease. Several genotype–phenotype correlations have been observed. Attenuated FAP is a phenotypically distinct entity, presenting with fewer than 100 adenomas. Multiple colorectal adenomas can also be caused by mutations in the human MutY homologue (MYH) gene, in an autosomal recessive condition referred to as MYH associated polyposis (MAP). Endoscopic screening of FAP probands and relatives is advocated as early as the ages of 10–12 yr, with the objective of reducing the occurrence of colorectal cancer.
    [Show full text]
  • Alpha-Actinin-3 R577X
    Annals of Applied Sport Science, vol. 4, no. 4, pp. 01-06, Winter 2016 DOI: 10.18869/acadpub.aassjournal.4.4.1 Short Communication www.aassjournal.com www.AESAsport.com ISSN (Online): 2322 – 4479 Received: 20/03/2016 ISSN (Print): 2476–4981 Accepted: 10/06/2016 Alpha-actinin-3 R577X Polymorphism Profile of Turkish Professional Hip-Hop and Latin Dancers 1,2 * 1 1 2 1 1 Korkut Ulucan , Betul Biyik, Sezgin Kapici, Canan Sercan, Oznur Yilmaz, Tunc Catal 1Üsküdar Univerity, Haluk Turksoy Sok. No:14, Altunizade, Üsküdar, İstanbul, Turkey. 2Marmara University, BAsibuyuk Yolu 9/3 MAltepe Saglık Yerleşkesi, MAltepe, Istanbul, Turkey. ABSTRACT Actins are small globular filaments functioning in cell processes like muscle contraction, and stabilized to the sarcomeric Z- discs by actin binding proteins (actinins). One of the important gene coding for actin binding proteins in fast twitch fibers is alpha- actinin- 3 (ACTN3). In this research, we have conducted a gene profile study investigating the genotype and allele distributions of ACTN3 R577X polymorphism in Turkish professional hip- hop and latin dancers and compared them to non-dancers as a control group. 30 professional dancers and non-dancers were recruited for the study. A genotyping procedure was carried out by a newly introduced four-primer PCR methodology. For statistical analysis, the Chi-square test was used to compare data between the groups (p<0,05 evaluated as significant). Numbers and the percentages of dancers were 2 (7%), 21 (70%) and 7(23%) for RR, RX and XX genotypes, respectively. The same numbers and the percentages were 15 (50%), 8 (15%) and 7 (23%) for RR, RX and XX genotypes, respectively, for the controls.
    [Show full text]
  • Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics
    International Journal of Molecular Sciences Review Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics Martijn van de Locht , Tamara C. Borsboom, Josine M. Winter and Coen A. C. Ottenheijm * Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands; [email protected] (M.v.d.L.); [email protected] (T.C.B.); [email protected] (J.M.W.) * Correspondence: [email protected]; Tel.: +31-(0)-20-444-8123 Abstract: The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of Citation: van de Locht, M.; treatment strategies.
    [Show full text]
  • Hypertrophic Cardiomyopathy- Associated Mutations in Genes That Encode Calcium-Handling Proteins
    Current Molecular Medicine 2012, 12, 507-518 507 Beyond the Cardiac Myofilament: Hypertrophic Cardiomyopathy- Associated Mutations in Genes that Encode Calcium-Handling Proteins A.P. Landstrom and M.J. Ackerman* Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Cardiovascular Diseases and Pediatric Cardiology, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA Abstract: Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium- handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
    [Show full text]
  • Investigating the Role of Uncoupling of Troponin I Phosphorylation from Changes in Myofibrillar Ca2+-Sensitivity in the Pathogenesis of Cardiomyopathy
    REVIEW ARTICLE published: 25 August 2014 doi: 10.3389/fphys.2014.00315 Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of cardiomyopathy Andrew E. Messer* and Steven B. Marston National Heart & Lung Institute, Imperial College London, London, UK 2+ Edited by: Contraction in the mammalian heart is controlled by the intracellular Ca concentration Julien Ochala, KIng’s College as it is in all striated muscle, but the heart has an additional signaling system that London, UK comes into play to increase heart rate and cardiac output during exercise or stress. Reviewed by: β-adrenergic stimulation of heart muscle cells leads to release of cyclic-AMP and the Jose Renato Pinto, Florida State University, USA activation of protein kinase A which phosphorylates key proteins in the sarcolemma, Ranganath Mamidi, Case Western sarcoplasmic reticulum and contractile apparatus. Troponin I (TnI) and Myosin Binding Reserve University, USA Protein C (MyBP-C) are the prime targets in the myofilaments. TnI phosphorylation *Correspondence: lowers myofibrillar Ca2+-sensitivity and increases the speed of Ca2+-dissociation and Andrew E. Messer, Imperial Centre relaxation (lusitropic effect). Recent studies have shown that this relationship between for Translational and Experimental 2+ Medicine, Hammersmith Campus, Ca -sensitivity and TnI phosphorylation may be unstable. In familial cardiomyopathies, Du Cane Road, London, UK both dilated and hypertrophic (DCM and HCM), a mutation in one of the proteins of the e-mail: [email protected] thin filament often results in the loss of the relationship (uncoupling) and blunting of the lusitropic response.
    [Show full text]
  • Structural and Functional Differences Between Cardiomyocytes from Right and Left Ventricles in Health and Disease
    DEPARTMENT OF _SURGERY, DENTISTRY, PAEDIATRICS AND GYNAECOLOGY_ PHD SCHOOL ___LIFE AND HEALTH SCIENCES___ PHD IN ____________CARDIOVASCULAR SCIENCE_________ With funding by ____________UNIVERSITY OF VERONA___________ CYCLE / YEAR of initial enrolment ____XXXII (2016)_______ PHD THESIS TITLE Structural and functional differences between cardiomyocytes from right and left ventricles in health and disease S.S.D. (Disciplinary Sector) ___ MED/11__ Coordinator: Prof. GIOVANNI BATTISTA LUCIANI Signature ___________________________ Tutor: Prof. GIUSEPPE FAGGIAN Signature __________________________ Tutor: Prof. JULIA GORELIK Signature __________________________ Tutor: Prof. MICHELE MIRAGOLI Signature __________________________ PhD candidate: ROMAN MEDVEDEV Signature_____________________________ This work is licensed under a Creative Commons Attribution-Non Commercial- NoDerivs 3.0 Unported License, Italy. To read a copy of the licence, visit the web page: http://creativecommons.org/licenses/by-nc-nd/3.0/ Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. STRUCTURAL AND FUNCTIONAL DIFFERENCES BETWEEN CARDIOMYOCYTES FROM RIGHT AND LEFT VENTRICLES IN HEALTH AND DISEASE Roman Medvedev PhD thesis Verona, ISBN 12324-5678-910 Abstract Several disorders including pulmonary hypertension (PH) and heart failure (HF) could lead to right ventricle (RV) hypertrophy and failure. RV failure is one of the most important prognostic factors for morbidity and mortality in these disorders. However, there is still no therapy to prevent the RV hypertrophy in PH.
    [Show full text]
  • Regulation of Titin-Based Cardiac Stiffness by Unfolded Domain Oxidation (Undox)
    Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx) Christine M. Loeschera,1, Martin Breitkreuzb,1, Yong Lia, Alexander Nickelc, Andreas Ungera, Alexander Dietld, Andreas Schmidte, Belal A. Mohamedf, Sebastian Kötterg, Joachim P. Schmitth, Marcus Krügere,i, Martina Krügerg, Karl Toischerf, Christoph Maackc, Lars I. Leichertj, Nazha Hamdanib, and Wolfgang A. Linkea,2 aInstitute of Physiology II, University of Munster, 48149 Munster, Germany; bInstitute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany; cComprehensive Heart Failure Center Wuerzburg, University Clinic Wuerzburg, 97078 Wuerzburg, Germany; dDepartment of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; eInstitute for Genetics, University of Cologne, 50931 Cologne, Germany; fDepartment of Cardiology and Pneumology, University Medicine Goettingen, 37075 Goettingen, Germany; gDepartment of Cardiovascular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; hDepartment of Pharmacology and Clinical Pharmacology, Heinrich Heine University, 40225 Düsseldorf, Germany; iCenter for Molecular Medicine and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, 50931 Cologne, Germany; and jInstitute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany Edited by Jonathan Seidman, Harvard University, Boston, MA, and approved August 12, 2020 (received for review March 14, 2020) The relationship between oxidative stress and
    [Show full text]
  • Actin-Troponin-Tropomyosin Complex (Muscle Relaxation/Cooperativity/Regulated Actin) Lois E
    Proc. Nati. Acad. Sci. USA Vol. 77, No. 5, pp. 2616-2620, May 1980 Biochemistry Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex (muscle relaxation/cooperativity/regulated actin) Lois E. GREENE AND EVAN EISENBERG Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20205 Communicated by Terrell L. Hill, February 22, 1980 ABSTRACT The binding of myosin subfragment-1 (S-i) to of a few S-1 molecules, free of ATP, to the actin filament and the F-actin-troponin-tropomyosin complex (regulated F-actin). pushing the tropomyosin away from its inhibitory position, thus was examined in the presence of ADP (ionic strength, 0.23 M; preventing inhibition of the ATPase activity even in the absence 220C) by using the ultracentrifuge and S-1 blocked at SHI with iodo["4C]acetamide. S-1ADP binds with positive cooperativity of Ca2+. Cooperative responses have also been observed in the to regulated F-actin, both in the presence and absence of cal- presence of Ca2+. Weber and coworkers (6) found that at high cium; it binds independently to unregulated actin. With and S-1 concentration the ATPase activity of regulated acto-S-1 can without CaO+ at very low levels of occupancy of the regulated be potentiated so that it is higher than the ATPase activity of actin by S-19ADP, S-1*ADP binds to the regulated actin with acto*S-1 in the absence of troponin-tropomyosin. <1% of the strength that it binds to unregulated actin, whereas The cooperative responses observed with regulated actin are at high levels of occupancy of the regulated actin by S-1-ADP, S-1ADP binds about 3-fold more strongly to the regulated actin fundamental to our understanding of the biochemical basis of than it does to unregulated actin.
    [Show full text]
  • Postmortem Changes in the Myofibrillar and Other Cytoskeletal Proteins in Muscle
    BIOCHEMISTRY - IMPACT ON MEAT TENDERNESS Postmortem Changes in the Myofibrillar and Other C'oskeletal Proteins in Muscle RICHARD M. ROBSON*, ELISABETH HUFF-LONERGAN', FREDERICK C. PARRISH, JR., CHIUNG-YING HO, MARVIN H. STROMER, TED W. HUIATT, ROBERT M. BELLIN and SUZANNE W. SERNETT introduction filaments (titin), and integral Z-line region (a-actinin, Cap Z), as well as proteins of the intermediate filaments (desmin, The cytoskeleton of "typical" vertebrate cells contains paranemin, and synemin), Z-line periphery (filamin) and three protein filament systems, namely the -7-nm diameter costameres underlying the cell membrane (filamin, actin-containing microfilaments, the -1 0-nm diameter in- dystrophin, talin, and vinculin) are listed along with an esti- termediate filaments (IFs), and the -23-nm diameter tubu- mate of their abundance, approximate molecular weights, lin-containing microtubules (Robson, 1989, 1995; Robson and number of subunits per molecule. Because the myofibrils et al., 1991 ).The contractile myofibrils, which are by far the are the overwhelming components of the skeletal muscle cell major components of developed skeletal muscle cells and cytoskeleton, the approximate percentages of the cytoskel- are responsible for most of the desirable qualities of muscle eton listed for the myofibrillar proteins (e.g., myosin, actin, foods (Robson et al., 1981,1984, 1991 1, can be considered tropomyosin, a-actinin, etc.) also would represent their ap- the highly expanded corollary of the microfilament system proximate percentages of total myofibrillar protein. of non-muscle cells. The myofibrils, IFs, cell membrane skel- eton (complex protein-lattice subjacent to the sarcolemma), Some Important Characteristics, Possible and attachment sites connecting these elements will be con- Roles, and Postmortem Changes of Key sidered as comprising the muscle cell cytoskeleton in this Cytoskeletal Proteins review.
    [Show full text]
  • Table 1 Top 100 Phosphorylated Substrates and Their Corresponding Kinases in Chondrosarcoma Cultures As Used for IPA Analysis
    Table 1 Top 100 phosphorylated substrates and their corresponding kinases in chondrosarcoma cultures as used for IPA analysis. Average Fold Adj intensity in Change p- chondrosarcoma Corresponding MSC value cultures Substrate Protein Psite kinase (log2) MSC 1043.42 RKKKVSSTKRH Cytohesin-1 S394 PKC 1.83 0.001 746.95 RKGYRSQRGHS Vitronectin S381 PKC 1.00 0.056 709.03 RARSTSLNERP Tuberin S939 AKT1 1.64 0.008 559.42 SPPRSSLRRSS Transcription elongation factor A-like1 S37 PKC; GSK3 0.18 0.684 515.29 LRRSLSRSMSQ Telethonin S157 Titin 0.77 0.082 510.00 MQPDNSSDSDY CD5 T434 PKA -0.35 0.671 476.27 GGRGGSRARNL Heterogeneous nuclear ribonucleoprotein K S302 PKCdelta 1.03 0.028 455.97 LKPGSSHRKTK Bruton's tyrosine kinase S180 PKCbeta 1.55 0.001 444.65 RRRMASMQRTG E1A binding protein p300 S1834 AKT; p70S6 kinase; pp90Rsk 0.53 0.195 Guanine nucleotide binding protein, alpha Z 440.26 HLRSESQRQRR polypeptide S27 PKC 0.88 0.199 6-phosphofructo-2-kinase/fructose-2,6- 424.12 RPRNYSVGSRP biphosphatase 2 S483 AKT 1.32 0.003 419.61 KKKIATRKPRF Metabotropic glutamate receptor 1 T695 PKC 1.75 0.001 391.21 DNSSDSDYDLH CD5 T453 Lck; Fyn -2.09 0.001 377.39 LRQLRSPRRAQ Ras associated protein Rab4 S204 CDC2 0.63 0.091 376.28 SSQRVSSYRRT Desmin S12 Aurora kinase B 0.56 0.255 369.05 ARIGGSRRERS EP4 receptor S354 PKC 0.29 0.543 RPS6 kinase alpha 3; PKA; 367.99 EPKRRSARLSA HMG14 S7 PKC -0.01 0.996 Peptidylglycine alpha amidating 349.08 SRKGYSRKGFD monooxygenase S930 PKC 0.21 0.678 347.92 RRRLSSLRAST Ribosomal protein S6 S236 PAK2 0.02 0.985 346.84 RSNPPSRKGSG Connexin
    [Show full text]