Actinin Inhibits Fimbrin Association with Actin Filament Networks in Fission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Large-Scale Opening of Utrophints Tandem Calponin Homology (CH
Large-scale opening of utrophin’s tandem calponin homology (CH) domains upon actin binding by an induced-fit mechanism Ava Y. Lin, Ewa Prochniewicz, Zachary M. James, Bengt Svensson, and David D. Thomas1 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved June 20, 2011 (received for review April 21, 2011) We have used site-directed spin labeling and pulsed electron has prevented the development of a reliable structural model for paramagnetic resonance to resolve a controversy concerning the any of these complexes. A major unresolved question concerns structure of the utrophin–actin complex, with implications for the the relative disposition of the tandem CH domains (CH1 and pathophysiology of muscular dystrophy. Utrophin is a homolog of CH2) (9, 10). Crystal structures of the tandem CH domains dystrophin, the defective protein in Duchenne and Becker muscular showed a closed conformation for fimbrin (11) and α-actinin (12), dystrophies, and therapeutic utrophin derivatives are currently but an open conformation for both utrophin (Utr261) (Fig. 1A) being developed. Both proteins have a pair of N-terminal calponin and dystrophin (Dys246) (16). The crystal structure of Utr261 homology (CH) domains that are important for actin binding. suggests that the central helical region connecting CH1 and CH2 Although there is a crystal structure of the utrophin actin-binding is highly flexible. Even for α-actinin, which has a closed crystal domain, electron microscopy of the actin-bound complexes has structure, computational analysis suggests the potential for a high produced two very different structural models, in which the CH do- degree of dynamic flexibility that facilitates actin binding (17). -
The Roles of Actin-Binding Domains 1 and 2 in the Calcium-Dependent Regulation of Actin Filament Bundling by Human Plastins
Article The Roles of Actin-Binding Domains 1 and 2 in the Calcium-Dependent Regulation of Actin Filament Bundling by Human Plastins Christopher L. Schwebach 1,2, Richa Agrawal 1, Steffen Lindert 1, Elena Kudryashova 1 and Dmitri S. Kudryashov 1,2 1 - Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA 2 - Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA Correspondence to Dmitri S. Kudryashov: Department of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Ave, 728 Biosciences Building, Columbus, OH 43210, USA. [email protected] http://dx.doi.org/10.1016/j.jmb.2017.06.021 Edited by James Sellers Abstract The actin cytoskeleton is a complex network controlled by a vast array of intricately regulated actin-binding proteins. Human plastins (PLS1, PLS2, and PLS3) are evolutionary conserved proteins that non-covalently crosslink actin filaments into tight bundles. Through stabilization of such bundles, plastins contribute, in an isoform-specific manner, to the formation of kidney and intestinal microvilli, inner ear stereocilia, immune synapses, endocytic patches, adhesion contacts, and invadosomes of immune and cancer cells. All plastins comprise an N-terminal Ca2+-binding regulatory headpiece domain followed by two actin-binding domains (ABD1 and ABD2). Actin bundling occurs due to simultaneous binding of both ABDs to separate actin filaments. Bundling is negatively regulated by Ca2+, but the mechanism of this inhibition remains unknown. In 2+ this study, we found that the bundling abilities of PLS1 and PLS2 were similarly sensitive to Ca (pCa50 ~6.4), whereas PLS3 was less sensitive (pCa50 ~5.9). -
The Actin Binding Protein Plastin-3 Is Involved in the Pathogenesis of Acute Myeloid Leukemia
cancers Article The Actin Binding Protein Plastin-3 Is Involved in the Pathogenesis of Acute Myeloid Leukemia Arne Velthaus 1, Kerstin Cornils 2,3, Jan K. Hennigs 1, Saskia Grüb 4, Hauke Stamm 1, Daniel Wicklein 5, Carsten Bokemeyer 1, Michael Heuser 6, Sabine Windhorst 4, Walter Fiedler 1 and Jasmin Wellbrock 1,* 1 Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] (A.V.); [email protected] (J.K.H.); [email protected] (H.S.); [email protected] (C.B.); fi[email protected] (W.F.) 2 Department of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] 3 Research Institute Children’s Cancer Center Hamburg, 20246 Hamburg, Germany 4 Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] (S.G.); [email protected] (S.W.) 5 Department of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] 6 Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 20246 Hannover, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-40-7410-55606 Received: 29 September 2019; Accepted: 25 October 2019; Published: 26 October 2019 Abstract: Leukemia-initiating cells reside within the bone marrow in specialized niches where they undergo complex interactions with their surrounding stromal cells. -
Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact
G C A T T A C G G C A T genes Communication Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team Gil Rodas 1 ,Víctor Moreno-Pérez 2, Juan Del Coso 3,* , Daniel Florit 1, Lourdes Osaba 4 and Alejandro Lucia 5,6,* 1 Medical Department, Futbol Club Barcelona, Barça Innovation Hub, 08028 Barcelona, Spain; [email protected] (G.R.); daniel.fl[email protected] (D.F.) 2 Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Miguel Hernandez University of Elche, 03202 Elche, Spain; [email protected] 3 Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain 4 Progenika Biopharma, A Grifols Company, 48160 Derio, Spain; [email protected] 5 Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain 6 Research Institute Imas12, Hospital 12 de Octubre, 28041 Madrid, Spain * Correspondence: [email protected] (J.D.C.); [email protected] (A.L.) Abstract: There are recent data suggesting an association between the R577X polymorphism (rs1815 739) in the gene encoding α-actinin-3 (ACTN3) and the risk of musculoskeletal injuries. The purpose of this study was to analyze the association of rs1815739 with risk of, and recovery time from non- Citation: Rodas, G.; Moreno-Pérez, contact soft-tissue muscle injuries in professional soccer players. Forty-six (22 male and 24 female) V.; Del Coso, J.; Florit, D.; Osaba, L.; players from a top-level professional soccer team were assessed during five consecutive seasons: Lucia, A. -
The Role of Actin Binding Proteins in Cell Motility Elizabeth Ojukwu University of Connecticut - Storrs, [email protected]
University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-6-2012 The Role of Actin Binding Proteins in Cell Motility Elizabeth Ojukwu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Biology Commons, and the Cell and Developmental Biology Commons Recommended Citation Ojukwu, Elizabeth, "The Role of Actin Binding Proteins in Cell Motility" (2012). Honors Scholar Theses. 271. https://opencommons.uconn.edu/srhonors_theses/271 Ojukwu The Role of Actin Binding Proteins in Cell Motility Elizabeth Ojukwu 1 Ojukwu 2 Ojukwu The Role of Actin Binding Proteins in Cell Motility Elizabeth Ojukwu University Scholar Thesis May 2012 Major Advisor- Dr. David Knecht Honors Advisor- Dr. Adam Zweifach University Scholar Advisors- Dr. Victoria Robinson and Dr. Juliet Lee Department of Molecular and Cell Biology University of Connecticut 3 Ojukwu Table of Contents Abstract . 4 Introduction . 5 I. Overview of Cell Motility . 5 II. Dictyostelium Discoideum as a Model Organism . 6 III. The Role of the Actin Cytoskeleton During Cell Migration . 8 IV. Actin Binding Proteins Regulate Actin Dynamics . 9 V. My Project . 12 Chapter 1. The Effect of Actin Binding Protein Over-Expression on Cell Motility . 15 I. Material and Methods . 15 II. Results . 19 III. Discussion and Future Directions . 22 Chapter 2 Generation and Analysis of Fimbrin Double and Triple Null Mutants . 26 I. Material and Methods . 26 II. Results . 32 -
Fluorescent Localization of Membrane Sites in Glycerinated Chicken
Proc. Natl. Acad. Sci. USA Vol. 75, No. 8, pp. 3683-3687, August 1978 Biochemistry Fluorescent localization of membrane sites in glycerinated chicken skeletal muscle fibers and the relationship of these sites to the protein composition of the Z disc (actin/a-actinin/desmin/T system/sarcoplasmic reticulum) ELIAS LAZARIDES AND BRUCE L. GRANGER Division of Biology, California Institute of Technology, Pasadena, California 91125 Communicated by James Bonner, May 23, 1978 ABSTRACT Didansyl derivatives of amino acids and N- The weakest link of a muscle fiber appears to be between phe -l-naphthylamine were used to localize membrane h adjacent myofibrils. When glycerol-extracted muscle fibers are drlophobic sites in glycerol-extracted chicken skeletal muscle- fibers. Epifluorescence microscopy revealed that such sites sheared in a blender, they fragment longitudinally to produce coincide with the distribution of mitochondria, the transverse individual or, more frequently, bundles of myofibrils of random tubular (T) system and the sarcoplasmic reticulum (SR). They lengths. These newly generated myofibril bundles have Z lines are specifically associated with myofibril Z lines and occa- as their terminal boundaries. If, however, the glycerinated sionaly extend from one Z plane to the next longitudinally along muscle fibers are extracted with 0.6 M KI before shearing, then the muscle fiber. The hydrophobic probes interact noncov- the path of least resistance in the fiber changes and the alently with the Z lines, and their induced fluorescence can be cleavage eliminated by exposure of the myofibrils to ionic detergents, plane is altered. Extraction of muscle fibers with KI releases the nonionic detergents, or phospholipase C, before or after addition majority of actin and myosin filaments from the myofibrils. -
Postmortem Changes in the Myofibrillar and Other Cytoskeletal Proteins in Muscle
BIOCHEMISTRY - IMPACT ON MEAT TENDERNESS Postmortem Changes in the Myofibrillar and Other C'oskeletal Proteins in Muscle RICHARD M. ROBSON*, ELISABETH HUFF-LONERGAN', FREDERICK C. PARRISH, JR., CHIUNG-YING HO, MARVIN H. STROMER, TED W. HUIATT, ROBERT M. BELLIN and SUZANNE W. SERNETT introduction filaments (titin), and integral Z-line region (a-actinin, Cap Z), as well as proteins of the intermediate filaments (desmin, The cytoskeleton of "typical" vertebrate cells contains paranemin, and synemin), Z-line periphery (filamin) and three protein filament systems, namely the -7-nm diameter costameres underlying the cell membrane (filamin, actin-containing microfilaments, the -1 0-nm diameter in- dystrophin, talin, and vinculin) are listed along with an esti- termediate filaments (IFs), and the -23-nm diameter tubu- mate of their abundance, approximate molecular weights, lin-containing microtubules (Robson, 1989, 1995; Robson and number of subunits per molecule. Because the myofibrils et al., 1991 ).The contractile myofibrils, which are by far the are the overwhelming components of the skeletal muscle cell major components of developed skeletal muscle cells and cytoskeleton, the approximate percentages of the cytoskel- are responsible for most of the desirable qualities of muscle eton listed for the myofibrillar proteins (e.g., myosin, actin, foods (Robson et al., 1981,1984, 1991 1, can be considered tropomyosin, a-actinin, etc.) also would represent their ap- the highly expanded corollary of the microfilament system proximate percentages of total myofibrillar protein. of non-muscle cells. The myofibrils, IFs, cell membrane skel- eton (complex protein-lattice subjacent to the sarcolemma), Some Important Characteristics, Possible and attachment sites connecting these elements will be con- Roles, and Postmortem Changes of Key sidered as comprising the muscle cell cytoskeleton in this Cytoskeletal Proteins review. -
Cytoskeletal Remodeling in Cancer
biology Review Cytoskeletal Remodeling in Cancer Jaya Aseervatham Department of Ophthalmology, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; [email protected]; Tel.: +146-9767-0166 Received: 15 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Simple Summary: Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract: Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. -
Functional Analysis of Tropomyosin Isoforms in Vivo
FUNCTIONAL ANALYSIS OF TROPOMYOSIN ISOFORMS IN VIVO by Aeri Cho A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2015 Abstract Precise regulation of a dynamic actin cytoskeleton is an essential function of animal cells without which vesicle trafficking, cytokinesis, cell adhesion and cell movement would be impossible. Therefore, understanding the mechanisms underlying actin dynamics is fundamental for understanding basic cellular biology as well as gaining insight into mechanisms of embryonic development, tissue homeostasis and regeneration, and pathological processes such as inflammation and tumor metastasis. Actin filaments are a major source of the protrusive and contractile forces that drive many cellular behaviors. Contractile forces require the action of non-muscle myosin II, which assembles onto actin filaments to form acto-myosin. The interaction between actin and myosin can occur spontaneously in vitro, but in cells it is regulated by accessory proteins including Tropomyosins (Tms). A complete understanding of Tm function has been elusive due in part to the large number of isoforms: 44 predicted isoforms from 4 genes in humans. The goal of this study was to decipher the functional roles of different Tm isoforms at the molecular, cellular and tissue levels in vivo. Drosophila egg chambers are a genetically tractable system that expresses far fewer Tm isoforms than mammalian cells. We identified three tropomyosin isoforms expressed in follicle cells, including one previously annotated as muscle-specific. We generated and characterized isoform- specific antibodies, RNAi lines, and mutant alleles, and discovered that they function non-redundantly in the two cell types we studied: border cells, a well-studied example of collective migration, and epithelial follicle cells, which develop contractile stress fibers that shape the egg chamber. -
Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies
International Journal of Molecular Sciences Review Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies Ilaria Pecorari 1, Luisa Mestroni 2 and Orfeo Sbaizero 1,* 1 Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; [email protected] 2 University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-040-5583770 Received: 15 July 2020; Accepted: 10 August 2020; Published: 15 August 2020 Abstract: Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened. -
9.4 | Intermediate Filaments
354 9.4 | Intermediate Filaments The second of the three major cytoskeletal Microtubule elements to be discussed was seen in the electron microscope as solid, unbranched Intermediate filaments with a diameter of 10–12 nm. They were named in- filament termediate filaments (or IFs ). To date, intermediate filaments have only been identified in animal cells. Intermediate fila- ments are strong, flexible, ropelike fibers that provide mechani- cal strength to cells that are subjected to physical stress, Gold-labeled including neurons, muscle cells, and the epithelial cells that line anti-plectin the body’s cavities. Unlike microfilaments and microtubules, antibodies IFs are a chemically heterogeneous group of structures that, in Plectin humans, are encoded by approximately 70 different genes. The polypeptide subunits of IFs can be divided into five major classes based on the type of cell in which they are found (Table 9.2) as well as biochemical, genetic, and immunologic criteria. Figure 9.41 Cytoskeletal elements are connected to one another by We will restrict the present discussion to classes I-IV, which are protein cross-bridges. Electron micrograph of a replica of a small por- found in the construction of cytoplasmic filaments, and con- tion of the cytoskeleton of a fibroblast after selective removal of actin sider type V IFs (the lamins), which are present as part of the filaments. Individual components have been digitally colorized to assist inner lining of the nuclear envelope, in Section 12.2. visualization. Intermediate filaments (blue) are seen to be connected to IFs radiate through the cytoplasm of a wide variety of an- microtubules (red) by long wispy cross-bridges consisting of the fibrous imal cells and are often interconnected to other cytoskeletal protein plectin (green). -
Titin N2A Domain and Its Interactions at the Sarcomere
International Journal of Molecular Sciences Review Titin N2A Domain and Its Interactions at the Sarcomere Adeleye O. Adewale and Young-Hoon Ahn * Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(313)-577-1384 Abstract: Titin is a giant protein in the sarcomere that plays an essential role in muscle contraction with actin and myosin filaments. However, its utility goes beyond mechanical functions, extending to versatile and complex roles in sarcomere organization and maintenance, passive force, mechanosens- ing, and signaling. Titin’s multiple functions are in part attributed to its large size and modular structures that interact with a myriad of protein partners. Among titin’s domains, the N2A element is one of titin’s unique segments that contributes to titin’s functions in compliance, contraction, structural stability, and signaling via protein–protein interactions with actin filament, chaperones, stress-sensing proteins, and proteases. Considering the significance of N2A, this review highlights structural conformations of N2A, its predisposition for protein–protein interactions, and its multiple interacting protein partners that allow the modulation of titin’s biological effects. Lastly, the nature of N2A for interactions with chaperones and proteases is included, presenting it as an important node that impacts titin’s structural and functional integrity. Keywords: titin; N2A domain; protein–protein interaction 1. Introduction Citation: Adewale, A.O.; Ahn, Y.-H. The complexity of striated muscle is defined by the intricate organization of its com- Titin N2A Domain and Its ponents [1]. The involuntary cardiac and voluntary skeletal muscles are the primary types Interactions at the Sarcomere.