Neuronal Migration Is Mediated by Inositol Hexakisphosphate Kinase 1 Via Α-Actinin and Focal Adhesion Kinase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Wiskott-Aldrich Syndrome: the Actin Cytoskeleton and Immune Cell Function
Disease Markers 29 (2010) 157–175 157 DOI 10.3233/DMA-2010-0735 IOS Press The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function Michael P. Blundella, Austen Wortha,b, Gerben Boumaa and Adrian J. Thrashera,b,∗ aMolecular Immunology Unit, UCL Institute of Child Health, London, UK bDepartment of Immunology, Great Ormond Street Hospital NHS Trust, Great Ormond Street, London, UK Abstract. Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive primary immunodeficiency characterised by immune dysregulation, microthrombocytopaenia, eczema and lymphoid malignancies. Mutations in the WAS gene can lead to distinct syndrome variations which largely, although not exclusively, depend upon the mutation. Premature termination and deletions abrogate Wiskott-Aldrich syndrome protein (WASp) expression and lead to severe disease (WAS). Missense mutations usually result in reduced protein expression and the phenotypically milder X-linked thrombocytopenia (XLT) or attenuated WAS [1–3]. More recently however novel activating mutations have been described that give rise to X-linked neutropenia (XLN), a third syndrome defined by neutropenia with variable myelodysplasia [4–6]. WASP is key in transducing signals from the cell surface to the actin cytoskeleton, and a lack of WASp results in cytoskeletal defects that compromise multiple aspects of normal cellular activity including proliferation, phagocytosis, immune synapse formation, adhesion and directed migration. Keywords: Wiskott-Aldrich syndrome, actin polymerization, lymphocytes, -
Renal Ischemia/Reperfusion Injury: Functional Tissue Preservation by Anti-Activated 1 Integrin Therapy
Renal Ischemia/Reperfusion Injury: Functional Tissue Preservation by Anti-Activated 1 Integrin Therapy Ana Molina,* Marı´a Ubeda,* Marı´a M. Escribese,* Laura Garcı´a-Bermejo,* David Sancho,† ʈ Guillermo Pe´rez de Lema,‡ Fernando Lian˜o,§ Carlos Caban˜as, Francisco Sa´nchez-Madrid,† and Francisco Mampaso* *Department of Pathology, Hospital Ramo´n y Cajal, Universidad de Alcala´, Madrid, Spain; †Department of Immunology, Hospital de la Princesa, Universidad Auto´noma de Madrid, Madrid, Spain; ‡Medizinische Poliklinic der Ludwig Maximillians-Universitat, Munich, Germany; §Department of Nephrology, Hospital Ramo´n y Cajal, ʈ Universidad de Alcala´, Madrid, Spain; and Institute of Pharmacology and Toxicology (Centro Mixto CSIC-UCM), Facultad de Medicina, Universidad Complutense, Madrid, Spain Renal ischemia/reperfusion injury (IRI) is an important cause of acute renal failure. Cellular and molecular responses of the kidney to IRI are complex and not fully understood. 1 integrins localize to the basal surface of tubular epithelium interacting with extracellular matrix components of the basal membrane, including collagen IV. Whether preservation of tubular epithelium integrity could be a therapeutic approach for IRI was assessed. The effects of HUTS-21 mAb administration, which recognizes an activation-dependent epitope of 1 integrins, in a rat model of IRI were investigated. Preischemic HUTS-21 administration resulted in the preservation of renal functional and histopathologic parameters. Analyses of activated 1 integrins expression and focal adhesion kinase phosphorylation suggest that its deactivation after IRI was prevented by HUTS-21 treatment. Moreover, HUTS-21 impaired the inflammatory response in vivo, as indicated by inhibition of proin- flammatory mediators and the absence of infiltrating cells. -
Vinculin Antibody Cat
Vinculin Antibody Cat. No.: 7809 Vinculin Antibody Figure 2 Western Blot Validation in Human, Mouse and Rat Cell Lines Figure 3 Western Blot Validation in PC3 Cell Lysate Loading: 15 μg of lysates per lane. Antibodies: Vinculin Loading: 15 μg of lysates per lane. Antibodies: Vinculin 7809 (1 μg/mL), 1h incubation at RT in 5% NFDM/TBST. 7809 (Lane 1: 0.5 μg/mL and Lane 2: 1 μg/mL), 1h Secondary: Goat anti-rabbit IgG HRP conjugate at 1:10000 incubation at RT in 5% NFDM/TBST. Secondary: Goat anti- dilution. rabbit IgG HRP conjugate at 1:10000 dilution. Figure 4 Immunocytochemistry Validation of Vinculin in Jurkat Cells Figure 5 Immunofluorescence Validation of Vinculin in Immunocytochemical analysis of Jurkat cells using anti- Jurkat Cells Vinculin antibody (7809) at 5 μg/ml. Cells was fixed with Immunofluorescent analysis of 4% paraformaldehyde- formaldehyde and blocked with 10% serum for 1 h at RT; fixed Jurkat cells labeling Vinculin with 7809 at 20 μg/mL, antigen retrieval was by heat mediation with a citrate followed by goat anti-rabbit IgG secondary antibody at buffer (pH6). Samples were incubated with primary 1/500 dilution (green) and DAPI staining (blue). antibody overnight at 4˚C. A goat anti-rabbit IgG H&L (HRP) at 1/250 was used as secondary. Counter stained with Hematoxylin. Specifications September 23, 2021 1 https://www.prosci-inc.com/vinculin-antibody-7809.html HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat HOMOLOGY: Predicted species reactivity based on immunogen sequence: Pig: (100%) Anti-Vinculin antibody (7809) was raised against a peptide corresponding to 23 amino IMMUNOGEN: acids near the center of human Vinculin. -
Paxillin Binding to the Cytoplasmic Domain of CD103 Promotes Cell Adhesion and Effector
Author Manuscript Published OnlineFirst on October 11, 2017; DOI: 10.1158/0008-5472.CAN-17-1487 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Paxillin binding to the cytoplasmic domain of CD103 promotes cell adhesion and effector functions for CD8+ resident memory T cells in tumors Ludiane Gauthier1, Stéphanie Corgnac1, Marie Boutet1, Gwendoline Gros1, Pierre Validire2, Georges Bismuth3 and Fathia Mami-Chouaib1 1 INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France 2 Institut Mutualiste Montsouris, Service d’Anatomie pathologique, 75014 Paris, France. 3 INSERM U1016, CNRS UMR8104, Université Paris Descartes, Institut Cochin, 75014 Paris. S Corgnac, M Boutet and G Gros contributed equally to this work. M Boutet current address: Department of Microbiology and Immunology Albert Einstein College of Medecine, NY 10461 USA. Corresponding author: Fathia Mami-Chouaib, INSERM UMR 1186, Gustave Roussy. 39, rue Camille Desmoulins, F-94805 Villejuif. Phone: +33 1 42 11 49 65, Fax: +33 1 42 11 52 88, e-mail: [email protected] and [email protected] Running title: CD103 signaling in human TRM cells Key words: TRM cells, CD103 integrin, T-cell function and signaling, paxillin. Abbreviations: IS: immune synapse; LFA: leukocyte function-associated antigen; FI: fluorescence intensity; mAb: monoclonal antibody; phospho: phosphorylated; Pyk2: proline- rich tyrosine kinase-2; NSCLC: non-small-cell lung carcinoma; r: recombinant; sh-pxn: shorthairpin RNA-paxillin; TCR: T-cell receptor; TIL: tumor-infiltrating lymphocyte; TRM: tissue-resident memory T. -
Paxillin: a Focal Adhesion-Associated Adaptor Protein
Oncogene (2001) 20, 6459 ± 6472 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Paxillin: a focal adhesion-associated adaptor protein Michael D Schaller*,1 1Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center and Comprehensive Center for In¯ammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, NC 27599, USA Paxillin is a focal adhesion-associated, phosphotyrosine- The molecular cloning of paxillin revealed a number containing protein that may play a role in several of motifs that are now known to function in mediating signaling pathways. Paxillin contains a number of motifs protein ± protein interactions (see Figure 1) (Turner that mediate protein ± protein interactions, including LD and Miller, 1994; Salgia et al., 1995a). The N-terminal motifs, LIM domains, an SH3 domain-binding site and half of paxillin contains a proline-rich region that SH2 domain-binding sites. These motifs serve as docking could serve as an SH3 domain-binding site. Several sites for cytoskeletal proteins, tyrosine kinases, serine/ tyrosine residues conforming to SH2 domain binding threonine kinases, GTPase activating proteins and other sites were also noted. In addition, the N-terminal adaptor proteins that recruit additional enzymes into domain of paxillin contains ®ve copies of a peptide complex with paxillin. Thus paxillin itself serves as a sequence, called the LD motif, which are now known docking protein to recruit signaling molecules to a to function as binding sites for other proteins (see speci®c cellular compartment, the focal adhesions, and/ Table 1) (Brown et al., 1998a). The C-terminal half of or to recruit speci®c combinations of signaling molecules paxillin is comprised of four LIM domains, which are into a complex to coordinate downstream signaling. -
Hemidesmosomes and Focal Adhesions Treadmill As Separate but Linked Entities During Keratinocyte Migration Anne Pora1, Sungjun Yoon1, Reinhard Windoffer1 and Rudolf E
ORIGINAL ARTICLE See related commentary on pg 1854 Hemidesmosomes and Focal Adhesions Treadmill as Separate but Linked Entities during Keratinocyte Migration Anne Pora1, Sungjun Yoon1, Reinhard Windoffer1 and Rudolf E. Leube1 Hemidesmosomes anchor the epidermal keratin filament cytoskeleton to the extracellular matrix. They are crucial for the mechanical integrity of skin. Their role in keratinocyte migration, however, remains unclear. Examining migrating primary human keratinocytes, we find that hemidesmosomes cluster as ordered arrays consisting of multiple chevrons that are flanked by actin-associated focal adhesions. These hemidesmosomal arrays with intercalated focal adhesions extend from the cell rear to the cell front. New hemidesmosomal chevrons form subsequent to focal adhesion assembly at the cell’s leading front, whereas chevrons and associated focal adhesions disassemble at the cell rear in reverse order. The bulk of the hemidesmosome-focal adhesion composite, however, remains attached to the substratum during cell translocation. Similar hemidesmosome-focal adhesion patterns emerge on X-shaped fibronectin-coated micropatterns, during cell spreading and in leader cells during collective cell migration. We further find that hemidesmosomes and focal adhesions affect each other’s distribution. We propose that both junctions are separate but linked entities, which treadmill coordinately to support efficient directed cell migration and cooperate to coordinate the dy- namic interplay between the keratin and actin cytoskeleton. Journal of Investigative Dermatology (2019) 139, 1876e1888; doi:10.1016/j.jid.2019.03.1139 INTRODUCTION are characterized by HD-specific a6/b4 integrin hetero- Epithelial cell migration is a key process in physiological dimers, which are connected through plakins to keratins situations, such as tissue morphogenesis, and in pathological (Nahidiazar et al., 2015). -
A Unique and Specific Interaction Between Αt-Catenin and Plakophilin
2126 Research Article A unique and specific interaction between ␣T-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs Steven Goossens1,2,*, Barbara Janssens1,2,*,‡, Stefan Bonné1,2,§, Riet De Rycke1,2, Filip Braet1,2,¶, Jolanda van Hengel1,2 and Frans van Roy1,2,** 1Department for Molecular Biomedical Research, VIB and 2Department of Molecular Biology, Ghent University, B-9052 Ghent, Belgium *These authors contributed equally to this work ‡Present address: Wiley-VCH, Boschstrasse 12, D-69469 Weinheim, Germany §Present address: Diabetes Research Center, Brussels Free University (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium ¶Present address: Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia **Author for correspondence (e-mail: [email protected]) Accepted 24 April 2007 Journal of Cell Science 120, 2126-2136 Published by The Company of Biologists 2007 doi:10.1242/jcs.004713 Summary Alpha-catenins play key functional roles in cadherin- desmosomal proteins in the heart localize not only to the catenin cell-cell adhesion complexes. We previously desmosomes in the intercalated discs but also at adhering reported on ␣T-catenin, a novel member of the ␣-catenin junctions with hybrid composition. We found that in the protein family. ␣T-catenin is expressed predominantly in latter junctions, endogenous plakophilin-2 colocalizes with cardiomyocytes, where it colocalizes with ␣E-catenin at the ␣T-catenin. By providing an extra link between the intercalated discs. Whether ␣T- and ␣E-catenin have cadherin-catenin complex and intermediate filaments, the specific or synergistic functions remains unknown. In this binding of ␣T-catenin to plakophilin-2 is proposed to be a study we used the yeast two-hybrid approach to identify means of modulating and strengthening cell-cell adhesion specific functions of ␣T-catenin. -
Universidade Estadual De Campinas Faculdade De Ciências Médicas Carlos Vinícius Buarque De Gusmão Efeito Do Ultrassom, Ondas
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE CIÊNCIAS MÉDICAS CARLOS VINÍCIUS BUARQUE DE GUSMÃO EFEITO DO ULTRASSOM, ONDAS DE CHOQUE E DE PRESSÃO RADIAL NO REPARO DE DEFEITOS ÓSSEOS NAS TÍBIAS DE RATOS AVALIADO PELA EXPRESSÃO E ATIVIDADE DE AKT, BMP-2, ERK-2, FAK E TGF-β1 EFFECT OF ULTRASOUND, EXTRACORPOREAL SHOCKWAVES AND RADIAL PRESSURE WAVES ON AKT, BMP-2, ERK-2, FAK AND TGF-β1 DURING BONE HEALING IN RAT TIBIAL DEFECTS CAMPINAS 2018 CARLOS VINÍCIUS BUARQUE DE GUSMÃO EFEITO DO ULTRASSOM, ONDAS DE CHOQUE E DE PRESSÃO RADIAL NO REPARO DE DEFEITOS ÓSSEOS NAS TÍBIAS DE RATOS AVALIADO PELA EXPRESSÃO E ATIVIDADE DE AKT, BMP-2, ERK-2, FAK E TGF-β1 EFFECT OF ULTRASOUND, EXTRACORPOREAL SHOCKWAVES AND RADIAL PRESSURE WAVES ON AKT, BMP-2, ERK-2, FAK AND TGF-β1 DURING BONE HEALING IN RAT TIBIAL DEFECTS Tese apresentada à Faculdade de Ciências Médicas da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Ciências. Thesis presented to the Faculty of Medical Sciences of the State University of Campinas as part of the requirements to obtain the title of Doctor in Sciences. ORIENTADOR: PROF. DR. WILLIAM DIAS BELANGERO ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO CARLOS VINÍCIUS BUARQUE DE GUSMÃO, E ORIENTADO PELO PROF. DR. WILLIAM DIAS BELANGERO. CAMPINAS 2018 Agência(s) de fomento e nº(s) de processo(s): CAPES, 02-P-3369/2017; FAPESP, 2014/26729-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Faculdade de Ciências Médicas Maristella Soares dos Santos - CRB 8/8402 Gusmão, Carlos Vinícius Buarque de, 1986- G972e Efeito do ultrassom, ondas de choque e de pressão radial no reparo de defeitos ósseos nas tíbias de ratos avaliado pela expressão e atividade de Akt, BMP-2, ERK-2, FAK e TGF-b1 / Carlos Vinícius Buarque de Gusmão. -
The Role of the Interaction of the Vinculin Proline-Rich Linker Region
ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 1875–1886 doi:10.1242/jcs.133645 RESEARCH ARTICLE The role of the interaction of the vinculin proline-rich linker region with vinexin a in sensing the stiffness of the extracellular matrix Hiroshi Yamashita1,*, Takafumi Ichikawa1,*, Daisuke Matsuyama1, Yasuhisa Kimura1, Kazumitsu Ueda1,2, Susan W. Craig3, Ichiro Harada4 and Noriyuki Kioka1,` ABSTRACT information into biochemical signals. At FAs, transmembrane ECM receptors, integrins, are connected to the ends of actin stress Although extracellular matrix (ECM) stiffness is an important aspect fibers through various cytoplasmic proteins, including talin and of the extracellular microenvironment and is known to direct the vinculin. Cells sense ECM stiffness by ‘pulling’ on the ECM lineage specification of stem cells and affect cancer progression, using actomyosin-generated intracellular tension through FAs and the molecular mechanisms that sense ECM stiffness have not yet adjusting the tension that they exert accordingly (Geiger et al., been elucidated. In this study, we show that the proline-rich linker 2009; Parsons et al., 2010); cells on rigid ECM exert higher (PRL) region of vinculin and the PRL-region-binding protein vinexin intracellular tension than cells on soft ECM. Although some FA are involved in sensing the stiffness of ECM substrates. A rigid proteins have been suggested to engage in sensing intracellular substrate increases the level of cytoskeleton-associated vinculin, tension (del Rio et al., 2009; Friedland et al., 2009; Sawada et al., and the fraction of vinculin stably localizing at focal adhesions (FAs) 2006), the signaling mechanisms by which cells sense ECM is larger on rigid ECM than on soft ECM. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact
G C A T T A C G G C A T genes Communication Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team Gil Rodas 1 ,Víctor Moreno-Pérez 2, Juan Del Coso 3,* , Daniel Florit 1, Lourdes Osaba 4 and Alejandro Lucia 5,6,* 1 Medical Department, Futbol Club Barcelona, Barça Innovation Hub, 08028 Barcelona, Spain; [email protected] (G.R.); daniel.fl[email protected] (D.F.) 2 Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Miguel Hernandez University of Elche, 03202 Elche, Spain; [email protected] 3 Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain 4 Progenika Biopharma, A Grifols Company, 48160 Derio, Spain; [email protected] 5 Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain 6 Research Institute Imas12, Hospital 12 de Octubre, 28041 Madrid, Spain * Correspondence: [email protected] (J.D.C.); [email protected] (A.L.) Abstract: There are recent data suggesting an association between the R577X polymorphism (rs1815 739) in the gene encoding α-actinin-3 (ACTN3) and the risk of musculoskeletal injuries. The purpose of this study was to analyze the association of rs1815739 with risk of, and recovery time from non- Citation: Rodas, G.; Moreno-Pérez, contact soft-tissue muscle injuries in professional soccer players. Forty-six (22 male and 24 female) V.; Del Coso, J.; Florit, D.; Osaba, L.; players from a top-level professional soccer team were assessed during five consecutive seasons: Lucia, A. -
Paxillin: a Crossroad in Pathological Cell Migration Ana María López-Colomé*, Irene Lee-Rivera, Regina Benavides-Hidalgo and Edith López
López-Colomé et al. Journal of Hematology & Oncology (2017) 10:50 DOI 10.1186/s13045-017-0418-y REVIEW Open Access Paxillin: a crossroad in pathological cell migration Ana María López-Colomé*, Irene Lee-Rivera, Regina Benavides-Hidalgo and Edith López Abstract Paxilllin is a multifunctional and multidomain focal adhesion adapter protein which serves an important scaffolding role at focal adhesions by recruiting structural and signaling molecules involved in cell movement and migration, when phosphorylated on specific Tyr and Ser residues. Upon integrin engagement with extracellular matrix, paxillin is phosphorylated at Tyr31, Tyr118, Ser188, and Ser190, activating numerous signaling cascades which promote cell migration, indicating that the regulation of adhesion dynamics is under the control of a complex display of signaling mechanisms. Among them, paxillin disassembly from focal adhesions induced by extracellular regulated kinase (ERK)- mediated phosphorylation of serines 106, 231, and 290 as well as the binding of the phosphatase PEST to paxillin have been shown to play a key role in cell migration. Paxillin also coordinates the spatiotemporal activation of signaling molecules, including Cdc42, Rac1, and RhoA GTPases, by recruiting GEFs, GAPs, and GITs to focal adhesions. As a major participant in the regulation of cell movement, paxillin plays distinct roles in specific tissues and developmental stages and is involved in immune response, epithelial morphogenesis, and embryonic development. Importantly, paxillin is also an essential player in pathological conditions including oxidative stress, inflammation, endothelial cell barrier dysfunction, and cancer development and metastasis. Keywords: Cancer, Focal adhesions, Cell migration, Signal transduction Background gene transcription, thus acting as a direct link from the Paxillin is a main component of focal adhesions (FAs) and plasma membrane and the cytoskeleton to the nucleus [5].