Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors Daochun Sun Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). Wayne State University Dissertations. Paper 558. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS by DAOCHUN SUN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: _______________________________________ Advisor Date _______________________________________ _______________________________________ _______________________________________ © COPYRIGHT BY DAOCHUN SUN 2012 All Rights Reserved DEDICATION This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them. ii ACKNOWLEDGMENTS I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true. I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr. Gregory Kapatos for his understanding and support at the critical time, and Dr. James Garbern for his suggestions for this project at the very beginning. I gratefully acknowledge Dr. Janice Kraniak for her generous help during these years, her assistance with my experiments, and for especially teaching me the importance of precision in science. I also want to thank Mrs. Suzanne Shaw and Mrs. Mary Ann from CMMG, and Mrs. J’nice Stork from Karmanos Cancer Institute for their consideration and assistance throughout my study, and making my overseas education feel like home. iii TABLE OF CONTENTS Dedication ...................................................................................................................... ii Acknowledgements ....................................................................................................... iii List of Tables ................................................................................................................. vi List of Figures .............................................................................................................. vii List of Supplementary Tables ........................................................................................ ix List of Abbreviations ...................................................................................................... x Chapter I: Neurofibromin, a RAS-GAP and more ......................................................... 1 Introduction ............................................................................................................. 1 Chapter II: Identification of downstream gene expression regulation of neurofibromin ...................................................................................................................................... 21 Summary ............................................................................................................... 21 Materials and Methods .......................................................................................... 23 Results ................................................................................................................... 28 Discussion ............................................................................................................. 48 Chapter III: The role of BMP2 in MPNST cells .......................................................... 59 Summary ............................................................................................................... 59 Materials and Methods .......................................................................................... 61 Results ................................................................................................................... 64 Discussion ............................................................................................................. 72 iv Chapter IV: Conclusions and significance ................................................................... 80 References .................................................................................................................. 185 Abstract ...................................................................................................................... 207 Autobiographical Statement ....................................................................................... 209 v LIST OF TABLES Table 1: Mutations assayed for each of the 19 oncogenes in the OncoCarta v1.0 Mutation Panel. ..................................................................................... 53 Table 2: Definition of data set and pathway association ............................................ 54 Table 3: EDN1 related gene expression changes in DS-6 with literature supports. .. 55 Table 4: Canonical pathways associated to the down-regulated genes in DS-9 ........ 55 Table 5: Literature based pathways associated to the downregulated genes in DS-9 .............................................................................................................. 56 Table 6: Canonical pathways associated to the upregulated genes in DS-9 .............. 56 Table 7: Literature based pathways associated to the upregulated genes in DS-9 ..... 57 Table 8: Canonical pathways associated to the downregulated genes in DS-10 ....... 57 Table 9: Literature based pathways associated to the downregulated genes in DS-10 ............................................................................................................ 58 Table 10: Canonical pathways associated to the upregulated genes in DS-10 .......... 58 vi LIST OF FIGURES Fig. 1 Domain scheme of neurofibromin with reported protein-ligand interactions. .. 6 Fig. 2 The signaling pathways downstream of RAS .................................................. 14 Fig. 3 Neurofibromin and Phos-ERK1/2 in MPNST cell lines ................................. 32 Fig. 4 Scheme of intersection analysis of gene profiles ............................................. 32 Fig. 5 Verification of interference conditions in MPNST cell lines ........................... 33 Fig. 6 Quantitative RT-PCfR verification of Edn1 expression in microarrays .......... 38 Fig. 7 EDN1 related molecules network built by the IPA ......................................... 39 Fig. 8 Quantitative RT-PCR analysis of Edn1 mRNA expression in MPNST cell lines ................................................................................................................. 40 Fig. 9 Bmp2 mRNA expression in NF1-associated tissue samples ........................... 44 Fig. 10 Quantitative RT-PCR verification of Bmp2 mRNA change in different comparisons .................................................................................................... 45 Fig. 11 Neurofibromin status influences the Bmp2 mRNA expression in STS26T (Nf1+/+) ........................................................................................................... 46 Fig. 12 Inducible RAS expression system in STS26T(Nf1+/+) .................................. 46 Fig. 13 Inducible oncogenic RAS failed to change the expression of Bmp2 mRNA 47 Fig. 14 Status of phosphorylated SMAD1/5/8 in MPNST cell lines ......................... 66 Fig. 15 siBmp2 inhibited Bmp2 mRNA accumulation and the phosphorylation of SMAD1/5/8 ................................................................................................... 67 Fig. 16 NRAS and BMP2 influence the activity of SMAD1/5/8 independently ....... 67 vii Fig. 17 Efficacy of LDN-193189 concentration series to inhibit SMAD1/5/8 in T265(Nf1-/-) ............................................................................................... 69 Fig. 18 LDN-193189 time dependent inhibition of phosphorylation of SMAD1/5/8 in T265(Nf-/-). ................................................................................................. 69 Fig. 19 Migration of MPNST cell lines with LDN-193189 at 24 h in scratch assay with different FBS concentration .................................................................. 76 Fig. 20 The growth curve of T265NonKD ................................................................ 76 Fig. 21 Bmp2 knockdown by lentivirus in ST88-14(Nf1-/-) impaires cell migration ........................................................................................................ 77 Fig. 22 BMP2 and LDN-193189 influenced the invasion ability of ST88-14(Nf1-/-) and T265(Nf1-/-) ................................................................... 78 Fig. 23 Bmp2 stable knockdown lines indicated decreased invasion
Recommended publications
  • Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
    Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts.
    [Show full text]
  • Integrative Analysis Identifies Candidate Tumor Microenvironment and Intracellular Signaling Pathways That Define Tumor Heterogeneity in NF1
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.904771; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Integrative analysis identifies candidate tumor microenvironment and intracellular signaling pathways that define tumor heterogeneity in NF1 Jineta Banerjee1#, Robert J Allaway1#, Jaclyn N Taroni2, Aaron Baker1,4, Xiaochun Zhang5, Chang In Moon5, Jaishri O Blakeley6, Justin Guinney1, Angela Hirbe5, Casey S Greene2,3, Sara JC Gosline1* 1 Computational Oncology, Sage Bionetworks, Seattle, WA, 98121 2 Childhood Cancer Data LaB, Alex's Lemonade Stand Foundation, Philadelphia, PA, 19102 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 4 University of Wisconsin-Madison, Madison, WI, 53715 5 Division of Oncology, Washington University Medical School, St. Louis, MO 63110 6 Neurology, Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21287 # Equal ContriBution * Correspondence: [email protected] Abstract: NeurofiBromatosis type 1 is a monogenic syndrome that gives rise to numerous symptoms including cognitive impairment, skeletal aBnormalities, and growth of Benign nerve sheath tumors. Nearly all NF1 patients develop cutaneous neurofiBromas (cNFs), which occur on the skin surface, while 40-60% of patients develop plexiform neurofibromas (pNFs) which are deeply embedded in the peripheral nerves. Patients with pNFs have a ~10% lifetime chance of these tumors Becoming malignant peripheral nerve sheath tumors (MPNSTs). These tumors have a severe prognosis and few treatment options other than surgery.
    [Show full text]
  • Overexpresssion of Tyrosine Kinase Discoidin Domain Receptor I (DDR1 ) in Transitional Cell Carcinoma
    Overexpresssion of Tyrosine Kinase Discoidin domain receptor I (DDR1 ) in Transitional cell Carcinoma Szu-Ting Chen,* and Shie-Liang Hsieh* Institute and Department of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; To whom proofs are to be sent: Shie-Liang Hsieh, Department and Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan. E-mail address: [email protected] Telephone number: 886-2-28267161 Fax number: 886-2-28277933 INTRODUCTION DDR1, discoidin domain receptor 1, belongs to the novel subfamily of tyrosine kinase receptor, which forms homodimer upon ligand engagement. DDR1 is distinguished from other receptor tyrosine kinase by the discoidin domain in their extracellular domain, which is a homology region originally identified in Dictyostelium discoideum (slime mold) protein, discoidin I, and involves in cells aggregation. Discoidin-1 has binding specificity toward galactose and N-acetyl galactosamine and is essential for slime mold cells adhesion, migration and aggregation during its development, suggesting that DDR1 shared similar biologically function in mammalian [1-3]. DDR1 has been found mainly distributed and in human tissue epithelia, such as kidney, breast, lung [3], bronchial [4] and keratinocytes [5]. Furthermore, DDR1 has been also reported its expression in immune system like the monocyte-derived dendritic cells, annotated as CD167 [6] and macrophage[7]. However, recently, the overexpression of DDR1 has been detected in several human cancers, such as primary breast cancer [1, 8, 9] ovarian[10, 11], brain[12], esophageal cancer [13], and TCC (our data unpublished) in which raising the possibility that DDR1 may play a important role in tumorigenesis [14].
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Organ Level Protein Networks As a Reference for the Host Effects of the Microbiome
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Organ level protein networks as a reference for the host effects of the microbiome 2 3 Robert H. Millsa,b,c,d, Jacob M. Wozniaka,b, Alison Vrbanacc, Anaamika Campeaua,b, Benoit 4 Chassainge,f,g,h, Andrew Gewirtze, Rob Knightc,d, and David J. Gonzaleza,b,d,# 5 6 a Department of Pharmacology, University of California, San Diego, California, USA 7 b Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 8 California, USA 9 c Department of Pediatrics, and Department of Computer Science and Engineering, University of 10 California, San Diego California, USA 11 d Center for Microbiome Innovation, University of California, San Diego, California, USA 12 e Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State 13 University, Atlanta, GA, USA 14 f Neuroscience Institute, Georgia State University, Atlanta, GA, USA 15 g INSERM, U1016, Paris, France. 16 h Université de Paris, Paris, France. 17 18 Key words: Microbiota, Tandem Mass Tags, Organ Proteomics, Gnotobiotic Mice, Germ-free Mice, 19 Protein Networks, Proteomics 20 21 # Address Correspondence to: 22 David J. Gonzalez, PhD 23 Department of Pharmacology and Pharmacy 24 University of California, San Diego 25 La Jolla, CA 92093 26 E-mail: [email protected] 27 Phone: 858-822-1218 28 1 Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 29 Abstract 30 Connections between the microbiome and health are rapidly emerging in a wide range of 31 diseases.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Gene Targeting Therapies (Roy Alcalay)
    Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2
    [Show full text]
  • Regulation of Transcription and Regulatory Networks for Muscle Growth * * * * A
    Regulation Of Transcription And Regulatory Networks For Muscle Growth * * * * A. Reverter , N.J. Hudson , Q. Gu and B.P. Dalrymple Introduction The advent of microarray gene expression technology has provided animal scientists with an unprecedented ability to profile the transcriptional changes during skeletal muscle growth. With respect to meat quality, most of the effort has concentrated on the understanding of fat and energy metabolism (reviewed by Hausman et al . (2009)). Graugnard et al . (2009) explored the network among 31 genes associated with aspects of adipogenesis and energy metabolism in bovine skeletal muscle and in response to two distinct diets. Also, Freyssenet (2007) reviewed the roles that energy-sensing molecules and mitochondria have in the regulation of gene expression in muscle. However, other mechanisms such as cell cycle, glycolysis, extra-cellular matrix, ribosomal proteins and the immune system play a significant role in development, and this role can work in a tissue-specific manner. Hudson et al . (2009a) reported various functional modules underpinning the transcriptional regulation of bovine skeletal muscle. The authors integrated a total of six gene co-expression networks, each developed using the PCIT algorithm (Reverter and Chan (2008)), and proposed a Module-to-Regulator heuristic by which those transcription factors (TF) with the highest average absolute correlation co-expression with the genes present in each module are deemed to be the relevant regulators. However, this Module-to-Regulator approach failed to capture some well-known regulators of muscle fibre type composition, and the use of more sophisticated methods such as the differential wiring approach of Hudson et al .
    [Show full text]
  • Watsonjn2018.Pdf (1.780Mb)
    UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Department of Biology Investigating Differential Gene Expression in vivo of Cardiac Birth Defects in an Avian Model of Maternal Phenylketonuria A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE IN BIOLOGY By Jamie N. Watson Edmond, OK June 5, 2018 J. Watson/Dr. Nikki Seagraves ii J. Watson/Dr. Nikki Seagraves Acknowledgements It is difficult to articulate the amount of gratitude I have for the support and encouragement I have received throughout my master’s thesis. Many people have added value and support to my life during this time. I am thankful for the education, experience, and friendships I have gained at the University of Central Oklahoma. First, I would like to thank Dr. Nikki Seagraves for her mentorship and friendship. I lucked out when I met her. I have enjoyed working on this project and I am very thankful for her support. I would like thank Thomas Crane for his support and patience throughout my master’s degree. I would like to thank Dr. Shannon Conley for her continued mentorship and support. I would like to thank Liz Bullen and Dr. Eric Howard for their training and help on this project. I would like to thank Kristy Meyer for her friendship and help throughout graduate school. I would like to thank my committee members Dr. Robert Brennan and Dr. Lilian Chooback for their advisement on this project. Also, I would like to thank the biology faculty and staff. I would like to thank the Seagraves lab members: Jailene Canales, Kayley Pate, Mckayla Muse, Grace Thetford, Kody Harvey, Jordan Guffey, and Kayle Patatanian for their hard work and support.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Related Malignant Phenotypes in the Nf1-Deficient MPNST
    Published OnlineFirst February 19, 2013; DOI: 10.1158/1541-7786.MCR-12-0593 Molecular Cancer Genomics Research RAS/MEK–Independent Gene Expression Reveals BMP2- Related Malignant Phenotypes in the Nf1-Deficient MPNST Daochun Sun1, Ramsi Haddad2,3, Janice M. Kraniak2, Steven D. Horne1, and Michael A. Tainsky1,2 Abstract Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of germline mutations in Nf1 gene as well as sporadically. Neurofibromin, encoded by the Nf1 gene, functions as a GTPase-activating protein (GAP) whose mutation leads to activation of wt-RAS and mitogen-activated protein kinase (MAPK) signaling in neurofibromatosis type I (NF1) patients' tumors. However, therapeutic targeting of RAS and MAPK have had limited success in this disease. In this study, we modulated NRAS, mitogen-activated protein/extracellular signal–regulated kinase (MEK)1/2, and neurofibromin levels in MPNST cells and determined gene expression changes to evaluate the regulation of signaling pathways in MPNST cells. Gene expression changes due to neurofibromin modulation but independent of NRAS and MEK1/2 regulation in MPNST cells indicated bone morphogenetic protein 2 (Bmp2) signaling as a key pathway. The BMP2-SMAD1/5/8 pathway was activated in NF1-associated MPNST cells and inhibition of BMP2 signaling by LDN-193189 or short hairpin RNA (shRNA) to BMP2 decreased the motility and invasion of NF1-associated MPNST cells. The pathway-specific gene changes provide a greater understanding of the complex role of neurofibromin in MPNST pathology and novel targets for drug discovery. Mol Cancer Res; 11(6); 616–27.
    [Show full text]