Glutathione (GSH)

Total Page:16

File Type:pdf, Size:1020Kb

Glutathione (GSH) Glutathione Metabolism & Glutathione S-transferase Danyelle M. Townsend Director, Analytical Redox Biochemistry Nebraska, June 11, 2019 https://www.medicalnewstoday.com/articles/318652.php Historical perspective on GSH and GST • GSH - First described as Philothion (love of sulfur) by Pailhade 1881 • Crystallized by Hopkins 1921 and renamed “glutathione” • Boyland first described liver GST’s in the 1960’s • Litwack and Ketterer coined the term “Ligandin” in the 1970’s Glutathione (GSH) • Thiol within cysteine and gamma-glutamyl bond are key !!!! • High concentration (5 mM) in cells • Reduced (GSH) and oxidized forms (GSSG) – 10-100:1 ratio in most cells Reduced form shown Maintaining GSH pools https://www.google.com/search?q=glutathione+reductase&client=firefox-b- 1&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjo09CZgvPXAhWCYd8KHfq6CvAQ_AUICigB&biw=1803&bih=1135#imgrc=dm_o7qk6RUJz-M: GSH/GSSG levels determine cell fate http://physiologyonline.physiology.org/content/nips/18/5/201/F2.large.jpg Glutathione synthesis (De-novo / Intracellular process) g-glutamylcysteine synthetase glutamate + cysteine + ATP g-glutamylcysteine + ADP + Pi glutathione synthetase g-glutamylcysteine + glycine + ATP glutathione + ADP + Pi • First step is the rate-limiting step * • ATP is required to form the peptide bonds Synthesis and localization of glutathione Fig. 1 GSH is synthesized in the cytoplasm through two sequential enzymatic ATP-dependent reactions: glutamate cysteine ligase (GCL) links the cysteine to glutamate and glutathione synthetase (GS) catalyzes the bond between glycine and γ-glutamyl-cysteine to produce GSH. After synthesis, cytosolic GSH is transported into subcellular compartments. Scire et al, Biofactors, 45 (2); 152-168, 2019 g-Glutamyl transferase (GGT) • Also known as g-glutamyl peptidase • Transmembrane protein in high concentrations in liver, kidney, and pancreas • Salvage pathway for GSH • Elevated in liver disease • **Diagnostic marker ** https://www.oumedicine.com/images/ad-cell-biology/haniganfigure.jpg?sfvrsn=2 GGT is released in circulation following liver damage (Biomarker) GSH Dependent Reactions Biol Chem. 2009 March ; 390(3): 191–214. doi:10.1515/BC.2009.033 Disulfide Bond Formation: Protein Structure & Conformation • Example: assists in disulfide bond formation of newly synthesized proteins – Mediated by chaperone proteins GSSG GSH Newly synthesized, Properly folded, partially folded protein functional protein Summary: GSH Most abundant cellular thiol Involved in: Detoxification Transport Metabolism Co-factor / substrate Protein Structure S-glutathionylation 13 GSH/GST Catalytic Detoxification H2O H2O2 GPX MRP1 GSSG GSTP GS- + Xenobiotic GSH Conjugate GSR NADPH NADP+ But for anticancer drugs, Kcat values are bad Evolutionary relationships of GSTs Thioredoxin Methanobacteria fold ~5% Dechloromethane Theta dehalogenase identity Omega Man Zeta Mu (M) mGST ~25% Sigma identity Alpha (A) Squid lens crystallin Pi (P) Glutathione S-Transferase family • Isozyme families 22 to 29kD (catalysis as dimers) • Catalyze GSH conjugation, thioether bond formation • Promiscuous substrates; weak binding affinities • High levels in many solid tumors (drug resistant) • Have significant ligand binding properties (first described by Boyland as “ligandin” for heme/bilirubin) • Human polymorphisms prevalent THREE SUPERFAMILIES • SOLUBLE GLUTATHIONE-TRANSFERASES (25 kDa, dimers) aerobic organisms • MEMBRANE BOUND GLUTATHIONE TRANSFERASEs (17 kDa, trimer) aerobic organisms • FOSFOMYCIN RESISTANCE PROTEIN (Fos A) (16 kDa, dimer) bacterial Microsomal GST (mGST) • Homo-trimmer; • Highly expressed membrane bound protein • (3- 5% of proteins in the membrane of ER or Mitochondria); • Selenium-independent phospholipid peroxidase that has overlapping substrates with GPx4. Microsomal glutathione transferase 1: mechanism and functional roles: Ralf Morgenstern, Jie Zhang & Katarina Johansson: Drug Met Reviews: MGST1 & Hematopoiesis • Knocking down Mgst1 is embryonically lethal (day E10) in mice and causes failure of cardiac development, and lipid peroxidation and protein carbonyl contents are increased in heterozygotes; • Knock-down experiments in zebrafish embryos revealed a critical role for MGST1 in hematopoiesis; Bräutigam et al Redox Biology 2018 zfMGST1 influences both the myeloid and lymphoid lineages in hematopoiesis 96 hpf Knock-down of zfMGST1 leads to reduction of melanocytes 48 hpf MGST1 knockdown diminishes Tyrosinase activity & enhances sensitivity to UV radiation in mouse and human melanoma cells UVR effect on 1205Lu cellsEV SK-Mel-28 B16-f1 Non-… 0.1 0.6 0.05 0.04 0.4 0.03 0.05 0.02 0.01 0.2 0 Non-Target Mgst1 KD Tyorsinase activity Tyorsinase 0 Tyrosinase activity Tyrosinase 0 Control UV250 uv500 Control UV250 UV500 Control UV MGST1 knockdown suppresses migration in melanoma cells NonTarget Mgst1 KD 0 h 16 h 0 h 16 h MNT-1 B16-f1 SK-Mel-28 Summary: MGST • MGST knockdown suppresses hematopoiesis • Reduces melanocytes, heme and melanin • Melanin is a critical midline antioxidant in zebrafish • In human melanomas, MGST knockdown also reduces melanin and sensitizes B16 to drugs • Cysteinyldopa is likely a product of MGST catalysis, altering pheomelanin. CYTOSOLIC GSTs • SEVERAL FAMILIES: alpha, mu, pi, theta, sigma, zeta, omega, beta, phi (incl. ≥1) Form dimers: Within a family homo- and heterodimers DIMER-STRUCTURE H-site G-site GSH/GST Catalytic Detoxification H2O H2O2 GPX MRP1 GSSG GSTP GS- + Xenobiotic GSH Conjugate GSR NADPH NADP+ But for anticancer drugs, Kcat values are bad Drug-Metabolizing Enzymes Most DMEs have clinically relevant polymorphisms Those with changes in drug effects are separated from pie. Pharmacogenomics: Translating Functional Genomics into Rational Therapeutics. Evans and 28 Relling Science 1999 Cytosolic GST Tissue-distribution (human) 1, Standard 2, brain 3, heart 4, kidney 5, liver 6, lung 7, pancreas 8, prostate 9, muscle 10, intestine 11, spleen 12, testis Sherratt et al., Biochem. J. (1997) 326, 837 GSTs are induced via Nrf2 regulation (and several other pathways) Reactive compounds Keap -SH Nrf2 GSTs Quinone reductase Cytosol GSH synthesis Glukosinolat Nrf2 O S N C S Antioxidant Sulphoraphane Response Element nuclei Cytosolic GST Knockout Mice Drug Metabolism Reviews 43 GSTP knockout mice Gstp1/p2-/- mice `✓ HPC : hematopoietic progenitor cells Functional Roles of GSTP 20th century • Ligand binding/ transport (e.g. steroids; bilirubin; heme; NO) • Enzymatic catalysis/ detoxification 21st century • Protein:protein interactions/ chaperones? • Endogenous regulation of kinase mediated signaling • Drug target linked to proliferative pathways • Forward reaction in post-translational S-glutathionylation Electrophile Detoxification • GGT and peptidase cleave g- Glu and Gly • Acetylation • Overdose of acetaminophen depletes GSH, liver damage occurs • N-Acetylcysteine as antidote – Protects liver by restoring glutathione levels – Most effective within 8-10 h of overdose Figure From: Basic Concepts in Medicinal Chemistry, Harrold and Zavod, Fig 8-24, p. 306 The role of GSTπ and Kinase Signaling c-jun GSTπ JNK GSTπ S-glutathionylated oligomer GSTπ c-jun JNK P S-glutathionylation of multiple targets c-jun P APOPTOSIS PROLIFERATION Townsend, DM, 2005, Mol Interventions Bone Marrow Osteoblastic niche Vascular niche Low High ROS Thiol HSC HSC Peripheral blood Quiescent Differentiation Self-renew proliferation HSC : hematopoietic stem cells; ROS: reactive oxygen species Increased cell proliferation in Gstp1/p2−/− bone marrow cell populations. 250 WT Gstp1/p2 200 -/- ls l * lls) ce e e c 1 5 0 WT positiv of * U d 1 (% r 0 B 0 P<0.05 0 Lin(-) cells BMDDCs5 0 PloS One. 2014; 9(9).Glutathione S- transferase P influences redox and migration pathways in bone marrow. GSTP catalyses S-glutathionylation Tyr 7, and Cys 47/101 Townsend et al JBC 284, 436 PEROXIREDOXINS peroxidases that catalyze the reduction of ROS Peurto-Galan et al., Front. Plant Sci., 19 August2013 Heterodimerization and S-glutathionylation of 1-cysPrx. Y. Manevich et al. PNAS 2004;101:3780-3785 ©2004 by National Academy ofSciences Human Polymorphisms of GSTP •GSTP1*A: Ile105∞Ala114 •GSTP1*B: Val105∞Ala114 •GSTP1*C: Val105∞Val114 •GSTP1*D: Ile105∞Val114 Allelic variants of GSTP differentially mediate the peroxidase function of peroxiredoxin VI and alter membrane lipid peroxidation Post-translational regulation of Prdx Y. Manevich, S. Hutchens, K.D. Tew, D.M. Townsend Free Radical Biology and Medicine, Volume 54, 2013, 62–70 GSTP & Prdx6 = GSH Peroxidase Manevich, Townsend, Tew et al, FRBM 51, 299. Activation of TLK199 to TLK117, a GST inhibitor. GSTP activated prodrugs Source: Drug Metabolism, Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e Citation: Brunton LL, Hilal-Dandan R, Knollmann BC. Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e; 2017 Available at: http://accessmedicine.mhmedical.com/content.aspx?sectionid=167889421&bookid=2189&jumpsectionID=172473810&Resultclick=2 Copyright © 2017 McGraw-Hill Education. All rights reserved Summary: GST pi • Highly expressed in tumors & drug resistant cells – although the drugs are not substrates for GSTP • C-jun kinase regulation through protein- protein interaction • Reactivates peroxiredoxins • Modulates hematopoiesis • Mediates S-glutathionylation of redox sensitive cysteine containing proteins Questions??? Glutathione Pathways Post-translational glutathionylation Capacity and throughput CAPACITY: 0.2 mM GST in liver + 5 mM GSH = 25 turnovers empties the liver of GSH (e.g. paracetamol overdose) Theoretically this can happen in less than a second!!!! Humans excrete 0.1 mmol GSH conjugates/ day = Equal to one turnover per enzyme every second day.
Recommended publications
  • On the Active Site Thiol of Y-Glutamylcysteine Synthetase
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 2464-2468, April 1988 Biochemistry On the active site thiol of y-glutamylcysteine synthetase: Relationships to catalysis, inhibition, and regulation (glutathione/cystamine/Escherichia coli/kidney/enzyme inactivation) CHIN-SHIou HUANG, WILLIAM R. MOORE, AND ALTON MEISTER Cornell University Medical College, Department of Biochemistry, 1300 York Avenue, New York, NY 10021 Contributed by Alton Meister, December 4, 1987 ABSTRACT y-Glutamylcysteine synthetase (glutamate- dithiothreitol, suggesting that cystamine forms a mixed cysteine ligase; EC 6.3.2.2) was isolated from an Escherichia disulfide between cysteamine and an enzyme thiol (15). coli strain enriched in the gene for this enzyme by recombinant Inactivation of the enzyme by the L- and D-isomers of DNA techniques. The purified enzyme has a specific activity of 3-amino-1-chloro-2-pentanone, as well as that by cystamine, 1860 units/mg and a molecular weight of 56,000. Comparison is prevented by L-glutamate (14). Treatment of the enzyme of the E. coli enzyme with the well-characterized rat kidney with cystamine prevents its interaction with the sulfoxi- enzyme showed that these enzymes have similar catalytic prop- mines. Titration of the enzyme with 5,5'-dithiobis(2- erties (apparent Km values, substrate specificities, turnover nitrobenzoate) reveals that the enzyme has a single exposed numbers). Both enzymes are feedback-inhibited by glutathione thiol that reacts with this reagent without affecting activity but not by y-glutamyl-a-aminobutyrylglycine; the data indicate (16). 5,5'-Dithiobis(2-nitrobenzoate) does not interact with that glutathione binds not only at the glutamate binding site but the thiol that reacts with cystamine.
    [Show full text]
  • Rational Design of Resveratrol O-Methyltransferase for the Production of Pinostilbene
    International Journal of Molecular Sciences Article Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene Daniela P. Herrera 1 , Andrea M. Chánique 1,2 , Ascensión Martínez-Márquez 3, Roque Bru-Martínez 3 , Robert Kourist 2 , Loreto P. Parra 4,* and Andreas Schüller 4,5,* 1 Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile; [email protected] (D.P.H.); [email protected] (A.M.C.) 2 Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; [email protected] 3 Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, 03690 Alicante, Spain; [email protected] (A.M.-M.); [email protected] (R.B.-M.) 4 Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile 5 Department of Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8320000, Chile * Correspondence: [email protected] (L.P.P.); [email protected] (A.S.) Abstract: Pinostilbene is a monomethyl ether analog of the well-known nutraceutical resveratrol. Both compounds have health-promoting properties, but the latter undergoes rapid metabolization and has low bioavailability. O-methylation improves the stability and bioavailability of resveratrol. In plants, these reactions are performed by O-methyltransferases (OMTs). Few efficient OMTs that Citation: Herrera, D.P.; Chánique, monomethylate resveratrol to yield pinostilbene have been described so far.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • WO 2013/064736 Al 10 May 2013 (10.05.2013) P O P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/064736 Al 10 May 2013 (10.05.2013) P O P CT (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 9/10 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/FI2012/05 1048 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 3 1 October 2012 (3 1.10.2012) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 201 16074 1 November 201 1 (01. 11.201 1) FI GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: VALIO LTD [FI/FI]; Meijeritie 6, FI-00370 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Helsinki (FI). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (72) Inventors: RAJAKARI, Kirsi; c/o Valio Ltd, Meijeritie 6, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, FI-00370 Helsinki (FI).
    [Show full text]
  • Review Article Cystathionine -Synthase in Physiology and Cancer
    Hindawi BioMed Research International Volume 2018, Article ID 3205125, 11 pages https://doi.org/10.1155/2018/3205125 Review Article Cystathionine �-Synthase in Physiology and Cancer Haoran Zhu,1,2 Shaun Blake,1,2 Keefe T. Chan,1 Richard B. Pearson ,1,2,3,4 and Jian Kang 1 1 Division of Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia 2Sir Peter MacCallum Department of Oncology, Australia 3Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia 4Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia Correspondence should be addressed to Richard B. Pearson; [email protected] Received 23 March 2018; Accepted 29 May 2018; Published 28 June 2018 Academic Editor: Maria L. Tornesello Copyright © 2018 Haoran Zhu et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cystathionine �-synthase (CBS) regulates homocysteine metabolism and contributes to hydrogen sulfde (H2S) biosynthesis through which it plays multifunctional roles in the regulation of cellular energetics, redox status, DNA methylation, and protein modifcation. Inactivating mutations in CBS contribute to the pathogenesis of the autosomal recessive disease CBS-defcient homocystinuria. Recent studies demonstrating that CBS promotes colon and ovarian cancer growth in preclinical models highlight a newly identifed oncogenic role for CBS. On the contrary, tumor-suppressive efects of CBS have been reported in other cancer types, suggesting context-dependent roles of CBS in tumor growth and progression. Here, we review the physiological functions of CBS, summarize the complexities regarding CBS research in oncology, and discuss the potential of CBS and its key metabolites, including homocysteine and H2S, as potential biomarkers for cancer diagnosis or therapeutic targets for cancer treatment.
    [Show full text]
  • Biosynthetic Investigation of Phomopsins Reveals a Widespread Pathway for Ribosomal Natural Products in Ascomycetes
    Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes Wei Dinga, Wan-Qiu Liua, Youli Jiaa, Yongzhen Lia, Wilfred A. van der Donkb,c,1, and Qi Zhanga,b,1 aDepartment of Chemistry, Fudan University, Shanghai 200433, China; bDepartment of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and cHoward Hughes Medical Institute, University of Illinois at Urbana–Champaign, Urbana, IL 61801 Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved February 23, 2016 (received for review November 24, 2015) Production of ribosomally synthesized and posttranslationally mod- dehydroaspartic acid, 3,4-dehydroproline, and 3,4-dehydrovaline ified peptides (RiPPs) has rarely been reported in fungi, even (Fig. 1A). though organisms of this kingdom have a long history as a prolific Early isotopic labeling studies showed that Ile, Pro, and Phe were source of natural products. Here we report an investigation of the all incorporated into the phomopsin scaffold (24). Because a Phe phomopsins, antimitotic mycotoxins. We show that phomopsin is a hydroxylase that can convert Phe to Tyr has not been found in fungal RiPP and demonstrate the widespread presence of a path- Ascomycetes, the labeling study seems incongruent with a ribosomal way for the biosynthesis of a family of fungal cyclic RiPPs, which we route to phomopsins, in which Tyr, not Phe, would need to be in- term dikaritins. We characterize PhomM as an S-adenosylmethionine– corporated into the phomopsin structure via a tRNA-dependent dependent α-N-methyltransferase that converts phomopsin A to pathway. Here we report our investigation of the biosynthetic path- an N,N-dimethylated congener (phomopsin E), and show that the way of phomopsins, which explains the paradoxical observations in methyltransferases involved in dikaritin biosynthesis have evolved the early labeling studies and unequivocally demonstrates that pho- differently and likely have broad substrate specificities.
    [Show full text]
  • National Coverage Determination Procedure Code: 82977 Gamma Glutamyl Transferase CMS Policy Number: 190.32 Back to NCD List
    National Coverage Determination Procedure Code: 82977 Gamma Glutamyl Transferase CMS Policy Number: 190.32 Back to NCD List Description: Gamma glutamyl transferase (GGT) is an intracellular enzyme that appears in blood following leakage from cells. Renal tubules, liver, and pancreas contain high amounts, although the measurement of GGT in serum is almost always used for assessment of Hepatobiliary function. Unlike other enzymes which are found in heart, skeletal muscle, and intestinal mucosa as well as liver, the appearance of an elevated level of GGT in serum is almost always the result of liver disease or injury. It is specifically useful to differentiate elevated alkaline phosphatase levels when the source of the alkaline phosphatase increase (bone, liver, or placenta) is unclear. The combination of high alkaline phosphatase and a normal GGT does not, however, rule out liver disease completely. As well as being a very specific marker of Hepatobiliary function, GGT is also a very sensitive marker for hepatocellular damage. Abnormal concentrations typically appear before elevations of other liver enzymes or biliuria are evident. Obstruction of the biliary tract, viral infection (e.g., hepatitis, mononucleosis), metastatic cancer, exposure to hepatotoxins (e.g., organic solvents, drugs, alcohol), and use of drugs that induce microsomal enzymes in the liver (e.g., cimetidine, barbiturates, phenytoin, and carbamazepine) all can cause a moderate to marked increase in GGT serum concentration. In addition, some drugs can cause or exacerbate liver dysfunction (e.g., atorvastatin, troglitazone, and others as noted in FDA Contraindications and Warnings.) GGT is useful for diagnosis of liver disease or injury, exclusion of hepatobiliary involvement related to other diseases, and patient management during the resolution of existing disease or following injury.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Relating Metatranscriptomic Profiles to the Micropollutant
    1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles.
    [Show full text]
  • The Neurochemical Consequences of Aromatic L-Amino Acid Decarboxylase Deficiency
    The neurochemical consequences of aromatic L-amino acid decarboxylase deficiency Submitted By: George Francis Gray Allen Department of Molecular Neuroscience UCL Institute of Neurology Queen Square, London Submitted November 2010 Funded by the AADC Research Trust, UK Thesis submitted for the degree of Doctor of Philosophy, University College London (UCL) 1 I, George Allen confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed………………………………………………….Date…………………………… 2 Abstract Aromatic L-amino acid decarboxylase (AADC) catalyses the conversion of 5- hydroxytryptophan (5-HTP) and L-3,4-dihydroxyphenylalanine (L-dopa) to the neurotransmitters serotonin and dopamine respectively. The inherited disorder AADC deficiency leads to a severe deficit of serotonin and dopamine as well as an accumulation of 5-HTP and L-dopa. This thesis investigated the potential role of 5- HTP/L-dopa accumulation in the pathogenesis of AADC deficiency. Treatment of human neuroblastoma cells with L-dopa or dopamine was found to increase intracellular levels of the antioxidant reduced glutathione (GSH). However inhibiting AADC prevented the GSH increase induced by L-dopa. Furthermore dopamine but not L-dopa, increased GSH release from human astrocytoma cells, which do not express AADC activity. GSH release is the first stage of GSH trafficking from astrocytes to neurons. This data indicates dopamine may play a role in controlling brain GSH levels and consequently antioxidant status. The inability of L-dopa to influence GSH concentrations in the absence of AADC or with AADC inhibited indicates GSH trafficking/metabolism may be compromised in AADC deficiency.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Discovery of Oxidative Enzymes for Food Engineering. Tyrosinase and Sulfhydryl Oxi- Dase
    Dissertation VTT PUBLICATIONS 763 1,0 0,5 Activity 0,0 2 4 6 8 10 pH Greta Faccio Discovery of oxidative enzymes for food engineering Tyrosinase and sulfhydryl oxidase VTT PUBLICATIONS 763 Discovery of oxidative enzymes for food engineering Tyrosinase and sulfhydryl oxidase Greta Faccio Faculty of Biological and Environmental Sciences Department of Biosciences – Division of Genetics ACADEMIC DISSERTATION University of Helsinki Helsinki, Finland To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki in Auditorium XII at the University of Helsinki, Main Building, Fabianinkatu 33, on the 31st of May 2011 at 12 o’clock noon. ISBN 978-951-38-7736-1 (soft back ed.) ISSN 1235-0621 (soft back ed.) ISBN 978-951-38-7737-8 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2011 JULKAISIJA – UTGIVARE – PUBLISHER VTT, Vuorimiehentie 5, PL 1000, 02044 VTT puh. vaihde 020 722 111, faksi 020 722 4374 VTT, Bergsmansvägen 5, PB 1000, 02044 VTT tel. växel 020 722 111, fax 020 722 4374 VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland phone internat. +358 20 722 111, fax + 358 20 722 4374 Edita Prima Oy, Helsinki 2011 2 Greta Faccio. Discovery of oxidative enzymes for food engineering. Tyrosinase and sulfhydryl oxi- dase. Espoo 2011. VTT Publications 763. 101 p. + app. 67 p. Keywords genome mining, heterologous expression, Trichoderma reesei, Aspergillus oryzae, sulfhydryl oxidase, tyrosinase, catechol oxidase, wheat dough, ascorbic acid Abstract Enzymes offer many advantages in industrial processes, such as high specificity, mild treatment conditions and low energy requirements.
    [Show full text]