Diseases Catalogue

Total Page:16

File Type:pdf, Size:1020Kb

Diseases Catalogue Diseases catalogue AA Disorders of amino acid metabolism OMIM Group of disorders affecting genes that codify proteins involved in the catabolism of amino acids or in the functional maintenance of the different coenzymes. AA Alkaptonuria: homogentisate dioxygenase deficiency 203500 AA Phenylketonuria: phenylalanine hydroxylase (PAH) 261600 AA Defects of tetrahydrobiopterine (BH 4) metabolism: AA 6-Piruvoyl-tetrahydropterin synthase deficiency (PTS) 261640 AA Dihydropteridine reductase deficiency (DHPR) 261630 AA Pterin-carbinolamine dehydratase 126090 AA GTP cyclohydrolase I deficiency (GCH1) (autosomal recessive) 233910 AA GTP cyclohydrolase I deficiency (GCH1) (autosomal dominant): Segawa syndrome 600225 AA Sepiapterin reductase deficiency (SPR) 182125 AA Defects of sulfur amino acid metabolism: AA N(5,10)-methylene-tetrahydrofolate reductase deficiency (MTHFR) 236250 AA Homocystinuria due to cystathionine beta-synthase deficiency (CBS) 236200 AA Methionine adenosyltransferase deficiency 250850 AA Methionine synthase deficiency (MTR, cblG) 250940 AA Methionine synthase reductase deficiency; (MTRR, CblE) 236270 AA Sulfite oxidase deficiency 272300 AA Molybdenum cofactor deficiency: combined deficiency of sulfite oxidase and xanthine oxidase 252150 AA S-adenosylhomocysteine hydrolase deficiency 180960 AA Cystathioninuria 219500 AA Hyperhomocysteinemia 603174 AA Defects of gamma-glutathione cycle: glutathione synthetase deficiency (5-oxo-prolinuria) 266130 AA Defects of histidine metabolism: Histidinemia 235800 AA Defects of lysine and hydroxylysine metabolism: AA Saccharopinuria (lysinuria type II) 268700 AA Lysinuria type I 238700 AA Defects of ornithine metabolism: ornithine aminotransferase deficiency, Gyrate athrophy 258870 AA Defects of proline and hydroxyproline metabolism: AA Hyperprolinemia type I 239500 AA Hyperprolinemia type II 239510 AA Prolidase deficiency 170100 AA Defects of serine metabolism: AA 3-Phosphoglycerate dehydrogenase deficiency 601815 AA Phosphoserine aminotransferase deficiency 610992 AA Phosphoserine phosphatase deficiency 172480 AA Defects of tryptophan metabolism: hydroxykynureninuria 236800 AA Maple Syrup Urine Disease (MSUD) 248600 AA BCKDHA gene 608348 AA BCKDHB gene 248611 AA BCKDK gene 248600 AA Disorders of amino acid metabolism OMIM AA DBT gene 348610 AA Non Ketotic Hyperglycinemia (HGNK): 605899 AA AMT gene (protein T) 238310 AA DLD gene (protein L) 238331 AA GCSH gene (protein H) 238330 AA GLDC gene (protein P) 238300 AA Sarcosinemia 268900 AA Tyrosinemia type I: fumaryl acetoacetase deficiency 276700 AA Tyrosinemia type II: hepatic tyrosine aminotransferase deficiency 276600 AA Tyrosinemia type III: hydroxyphenylpyruvate dioxygenase deficiency 276710 AA Hawkinsinuria 140350 AA Hypophosphatasia 241500 AA Carnosinemia 212200 CU Urea cycle deficiency OMIM Defects of the urea cycle enzymes involved in the removal of the ammonia excess derived from amino acid metabolism. CU N-acetylglutamate synthetase deficiency (NAGS) 237310 CU Carbamyl phosphate synthetase deficiency (CPS) 237300 CU Ornithine transcarbamylase deficiency (OTC) 311250 CU Citrullinaemia: argininsuccinic acid synthetase deficiency (ASS) 215700 CU Argininsuccinic aciduria: argininsuccinic acid lyase deficiency (ASL) 207900 CU Argininemia: arginase deficiency 207800 CU Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) 238970 CU Citrullinemia type II: citrin deficiency 605814 CU Delta1-pyrroline-5-carboxylic syntethase deficiency 138250 ALC Congenital Lactic Acidosis OMIM This group includes mitochondrial disorders caused by defects of pyruvate metabolism or enzyme complexes related to energy production by oxidative phosphorylation. ALC Pyruvate carboxylase deficiency (PC) 266150 ALC Dihydrolipoyl dehydrogenase deficiency(E3) 238331 ALC Fumarase deficiency 606812 ALC Alfa-Ketoglutarate dehydrogenase deficiency 203740 ALC Mitochondrial DNA depletion: ALC Thymidine kinase deficiency 188250 ALC Succinate-CoA ligase deficiency, α subunit (SUCLG1) 611224 ALC Succinate-CoA ligase deficiency, β subunit, (ADP) (SUCLA2) 603921 AO Disorder of organic acid metabolism OMIM Organic acidurias are a group of inborn errors characterized by the increase of organic acid in physiological fluids. AO Methylmalonic acidemia: AO B12 deficiency AO Methylmalonyl-CoA mutase deficiency (MCM) 251000 AO CblA (MMAA) 251100 AO Cob(I)alamin adenosyl transferase deficiency (CblB) (MMAB) 251110 AO Methylmalonyl-CoA epimerase deficiency (MCEE) 608419 AO Methylmalonic acidemia and homocystinuria: AO CblC (MMACHC) 277400 AO CblD (MMADHC) 277410 AO CblF 277380 AO Propionic acidemia: propionyl-CoA carboxylase deficiency (PCC) 606054 AO PCCA gene 232000 AO PCCB gene 232050 AO Isovaleric acidemia: isovaleryl-CoA dehydrogenase deficiency 243500 AO Beta-methylcrotonyl glycinuria: 3-methylcrotonyl-CoA carboxylase deficiency (MCC): AO MCC1 gene 210200 AO MCC2 gene 210210 AO Methylglutaconic Aciduria: 606580 AO Type I: 3-methylglutaconyl-CoA hydratase deficiency 250950 AO Type II: Barth Syndrome 302060 AO Type III: Costeff Syndrome 258501 AO Type IV 250951 AO Type V (DNAJC19) 610198 AO 3-Hydroxy-3-methylglutaric aciduria: 3-hydroxy-3-methylglutarylCoA lyase (HL) 246450 AO Multiple carboxylase deficiency: AO Holocarboxylase synthetase (HCS) 253270 AO Biotinidase deficiency 253260 AO Mevalonic aciduria: AO Mevalonate kinase deficiency 251170 AO Mevalonate kinase deficiency and hyper IgD 260920 AO 2-Methyl-3-OH-butyric aciduria: 2-methyl-3-OH-butyryl-CoA dehydrogenase deficiency 300438 AO Isobutyrylglycinuria: isobutyryl-CoA dehydrogenase deficiency 604773 AO N-acetylaspartic aciduria: Canavan disease 271900 AO Glutaric acidemia type I 231670 AO D-2-hydroxy glutaric aciduria 600721 AO L-2-hydroxy glutaric aciduria 236792 AO Malonic aciduria: malonyl-CoA decarboxylase deficiency 248360 AO 4-Hydroxy butyric aciduria: succinic semialdehyde dehydrogenase deficiency 271980 AO 3-Hydroxy isobutyric aciduria 236795 AO Hyperoxaluria type II 260000 CDG Defects of glycosylation: OMIM Group of disorders caused by defects in the enzymes involved in protein glycosylation. CDG CDG type I 603585 CDG CDG type Ia (PMM2 gene) 212065 CDG CDG type Ib (MPI gene) 602579 CDG CDG type Ic (ALG6 gene) 603147 CDG CDG type Ie (DPM1 gene) 608797 CDG CDG type Ij (DPAGT1 gene) 608093 CDG CDG type Im (TMEM15 gene) 610768 CDG CDG type II 212067 CDG CDG type Iia (MGAT2 gene) 212066 CDG Combined defects of N- and O-glycosylation (COG genes) CH Disorders of carbohydrate metabolism OMIM This group includes some defects of carbohydrate metabolism CH Fructose-1,6-bisphosphatase deficiency 229700 CH Glycerol kinase deficiency 300474 CH D-gliceric acidemia: glycerate kinase deficiency 610516 COL Disorders of cholesterol and bile acids OMIM Defects in the synthesis and absorption of cholesterol and in the bile acid synthesis. COL Defects of cholesterol biosynthesis: COL Desmosterolosis 602398 COL Smith-Lemli-Opitz syndrome 270400 COL CHILD syndrome 308050 COL Conradi-Hünermann syndrome 302960 COL Lathosterolosis 607330 COL Cholesterol absorption defect: sitosterolemia 210250 COL Bile acid synthesis defects: COL Cerebrotendinous xanthomatosis 213700 COL 3 Beta-hydroxy-delta 5-C27 steroid dehydrogenase (3Beta-HSD) 607765 COL 3-Oxosteroid 5β-reductase deficiency 235555 CR Syndromes of cerebral creatine deficiency OMIM Defects of creatine biosynthesis and transport. CR Guanidinoacetate methyltransferase deficiency (GAMT) 601240 CR Arginine: glycine amidinotransferase deficiency (AGAT) 602360 CR Creatine transporter deficiency (SLC6A8) 300352 FAO Disorders of fatty acid β-oxidation OMIM Defects in the mitochondrial fatty acid β-oxidation, one of the main energy sources. FAO Deficiency of acyl-CoA dehydrogenase: FAO Short-chain fatty acids: SCAD 201470 FAO Medium-chain fatty acids: MCAD 201450 FAO Very long-chain fatty acids: VLCAD 201475 FAO Glutaric aciduria type II: multiple acyl-CoA dehydrogenase deficiency (MADD) 231680 FAO Gene ETFA 608053 FAO Gene ETFB 130410 FAO Gene ETFDH 231675 FAO MADD riboflavine responsive FAO Encephalopathy, Ethylmalonic aciduria: gene ETHE1 602473 FAO Mitochondrial trifunctional protein 609015 FAO Long-chain 3-OH-acyl-CoA dehydrogenase deficiency (LCHAD) 201460 FAO Short-chain 3-OH-acyl-CoA dehydrogenase deficiency (SCHAD) 601609 FAO Carnitine transporter deficiency 212140 FAO Carnitine palmitoyltransferase type I deficiency (CPTI) 255120 FAO Carnitine palmitoyltransferase type II deficiency (CPTII) 255110 FAO Carnitine acylcarnitine translocase deficiency 212138 KB Disorders of ketone bodies metabolism OMIM Defects involved in ketogenesis. KB 3-Hydroxy-3-methylglutaryl-CoA synthase 600234 KB Beta-ketothiolase deficiency 203750 KB Succinyl-CoA: 3-oxoacid-CoA transferase deficiency 245050 NEU Disorders of neurotransmitter metabolism OMIM Genetic defects in the biogenic amines, amino acids, neuropeptides metabolism. NEU Tryptophan hydroxylase deficiency 607478 NEU Tyrosine hydroxylase (TH) deficiency 191290 NEU Aromatic L-amino acid decarboxylase deficiency (AADC) 107930 NEU Dopamine β-hydroxylase deficiency (D βH) 223360 NEU Monoamine oxidase (MAO) 309850 Pyridoxine-dependent convulsions: deficiency of α-amino adipic semialdehyde dehydrogenase NEU 266100 (antiquitin) NEU Pyridoxal-P dependent convulsions: pyridoxamine 5’-phosphate oxidase deficiency (PNPO) 603287 NEU γ-Aminobutyrate transaminase deficiency (GABAT) 137150 NEU Glutamine synthase deficiency (GS) FO Disorders with folate deficiency OMIM Disorders related to genetic or acquired folate deficiency FO Cerebral folate deficiency
Recommended publications
  • Second-Tier DNA Confirmation of Newborn Screening Results
    Second-tier DNA Confirmation of Newborn Screening by Targeted Next Generation Sequencing Edwin Naylor, Ph.D. MPH Andy Bhattacharjee , Ph.D. Erik Puffenberger, Ph.D.; Kevin Strauss, MD; Holmes Morton, MD Newborn Screening & Clinical Genomics 1961 1990’s 2010-2012 2 Robert Guthrie Development of develops simple automated MS/MS Newborn Screening screening across (NBS) several disorders Current de facto standard 2 Why Newborn Genomics? • Mendelian Diseases disproportionately affect Newborns - ~3500 genetic diseases with molecular basis - >10% of NICU admissions are genetic Clinical manifestation of Genetic diseases - Current NBS tests limited to 29+ diseases CHROMOSOMAL - 2nd tier DNA testing to validate biochemical results MULTI-FACTORIAL SINGLE GENE (MENDELIAN) • Advantage of NGS based DNA testing individuals # of Affected - Find causal variants (rare/novel) in gene(s) - A ‘universal’ NGS approach avoids repeated, serial BIRTH PUBERTY ADULT single gene testing Gelehrter TD, Collins FS, Ginsburg D. Principles of - Current Sanger sequencing is expensive ($3-10K) and Medical Genetics. 2nd ed. Baltimore, MD: Williams & slow (3 months to 1 year) Wilkins; 1998:1-42 NICU- Neonatal Intensive Care Unit NBS-Newborn Screening 3 NGS-Next Generation Sequencing Why Targeted (Exome) Sequencing for now? NGS Sequencing * Genomic DNA from Causal Mutations in Affected Individuals Exons/Target Regions Fold Test Menu Cost ($) Throughput Efficiency Whole Genome (Res.) 7,666* 1 1 Exome (Res) 1,200 15 95 Neonate Panel (Clinical) <1000 150 >1140 •Majority of known disease-causing mutations in exons •Exome = protein-encoding parts of genes •Targeted NGS is Cost & Throughput Efficient *Saunders et al., (2012) Rapid Whole Genome Sequencing for Genetic Disease Diagnosis in NICUs 4 Workflow for 2nd Tier Newborn Screening Sample 2h DNA Capture 92h Raw Data 10h Analysis 1h+ Isolation & Sequencing Management & Interpretation 8 samples, 105 Hrs, <$10,000 = Real Neonatal Genomics! 5 Workflow for 2nd Tier Newborn Screening Sample •High M.Wt.
    [Show full text]
  • On the Active Site Thiol of Y-Glutamylcysteine Synthetase
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 2464-2468, April 1988 Biochemistry On the active site thiol of y-glutamylcysteine synthetase: Relationships to catalysis, inhibition, and regulation (glutathione/cystamine/Escherichia coli/kidney/enzyme inactivation) CHIN-SHIou HUANG, WILLIAM R. MOORE, AND ALTON MEISTER Cornell University Medical College, Department of Biochemistry, 1300 York Avenue, New York, NY 10021 Contributed by Alton Meister, December 4, 1987 ABSTRACT y-Glutamylcysteine synthetase (glutamate- dithiothreitol, suggesting that cystamine forms a mixed cysteine ligase; EC 6.3.2.2) was isolated from an Escherichia disulfide between cysteamine and an enzyme thiol (15). coli strain enriched in the gene for this enzyme by recombinant Inactivation of the enzyme by the L- and D-isomers of DNA techniques. The purified enzyme has a specific activity of 3-amino-1-chloro-2-pentanone, as well as that by cystamine, 1860 units/mg and a molecular weight of 56,000. Comparison is prevented by L-glutamate (14). Treatment of the enzyme of the E. coli enzyme with the well-characterized rat kidney with cystamine prevents its interaction with the sulfoxi- enzyme showed that these enzymes have similar catalytic prop- mines. Titration of the enzyme with 5,5'-dithiobis(2- erties (apparent Km values, substrate specificities, turnover nitrobenzoate) reveals that the enzyme has a single exposed numbers). Both enzymes are feedback-inhibited by glutathione thiol that reacts with this reagent without affecting activity but not by y-glutamyl-a-aminobutyrylglycine; the data indicate (16). 5,5'-Dithiobis(2-nitrobenzoate) does not interact with that glutathione binds not only at the glutamate binding site but the thiol that reacts with cystamine.
    [Show full text]
  • Birth Prevalence of Disorders Detectable Through Newborn Screening by Race/Ethnicity
    ©American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Birth prevalence of disorders detectable through newborn screening by race/ethnicity Lisa Feuchtbaum, DrPH, MPH1, Jennifer Carter, MPH2, Sunaina Dowray, MPH2, Robert J. Currier, PhD1 and Fred Lorey, PhD1 Purpose: The purpose of this study was to describe the birth prev- Conclusion: The California newborn screening data offer a alence of genetic disorders among different racial/ethnic groups unique opportunity to explore the birth prevalence of many through population-based newborn screening data. genetic dis orders across a wide spectrum of racial/ethnicity classifications. The data demonstrate that racial/ethnic subgroups Methods: Between 7 July 2005 and 6 July 2010 newborns in Cali- of the California newborn population have very different patterns fornia were screened for selected metabolic, endocrine, hemoglobin, of heritable disease expression. Determining the birth prevalence and cystic fibrosis disorders using a blood sample collected via heel of these disorders in California is a first step to understanding stick. The race and ethnicity of each newborn was self-reported by the short- and long-term medical and treatment needs faced by the mother at the time of specimen collection. affected communities, especially those groups that are impacted by Results: Of 2,282,138 newborns screened, the overall disorder detec- more severe disorders. tion rate was 1 in 500 births. The disorder with the highest prevalence Genet Med 2012:14(11):937–945 among all groups was primary congenital hypothyroidism (1 in 1,706 births). Birth prevalence for specific disorders varied widely among Key Words: birth prevalence; disorders; newborn screening; race different racial/ethnic groups.
    [Show full text]
  • Newborn Screening for X-Linked Adrenoleukodystrophy: Information for Parents
    Newborn Screening for X-linked Adrenoleukodystrophy: Information for Parents Baby girl with ABCD1 gene mutation What is newborn screening? the symptoms of ALD during childhood. Rarely, some women who are carriers of ALD develop mild symptoms as adults. It Newborn screening involves laboratory testing on a small is important for your family to meet with a genetic counselor sample of blood collected from newborns’ heels. Every state to talk about the genetics of ALD and implications for other has a newborn screening program to identify infants with rare family members. disorders, which would not usually be detected at birth. Early diagnosis and treatment of these disorders often prevents Why do only boys have ALD? serious complications. Only boys have ALD because it is caused by a mutation in What is adrenoleukodystrophy (ALD)? a gene (ABCD1) on the X chromosome, called “X-linked inheritance.” Males only have one X chromosome so they have ALD is one of over 40 disorders included in newborn screening one ABCD1 gene. Males with a nonfunctioning ABCD1 gene in New York State. It is a rare genetic disorder. People with have ALD. Females have 2 X chromosomes, so they have two ALD are unable to breakdown a component of food called ABCD1 genes. Females with one ABCD1 gene mutation will very long chain fatty acids (VLCFA). If VLCFA are not broken be carriers. When a mother is a carrier of ALD, each son has a down, they build up in the body and cause symptoms. 50% chance of inheriting the disorder and each daughter has a 50% chance of being a carrier.
    [Show full text]
  • Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
    Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10).
    [Show full text]
  • Inherited Metabolic Disease
    Inherited metabolic disease Dr Neil W Hopper SRH Areas for discussion • Introduction to IEMs • Presentation • Initial treatment and investigation of IEMs • Hypoglycaemia • Hyperammonaemia • Other presentations • Management of intercurrent illness • Chronic management Inherited Metabolic Diseases • Result from a block to an essential pathway in the body's metabolism. • Huge number of conditions • All rare – very rare (except for one – 1:500) • Presentation can be non-specific so index of suspicion important • Mostly AR inheritance – ask about consanguinity Incidence (W. Midlands) • Amino acid disorders (excluding phenylketonuria) — 18.7 per 100,000 • Phenylketonuria — 8.1 per 100,000 • Organic acidemias — 12.6 per 100,000 • Urea cycle diseases — 4.5 per 100,000 • Glycogen storage diseases — 6.8 per 100,000 • Lysosomal storage diseases — 19.3 per 100,000 • Peroxisomal disorders — 7.4 per 100,000 • Mitochondrial diseases — 20.3 per 100,000 Pathophysiological classification • Disorders that result in toxic accumulation – Disorders of protein metabolism (eg, amino acidopathies, organic acidopathies, urea cycle defects) – Disorders of carbohydrate intolerance – Lysosomal storage disorders • Disorders of energy production, utilization – Fatty acid oxidation defects – Disorders of carbohydrate utilization, production (ie, glycogen storage disorders, disorders of gluconeogenesis and glycogenolysis) – Mitochondrial disorders – Peroxisomal disorders IMD presentations • ? IMD presentations • Screening – MCAD, PKU • Progressive unexplained neonatal
    [Show full text]
  • Genes Investigated
    BabyNEXTTM EXTENDED Investigated genes and associated diseases Gene Disease OMIM OMIM Condition RUSP gene Disease ABCC8 Familial hyperinsulinism 600509 256450 Metabolic disorder - ABCC8-related Inborn error of amino acid metabolism ABCD1 Adrenoleukodystrophy 300371 300100 Miscellaneous RUSP multisystem (C) * diseases ABCD4 Methylmalonic aciduria and 603214 614857 Metabolic disorder - homocystinuria, cblJ type Inborn error of amino acid metabolism ACAD8 Isobutyryl-CoA 604773 611283 Metabolic Disorder - RUSP dehydrogenase deficiency Inborn error of (S) ** organic acid metabolism ACAD9 acyl-CoA dehydrogenase-9 611103 611126 Metabolic Disorder - (ACAD9) deficiency Inborn error of fatty acid metabolism ACADM Acyl-CoA dehydrogenase, 607008 201450 Metabolic Disorder - RUSP medium chain, deficiency of Inborn error of fatty (C) acid metabolism ACADS Acyl-CoA dehydrogenase, 606885 201470 Metabolic Disorder - RUSP short-chain, deficiency of Inborn error of fatty (S) acid metabolism ACADSB 2-methylbutyrylglycinuria 600301 610006 Metabolic Disorder - RUSP Inborn error of (S) organic acid metabolism ACADVL very long-chain acyl-CoA 609575 201475 Metabolic Disorder - RUSP dehydrogenase deficiency Inborn error of fatty (C) acid metabolism ACAT1 Alpha-methylacetoacetic 607809 203750 Metabolic Disorder - RUSP aciduria Inborn error of (C) organic acid metabolism ACSF3 Combined malonic and 614245 614265 Metabolic Disorder - methylmalonic aciduria Inborn error of organic acid metabolism 1 ADA Severe combined 608958 102700 Primary RUSP immunodeficiency due
    [Show full text]
  • Involvements of Hyperhomocysteinemia in Neurological Disorders
    H OH metabolites OH Review Involvements of Hyperhomocysteinemia in Neurological Disorders Marika Cordaro 1,† , Rosalba Siracusa 2,† , Roberta Fusco 2 , Salvatore Cuzzocrea 2,3,* , Rosanna Di Paola 2,* and Daniela Impellizzeri 2 1 Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; [email protected] 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; [email protected] (R.S.); [email protected] (R.F.); [email protected] (D.I.) 3 Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA * Correspondence: [email protected] (S.C.); [email protected] (R.D.P.); Tel.: +39-090-6765208 (S.C. & R.D.P.) † The authors equally contributed to the review. Abstract: Homocysteine (HCY), a physiological amino acid formed when proteins break down, leads to a pathological condition called hyperhomocysteinemia (HHCY), when it is over a definite limit. It is well known that an increase in HCY levels in blood, can contribute to arterial damage and several cardiovascular disease, but the knowledge about the relationship between HCY and brain disorders is very poor. Recent studies demonstrated that an alteration in HCY metabolism or a deficiency in folate or vitamin B12 can cause altered methylation and/or redox potentials, that leads to a modification on calcium influx in cells, or into an accumulation in amyloid and/or tau protein involving a cascade of events that culminate in apoptosis, and, in the worst conditions, neuronal death. The present review will thus summarize how much is known about the possible role of HHCY in neurodegenerative disease.
    [Show full text]
  • Inherited Metabolic Disorders)
    1 โรคพันธุกรรมเมตาบอลิก (inherited metabolic disorders) บทนํา โรคพันธุกรรมเมตาบอลิคนั้น มีผู้ประเมินไว้ว่ามีหลายร้อยโรคด้วยกัน และเป็นที่ยอมรับว่า อุบัติการของโรคกลุ่มนี้มักจะน้อยกว่าความเป็นจริง เนื่องจากการวินิจฉัยโรคทําได้ด้วยความ ยากลําบาก แพทย์ทั่วไปมักรู้จักค่อนข้างน้อย หรือให้การวินิจฉัยไม่ถูกต้อง ด้วยเหตุผลหลาย ประการ 1). การวินิจฉัยทําได้ค่อนข้างยาก เนื่องจากแต่ละโรคพบได้น้อยคือ จัดเป็น rare disease ทําให้แพทย์ไม่ค่อยนึกถึงเมื่อพบผู้ป่วย จนอาการค่อนข้างมาก หรือเมื่อได้แยกโรคที่พบได้บ่อย ออกไปแล้ว 2). การตรวจทางห้องปฎิบัติการโดยเฉพาะการตรวจเลือดและปัสสาวะเบื้องต้น มักไม่ ค่อยบอกโรคชัดเจน ยกเว้นส่งตรวจพิเศษบางอย่างเช่นการวิเคราะห์ plasma amino acid หรือ urine organic acid 3). ในทารกแรกเกิดซึ่งมีโอกาสพบโรคกลุ่มนี้ได้บ่อย มักจะมีการตอบสนองต่อ severe overwhelming illness อย่างมีขีดจํากัด หรือแสดงอาการอย่าง nonspecific เช่น poor feeding,lethargy เป็นต้น 4).กุมารแพทย์คิดถึงโรคกลุ่มนี้ในบางภาวะเท่านั้นเช่นภาวะปัญญาอ่อน หรือชักที่คุมได้ยากและมองข้ามอาการแสดงบางอย่างที่อาจเป็นเงื่อนงําสําคัญในการวินิจฉัยโรค โรคพันธุกรรมเมตาบอลิก ที่เรียกว่า inherited metabolic disorders หรือ inborn errors of metabolism (IBEM) เป็นโรคพันธุกรรมกลุ่มหนึ่งที่เกิดจากความผิดปกติของยีนเดี่ยว ที่มีความ ผิดปกติของการเรียงลําดับของเบสหรือสายDNA ก่อให้เกิดความผิดปกติของ enzymes, receptors, transport proteins, structural proteins, หรือส่วนประกอบอื่นของเซลล์แล้วส่งผลให้ เกิดความผิดปกติของขบวนการย่อยสลาย (catabolism) หรือขบวนการสังเคราะห์ (anabolism) สารอาหาร การเปลี่ยนแปลงที่ระดับ DNA ของโรคกลุ่มนี้อาจเกิดจากการกลายพันธุ์ของยีนที่สร้าง enzyme หรือยีนที่สร้างสารควบคุมหรือส่งเสริมการทํางานของ
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Review Article Cystathionine -Synthase in Physiology and Cancer
    Hindawi BioMed Research International Volume 2018, Article ID 3205125, 11 pages https://doi.org/10.1155/2018/3205125 Review Article Cystathionine �-Synthase in Physiology and Cancer Haoran Zhu,1,2 Shaun Blake,1,2 Keefe T. Chan,1 Richard B. Pearson ,1,2,3,4 and Jian Kang 1 1 Division of Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia 2Sir Peter MacCallum Department of Oncology, Australia 3Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia 4Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia Correspondence should be addressed to Richard B. Pearson; [email protected] Received 23 March 2018; Accepted 29 May 2018; Published 28 June 2018 Academic Editor: Maria L. Tornesello Copyright © 2018 Haoran Zhu et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cystathionine �-synthase (CBS) regulates homocysteine metabolism and contributes to hydrogen sulfde (H2S) biosynthesis through which it plays multifunctional roles in the regulation of cellular energetics, redox status, DNA methylation, and protein modifcation. Inactivating mutations in CBS contribute to the pathogenesis of the autosomal recessive disease CBS-defcient homocystinuria. Recent studies demonstrating that CBS promotes colon and ovarian cancer growth in preclinical models highlight a newly identifed oncogenic role for CBS. On the contrary, tumor-suppressive efects of CBS have been reported in other cancer types, suggesting context-dependent roles of CBS in tumor growth and progression. Here, we review the physiological functions of CBS, summarize the complexities regarding CBS research in oncology, and discuss the potential of CBS and its key metabolites, including homocysteine and H2S, as potential biomarkers for cancer diagnosis or therapeutic targets for cancer treatment.
    [Show full text]
  • Amino Acid Disorders
    471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue.
    [Show full text]