Chapter 2 Subsurface Micro Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CONTROLS on DOLOMITIZATION of the UPPER ORDOVICIAN TRENTON LIMESTONE in SOUTH-CENTRAL KENTUCKY COLLIN JAMES GRAY Department Of
CONTROLS ON DOLOMITIZATION OF THE UPPER ORDOVICIAN TRENTON LIMESTONE IN SOUTH-CENTRAL KENTUCKY COLLIN JAMES GRAY Department of Geological Sciences APPROVED: Dr. Katherine Giles, Ph.D., Chair Dr. Richard Langford, Ph.D. Dr. Matthew Johnston, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Collin James Gray 2015 Dedication I dedicate my thesis work to my family. My dedicated and loving parents, Michael and Deborah Gray have always supported me and provided words of encouragement during the struggles of my research. The support provided was second to none and I could not imagine reaching this point in my education without them. I also dedicate this thesis to my two brothers, Michael and Nathan Gray and my sister Nicole Gray. Without these role models I cannot imagine where my education would have ended. I will always appreciate the support provided by all three of you and consider you to be role models that I can always look up to. CONTROLS ON DOLOMITIZATION OF THE UPPER ORDOVICIAN TRENTON LIMESTONE IN SOUTH-CENTRAL KENTUCKY by COLLIN JAMES GRAY, B.S. GEOLOGY THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Geological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2015 Acknowledgements I wish to thank my committee whose time and expertise provided excellent input into my research. Dr. Katherine Giles, my M.S. supervisor provided guidance and provided endless suggestions and recommendations throughout my research while continuously motivating me to continue my education. -
Dolomite: Occurrence, Evolution and Economically Important Associations
Earth-Science Reviews 52Ž. 2000 1±81 www.elsevier.comrlocaterearscirev Dolomite: occurrence, evolution and economically important associations John Warren Department Petroleum Geosciences, UniÕersity Brunei Darussalam, Tungku Link, Bandar Seri Begawan, Brunei Received 14 October 1999; accepted 7 July 2000 Abstract Dolomite is not a simple mineral; it can form as a primary precipitate, a diagenetic replacement, or as a hydrothermalrmetamorphic phase, all that it requires is permeability, a mechanism that facilitates fluid flow, and a sufficient supply of magnesium. Dolomite can form in lakes, on or beneath the shallow seafloor, in zones of brine reflux, and in early to late burial settings. It may form from seawater, from continental waters, from the mixing of basinal brines, the mixing of hypersaline brine with seawater, or the mixing of seawater with meteoric water, or via the cooling of basinal brines. Bacterial metabolism may aid the process of precipitation in settings where sulfate-reducing species flourish and microbial action may control primary precipitation in some hypersaline anoxic lake settings. Dolomite is a metastable mineral, early formed crystals can be replaced by later more stable phases with such replacements repeated a number of times during burial and metamorphism. Each new phase is formed by the partial or complete dissolution of an earlier dolomite. This continual re-equilibration during burial detracts from the ability of trace elements to indicate depositional conditions and resets the oxygen isotope signature of the dolomite at progressively higher temperatures. Because subsurface dolomite evolves via dissolution and reprecipitation, a bed of dolomite can retain or create porosity and permeability to much greater burial depths and into higher temperature realms than a limestone counterpart. -
Structural Diagenesis in Carbonate Rocks As Identified in Fault
minerals Article Structural Diagenesis in Carbonate Rocks as Identified in Fault Damage Zones in the Northern Tarim Basin, NW China Guanghui Wu 1,2,*, En Xie 3, Yunfeng Zhang 1, Hairuo Qing 2, Xinsheng Luo 3 and Chong Sun 3 1 School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China; [email protected] 2 Department of Geology, University of Regina, Regina, SK S4S 0A2, Canada; [email protected] 3 PetroChina Tarim Oilfield Company, Korla 841000, China; [email protected] (E.X.); [email protected] (X.L.); [email protected] (C.S.) * Correspondence: [email protected] Received: 5 May 2019; Accepted: 22 May 2019; Published: 13 June 2019 Abstract: The identification of structural diagenesis and the reconstruction of diagenetic paragenesis in fault damage zones is important for understanding fault mechanisms and fluid flow in the subsurface. Based on the examination of core and sample thin section data, we deciphered the diagenetic parasequence and their fault controls for Ordovician carbonates in the northern Tarim intracratonic basin in NW China (Halahatang area). In contrast to the uniform nature of diagenesis observed in country rocks, there is a relatively complicated style of compaction and pressure solution, multiple fracturing, and cementation and dissolution history along the carbonate fault damage zones. The relative paragenetic sequence of the structure related diagenesis suggests three cycles of fracture activities, following varied fracture enlargement and dissolution, and progressively weaker calcite cementation. These processes of structure related diagenesis are constrained to the fault damage zones, and their variation is affected by the fault activities. -
Igneous and Metamorphic Reservoirs | by E
UNICORNS IN THE GARDEN OF GOOD AND EVIL: Part 8 – Igneous and Metamorphic Reservoirs | By E. R. (Ross) Crain, P.Eng. Unicorns are beautiful, mythical beasts, much sought after by us mere mortals. The same is true for petrophysical models for unconventional reservoirs. This is the eighth in a series of review articles outlining the simple beauty of some practical methods for log analysis of the unusual. IGNEOUS AND METAMORPHIC BASICS Igneous and metamorphic rocks form reservoirs in many parts of the world. Reservoir quality varies and most benefit from natural fractures. Although some geologists believe the hydrocarbons in some Figure 1. Eyjafjallajokull volcano, Iceland, 2010. granite reservoirs comes from deep in the earth, the majority of these reservoirs can Igneous rocks are classified in several ways Parent Rock Metamorphic be shown to contain hydrocarbons that – by composition, texture, and method of Equivalent migrated from conventional sedimentary emplacement. Generally speaking, the Sandstone Quartzite sources. composition (mineral mixture) determines Limestone, Dolomite Marble the log response, the texture determines the As a generalization, metamorphic rocks are name used for the mineral mixture, and the Basalt Schist or Amphibolite rocks that have been exposed to high heat method of emplacement determines the Shale Slate and pressure. The main causes are: texture and internal porosity structure (if any). Granite Schist • Contact metamorphism – changes in the rock due to heat from a nearby magma Intrusive igneous rocks are formed inside the Rhyolite Schist source. earth. This type of igneous rock cools very Table 1. Metamorphic rock origins. • Regional metamorphism – changes slowly and is produced by magma from the caused by widespread elevated heat and interior of the earth. -
University Microfilms International 300 N
INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round blkek mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. -
Ucementation
CementationU EquantU Calcite Spar PeloidalU Cement peloids. Equant Spar, Example #1 Pennsylvania, Mercer County, McKnight Well The cement crystals filling the pore space of this skeletal grainstone are very “clean” and equal in size. Equant Cement, Example #2 West Virginia, Wood County, Black River Formation, 9951 ft In this intraclastic grainstone from the Black River Formation in West Virginia the primary pore-filling cement is equant spar. Close observation of this thin section reveals two generations of cement an early prismatic fringe around the intraclasts and the later equant spar cement. PeloidalU Cement Peloidal Cement, Example #1 West Virginia, Wood County, Black River Formation, 10018 ft This is a typical example of a peloidal cement in the Black River Formation in West Virginia. Notice that the neospar is not evenly distributed throughout the section, but the peloidal or clotted texture is evident throughout. Peloidal Cement, Example #2 West Virginia, Wood County, Black River Formation, 10034 ft In this section the most distinct peloidal texture is evident in the lower left corner of the slide. In addition to the peloidal cement there are also wavy argillaceous laminations with associated dolomite crystals. Peloidal Cement, Example #3 Pennsylvania, Union Furnace outcrop The clotted texture of this mudstone shows the partial development of peloidal cement. Notice the somewhat rounded grains with sparry material in between. Further neomorphism will result in textures similar to those observed in the other peloidal cement slides. Peloidal Cement, Example #4 West Virginia, Wood County, Black River Formation, 10054 ft This peloidal cement was photographed under crossed polars. Notice the fuzzy grain boundaries between the peloids and the neospar DrusyU Spar Drusy Spar, Example #1 West Virginia, Wood County, Trenton Formation, 8495 ft Notice the different crystal sizes in this drusy calcite spar cement. -
Back Matter (PDF)
Index Page numbers in italics refer to Figures. Page numbers in bold refer to Tables. aggrading neomorphism 48 backscattered electron (BSE) imaging albite and albitization 9 Niger Delta Tertiary sands 249 authigenic 272–273, 277–278 Pannonian Basin study 407 cement 11 back-scattered electron microscopy (BSEM) 15 Algeria see Illizi Basin Arbuckle Group 283, 291–292 alkali elements, quartz cement study 378–379, barite 10, 11, 274–275 382–384, 384 baroque dolomite see under dolomite aluminium, quartz cement study 377–378, 378, 379–382, Barra Velha Formation 379, 384 Mg-rich clay mineral growth Amenas-Bourarhat Sud study area see Hirnantian chemical controls 36–38 glaciation sandstones diagenetic controls 39–41 analytical techniques, summary of 13–15 environment of formation 33–34 see also named methods sedimentological controls 38–39 anhydrite 10, 11, 13, 274–275 structural controls 34–36 Anschutz Ranch East Field (USA) 161 summary of behaviours 41–43 apatite cement 12 basin modelling 249–250 aragonite 4, 5 Niger Delta Tertiary 250–252 dissolution 47–48 Bassein Limestone in eodiagenesis 5 depositional environment 70 Arbuckle Group facies 71 geological setting 285–287 geological setting 68–70 methods of analysis 283–284 methods of analysis 72–73 results results BSEM 291–292 matrix porosity and stylolite density 74–76 fluid inclusion 292–300 pore system 73–74 paragenesis 287–288 results discussed early 288 diagenetic phases 76–77, 77 late 288–291 dissolution mechanism 79–83 Sr isotopes 306–309 porosity generation 77–79 stable isotopes 300–306 -
Dedolomitization and Other Diagenesis in the Backreef Setting of the Permian Reef Complex in Dark Canyon, New Mexico
DEDOLOMITIZATION AND OTHER DIAGENESIS IN THE BACKREEF SETTING OF THE PERMIAN REEF COMPLEX IN DARK CANYON, NEW MEXICO Jenna Lee Donatelli Submitted in partial fulfillment for the requirements for the Degree of Master of Science in Geology at New Mexico Institute of Mining and Technology. New Mexico Institute of Mining and Technology Socorro, NM March 2016 ABSTRACT The presence of dedolomite has only been noted in the backreef setting of the Permian Reef Complex in one previous study. This study closely examines dedolomite in the Tansill Formation in Dark Canyon, New Mexico petrographically, elementally, and isotopically along with other diagenetic cements and replacement phases found in this environment. The focus of this project was to petrographically examine the diagenetic events in the near backreef facies (the Tansill and Yates Formations) of the Permian Reef Complex in research cores from Dark Canyon in order to better understand how dedolomitization fits into the paragenetic sequence and its implications for the diagenetic history of the reef complex. This, coupled with elemental and isotopic analyses, as well as data from previous studies, helped to gain insight into the diagenetic environments in which these events took place. Aragonite and early calcite cements, evaporite precipitation/growth, and early dolomitization occurred at the surface during deposition of the reef and backreef facies. The higher iron content (2674.35 ppm) and finely-crystalline nature of the early stage dolomite relative to the later dolomite indicate that it is a protodolomite that formed on the surface. Later dolomitization was due to dense brines percolating through the subsurface via fractures and pore spaces. -
Sedimentary Rock Alteration in the Slick Rock District, San Miguel and Dolores Counties, Colorado
Sedimentary Rock Alteration in the Slick Rock District, San Miguel and Dolores Counties, Colorado GEOLOGICAL SURVEY PROFESSIONAL PAPER 576-D Prepared on behalf of the U.S. Atomic Energy Commission Sedimentary Rock Alteration in the Slick Rock District, San Miguel and Dolores Counties, Colorado By DANIEL R. SHAWE GEOLOGIC INVESTIGATIONS IN THE SLICK ROCK DISTRICT, SAN MIGUEL AND DOLORES COUNTIES, COLORADO GEOLOGICAL SURVEY PROFESSIONAL PAPER 576-D Prepared on behalf of the U.S. Atomic Energy Commission Epigenetic alteration of sedimentary rocks was spatially and temporally related to deposition of uranium-vanadium ores. Mineralogic and chemical characteristics and distribution of altered rocks suggest that uranium- and vanadium-bearing pore waters that were expelled from compacted Upper Cretaceous Mancos Shale in early Tertiary time accounted for the alteration of sedimentary rocks and formation of the ores in the Upper Jurassic Morrison Formation UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Shawe, Daniel R. 1925- Sedimentary rock alteration in the Slick Rock district, San Miguel and Dolores Counties, Colorado. (Geologic investigations in the Slick Rock district, San Miguel and Dolores Counties, Colorado) (Geological Survey Professional Paper 576-D) Bibliography: p. Supt. of Docs, no.: I 19.16:576-D 1. Rocks, Sedimentary. 2. Metamorphism (Geology) Colorado San Miguel Co. 3. Metamorphism (Geology) Colorado- Dolores Co. 4. Petrology Colorado San Miguel Co. 5. Petrology Colorado Dolores Co. I. United States Atomic Energy Commission. II. Title. III. Series. IV. Series: United States Geological Survey Professional Paper 576-D. -
Microbial Alteration of Carbonate Archives
Microbial Alteration of Carbonate Archives Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften Dr. rer. nat. an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Skadi Lange Kiel, 2017 1. Gutachterin: Prof. Dr. Tina Treude 2. Gutachter: Prof. Dr. Anton Eisenhauer Tag der Disputation: 12. September 2017 Hiermit erkläre ich, dass ich die vorliegende Doktorarbeit selbständig und ohne unerlaubte Hilfe erstellt habe. Weder diese noch eine ähnliche Arbeit wurde an einer anderen Abteilung oder Hochschule im Rahmen eines Prüfungsverfahrens vorgelegt, veröffentlicht oder zur Veröffentlichung vorgelegt. Ferner versichere ich, dass die Arbeit unter Einhaltung der Regeln guter wissenschaftlicher Praxis der Deutschen Forschungsgemeinschaft entstanden ist. Kiel, den Skadi Lange 54˚ 29.6' N 10° 15.1' E Table of contents Abstract 1 Zusammenfassung 5 Chapter 1 General Introduction 9 Chapter 2 Anaerobic microbial activity affects earliest diagenetic pathways of bivalve shells 25 Chapter 3 Effects of heterotrophic bacterial activity on coral aragonite during early diagenesis 63 Chapter 4 Effects of heterotrophic bacterial activity on foraminiferal tests 101 Chapter 5 Summary and final discussion 129 Acknowledgements 147 Abstract Marine biogenic carbonates are comprehensive archives of paleoenvironmental conditions. The main environmental variables that can be deduced from carbonate elemental- and isotopic composition are past sea-surface temperature, salinity and related ocean-circulation patterns, and -trace element concentration. These parameters are crucial to understand climate-linked paleo-ocean and atmospheric conditions, and to furthermore allow for interpolation to future environmental scenarios. However, the respective signals in carbonates can be biased by diagenetic alteration, and the abiotic processes involved in the diagenetic processes are being thoroughly investigated. -
The CMS Tumbler
the CMS September Tumbler 2017 The monthly newsletter of the Cascade Mineralogical Society, Inc. Kent, Washington Next Meeting: September 14, 2017 7:00 p.m. This month remember American Legion Hall to wish a 25406 97th Pl S Happy Birthday to Kent, WA Jody Flores on September 3, Angie Bayer on September 4, Bill Flores on September 15, The Program will be speaker Vicki Ruegg on September 22, Karissa Smith, Emergency Betty Swift on September 25, Management Coordinator for the City of Renton will speak and also remember on the Geology of Cascadia. to wish a The geology of our area affects Happy Anniversary to us all who live here. It should Paul & Shirley Stewart be a very interesting presentation. on September 17 (56 years) The Show & Tell Theme is a Washington rock or mineral. This publication is an official bulletin of the Cascade Mineralogical Society Inc. (CMS). Except where otherwise noted, material from The Tumbler may be reprinted for non-commercial purposes, provided that the author(s) and source are acknowledged. For commercial use, the author(s) must be contacted for permission; if no contact information is given, contact them via the editor. Tips, suggestions, recipes and experiments printed in this newsletter are the experiences and/or opinions of the individuals submitting them. We are not responsible for their authenticity, safety, or reliability. Caution and safety should always be practiced when trying out any new idea. CMS Club Address Editor’s Mailing Address: Postal, or Email, Exchange Rich Russell Keith Alan Morgan, Editor Bulletins are welcome. 14431 SE 254th St. -
An Example from the Mississippian Pekisko Formation, West-Central Alberta
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2006 Petrologic and geochemical attributes of dolomite recrystallization: An example from the Mississippian Pekisko Formation, west-central Alberta. JoAnn Adam University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Adam, JoAnn, "Petrologic and geochemical attributes of dolomite recrystallization: An example from the Mississippian Pekisko Formation, west-central Alberta." (2006). Electronic Theses and Dissertations. 3075. https://scholar.uwindsor.ca/etd/3075 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Petrologic and geochemical attributes of dolomite recrystallization: an example from the Mississippian Pekisko Formation, west-central Alberta by JoAnn Adam A Thesis Submitted to the Faculty of Graduate Studies and Research through the Department of Earth Sciences in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor.