Advances in Ordinary Portland Cement Clinker: Reducing the Environmental Impact of the Production Process

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Ordinary Portland Cement Clinker: Reducing the Environmental Impact of the Production Process 1 UNIVERSITÀ DEGLI STUDI DI MILANO Dottorato di Ricerca in Scienze della Terra Ciclo XXIX Advances in ordinary Portland cement clinker: reducing the environmental impact of the production process Ph.D. Thesis Matteo Galimberti ID nr. R10541 Tutor Prof.ssa Monica Dapiaggi Academic Year Coordinator 2015-2016 Prof.ssa Elisabetta Erba Co-Tutor Dott.ssa Nicoletta Marinoni 3 To my family and Sabrina 1 Contents Research aim……………………………………………………………………………………………5 Abbreviations ....................................................................................................................................... 8 The ordinary Portland cement clinker ............................................................................................... 11 1.1 Binding materials ................................................................................................................... 11 1.2 Historical milestones .............................................................................................................. 12 1.3 World cement production and cements classification............................................................ 13 1.4 OPC clinker production process ............................................................................................ 14 1.4.1 Raw materials selection, extraction and grinding .............................................................. 15 1.4.2 Raw meal preparation and pyro-processing ....................................................................... 15 1.4.3 Clinker cooling and gypsum addition ................................................................................ 16 1.4.4 Quality control parameters ................................................................................................. 16 1.5 Chemistry of OPC clinker pyro-processing ........................................................................... 18 1.5.1 Solid-state reactions taking place below 1300 °C .............................................................. 18 1.5.2 Clinkering reactions at temperature between 1300 and 1450 °C ....................................... 19 1.5.3 System cooling ................................................................................................................... 19 1.6 High temperature thermochemistry of clinker ....................................................................... 20 1.7 Clinker mineralogy ................................................................................................................ 22 1.7.1 Tricalcium silicate .............................................................................................................. 22 1.7.2 Dicalcium silicate ............................................................................................................... 25 1.7.3 Tricalcium aluminate ......................................................................................................... 26 1.7.4 Tetracalcium aluminium ferrite ......................................................................................... 28 1.7.5 Secondary clinker phases ................................................................................................... 28 1.8 Environmental impact ............................................................................................................ 29 Analytical techniques ........................................................................................................................... 33 2.1 X-ray powder diffraction ....................................................................................................... 33 2.1.1 The Rietveld method .......................................................................................................... 33 2.1.2 Refinement strategy ........................................................................................................... 34 2.2 X-ray fluorescence ................................................................................................................. 35 2.3 Scanning electron microscopy ............................................................................................... 36 2.4 Electron microprobe ............................................................................................................... 36 2.5 Optical microscopy ................................................................................................................ 36 Effects of limestones petrography on OPC clinker raw meals burnability .................................... 39 3.1 Introduction ............................................................................................................................ 39 3.2 Materials................................................................................................................................. 41 3.2.1 Geological overview .......................................................................................................... 41 3.2.2 Experimental methods........................................................................................................ 43 3.2.3 Results ................................................................................................................................ 47 2 Contents 3.3 Burnability test ........................................................................................................................ 53 3.3.1 Raw meals formulation and firing cycle ............................................................................. 53 3.3.2 Experimental methods ........................................................................................................ 54 3.3.3 Results................................................................................................................................. 55 3.4 Discussions ............................................................................................................................. 60 3.5 Conclusions............................................................................................................................. 63 The effects of minor elements on the clinkerization process ............................................................ 65 4.1 Introduction ............................................................................................................................. 65 4.2 Ex situ experiments ................................................................................................................. 67 4.2.1 Experimental procedure ...................................................................................................... 67 4.2.2 Results and discussion ........................................................................................................ 69 4.3 In situ temperature-resolved synchrotron XRPD experiments ............................................... 89 4.3.1 The synchrotron radiation ................................................................................................... 89 4.3.2 Experimental procedure ...................................................................................................... 89 4.3.3 Results and discussion ........................................................................................................ 93 4.4 Conclusions........................................................................................................................... 100 Heterogeneous raw meal systems ...................................................................................................... 103 5.1 Introduction ........................................................................................................................... 103 5.2 Materials: characterization and preparation .......................................................................... 105 5.3 Methods ................................................................................................................................ 107 5.3.1 Raw meals formulation ..................................................................................................... 107 5.3.2 Thermal treatment ............................................................................................................. 109 5.4 Results and discussion .......................................................................................................... 110 5.4.1 Fluorine-free raw meals .................................................................................................... 111 5.4.2 Fluorine-doped raw meals ................................................................................................ 116 5.5 Conclusions........................................................................................................................... 119 General conclusions ............................................................................................................................ 123 References ............................................................................................................................................ 127 Appendix .............................................................................................................................................. 137 Appendix A1 ..................................................................................................................................... 137 Appendix B1 ....................................................................................................................................
Recommended publications
  • CONTROLS on DOLOMITIZATION of the UPPER ORDOVICIAN TRENTON LIMESTONE in SOUTH-CENTRAL KENTUCKY COLLIN JAMES GRAY Department Of
    CONTROLS ON DOLOMITIZATION OF THE UPPER ORDOVICIAN TRENTON LIMESTONE IN SOUTH-CENTRAL KENTUCKY COLLIN JAMES GRAY Department of Geological Sciences APPROVED: Dr. Katherine Giles, Ph.D., Chair Dr. Richard Langford, Ph.D. Dr. Matthew Johnston, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Collin James Gray 2015 Dedication I dedicate my thesis work to my family. My dedicated and loving parents, Michael and Deborah Gray have always supported me and provided words of encouragement during the struggles of my research. The support provided was second to none and I could not imagine reaching this point in my education without them. I also dedicate this thesis to my two brothers, Michael and Nathan Gray and my sister Nicole Gray. Without these role models I cannot imagine where my education would have ended. I will always appreciate the support provided by all three of you and consider you to be role models that I can always look up to. CONTROLS ON DOLOMITIZATION OF THE UPPER ORDOVICIAN TRENTON LIMESTONE IN SOUTH-CENTRAL KENTUCKY by COLLIN JAMES GRAY, B.S. GEOLOGY THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Geological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2015 Acknowledgements I wish to thank my committee whose time and expertise provided excellent input into my research. Dr. Katherine Giles, my M.S. supervisor provided guidance and provided endless suggestions and recommendations throughout my research while continuously motivating me to continue my education.
    [Show full text]
  • Dolomite: Occurrence, Evolution and Economically Important Associations
    Earth-Science Reviews 52Ž. 2000 1±81 www.elsevier.comrlocaterearscirev Dolomite: occurrence, evolution and economically important associations John Warren Department Petroleum Geosciences, UniÕersity Brunei Darussalam, Tungku Link, Bandar Seri Begawan, Brunei Received 14 October 1999; accepted 7 July 2000 Abstract Dolomite is not a simple mineral; it can form as a primary precipitate, a diagenetic replacement, or as a hydrothermalrmetamorphic phase, all that it requires is permeability, a mechanism that facilitates fluid flow, and a sufficient supply of magnesium. Dolomite can form in lakes, on or beneath the shallow seafloor, in zones of brine reflux, and in early to late burial settings. It may form from seawater, from continental waters, from the mixing of basinal brines, the mixing of hypersaline brine with seawater, or the mixing of seawater with meteoric water, or via the cooling of basinal brines. Bacterial metabolism may aid the process of precipitation in settings where sulfate-reducing species flourish and microbial action may control primary precipitation in some hypersaline anoxic lake settings. Dolomite is a metastable mineral, early formed crystals can be replaced by later more stable phases with such replacements repeated a number of times during burial and metamorphism. Each new phase is formed by the partial or complete dissolution of an earlier dolomite. This continual re-equilibration during burial detracts from the ability of trace elements to indicate depositional conditions and resets the oxygen isotope signature of the dolomite at progressively higher temperatures. Because subsurface dolomite evolves via dissolution and reprecipitation, a bed of dolomite can retain or create porosity and permeability to much greater burial depths and into higher temperature realms than a limestone counterpart.
    [Show full text]
  • Sabbio Inverno 2017 LR.Pdf
    SABBIO CHIESE PERIODICO DELL’AMMINISTRAZIONE COMUNALE • ANNO XXVIII - N. 3 WWW.COMUNE.SABBIO.BS.IT • [email protected] Controcopertina DI ONORIO LUSCIA, SINDACO DI SABBIO CHIESE ari concittadini, momento di condivisione, di rinascita nel senso più alto, è sempre con grande gioia e commozione che ri- di rinnovata fiducia in se stessi e nei confronti degli altri C volgo a tutti Voi gli auguri per una sereno Natale. per affrontare insieme il futuro, per condividere e aiutarsi In queste occasioni sento infatti la responsabilità di rap- a superare i momenti difficili. presentare il nostro paese e soprattutto i suoi cittadini, È questo l’augurio per un Santo Natale e per un anno avverto il compito delicato e allo stesso tempo stimolante nuovo in cui possa concretizzarsi il sogno di un paese che di un incarico colmo di emozione e bellezza. accoglie le sfide di tutti e che dà un’ opportunità a tutti. Anche il 2017 è stato un anno difficile, molti di noi Dove si concretizzi l’idea di un paese accogliente e soli- stanno vivendo un periodo di preoccupazione e di incer- dale, il sogno di un paese che uscirà dalla crisi sapendo tezza; nell’approssimarsi delle festività natalizie, giunga che questa crisi è innanzi tutto di valori e non soltanto il mio augurio di Buon Natale a tutte le famiglie, con la di valori economici, un paese dove sarà bello provarci, speranza che la magia e la solennità di questo momento tutti insieme. possano alimentare maggiore serenità e partecipazione, Il Natale deve portarci coraggio e speranza.
    [Show full text]
  • Bsmm80401n Castenedolo Bsmm895033 Pontevico Bsmm81301c Bedizzole D'ufficio* Bsmm8ad018 Sabbio Chiese Bsmm857016 Roncadelle Pt 12
    VERBALE DEL 5 LUGLIO 2019 ASSEGNAZIONE SEDE FIT A.S. 2019/20 - SU PROVINCIA UFFICIO SCOLASTICO PROVINCIALE DI BRESCIA PER L'ANNO SCOLASTICO 2019/20 CL. DISPONIBILITA' CATTEDRE DISPONIBILITA' CATTEDRE CONCORSO TIPO POSTO ESTERNE INTERNE COGNOME NOME DATA NASCITA CODICE SCUOLA ASSEGNATA A030 NORMALE 1 PIGHI SILVIA 24/12/1977-VR BSMM80401N CASTENEDOLO A030 NORMALE 1 MONTECUCCO MYRTA 07/09/1975-SP BSMM895033 PONTEVICO BSMM81301C BEDIZZOLE A030 NORMALE 1 PAIOLI MASSIMO 10/12/1958-BS D'UFFICIO* A030 NORMALE 1 TREVAINI YANOS 30/06/1974-BS BSMM8AD018 SABBIO CHIESE A030 NORMALE 1 PITTAU RICCARDO 29/08/1980-CA BSMM857016 RONCADELLE PT 12H A030 NORMALE 1 BETTINZOLI GIUSEPPE 29/05/1966 BS BSMM893019 ORZINUOVI A030 NORMALE 1 TERZI LAURA 11/12/1980-BS BSMM82101B CAZZAGO S.M. A030 NORMALE 1 PAGANI SIMONE 31/05/1965-BS BSMM8AM018 PALAZZOLO S/O A030 NORMALE 1 MAGGINI TOMISLAV 29/06/1986-EE BSMM88901N GUSSAGO A030 NORMALE 1 BONVENTRE MARIA LETIZIA 01/07/1983-BS BSMM89801C MANERBIO A030 NORMALE 1 SACCHETTI MARINA 20/08/1962-BS BSMM85301V NAVE PT 9H BSMM84601Q BORGOSATOLLO PT AA25 NORMALE 1 PASQUA LIVIA 02/03/1974 MI 10H BSMM8AD018 SABBIO CHIESE PT AA25 NORMALE 1 MATTEI ALESSIA 04/04/1977 BS 10H AA25 NORMALE 1 ALLEGRO MARINA 13/05/1963 PV BSMM822017 CORTEFRANCA AA25 NORMALE 1 BERTOCCHI ELISA 19/01/1976 BS BSMM89801C MANERBIO Pagina 1 di 4 CL. DISPONIBILITA' CATTEDRE DISPONIBILITA' CATTEDRE CONCORSO TIPO POSTO ESTERNE INTERNE COGNOME NOME DATA NASCITA CODICE SCUOLA ASSEGNATA AA25 NORMALE 1 BARONCHELLI CATERINA 24/05/1967 BS BSMM8AH03N BORGO S.GIACOMO AA25
    [Show full text]
  • Igneous and Metamorphic Reservoirs | by E
    UNICORNS IN THE GARDEN OF GOOD AND EVIL: Part 8 – Igneous and Metamorphic Reservoirs | By E. R. (Ross) Crain, P.Eng. Unicorns are beautiful, mythical beasts, much sought after by us mere mortals. The same is true for petrophysical models for unconventional reservoirs. This is the eighth in a series of review articles outlining the simple beauty of some practical methods for log analysis of the unusual. IGNEOUS AND METAMORPHIC BASICS Igneous and metamorphic rocks form reservoirs in many parts of the world. Reservoir quality varies and most benefit from natural fractures. Although some geologists believe the hydrocarbons in some Figure 1. Eyjafjallajokull volcano, Iceland, 2010. granite reservoirs comes from deep in the earth, the majority of these reservoirs can Igneous rocks are classified in several ways Parent Rock Metamorphic be shown to contain hydrocarbons that – by composition, texture, and method of Equivalent migrated from conventional sedimentary emplacement. Generally speaking, the Sandstone Quartzite sources. composition (mineral mixture) determines Limestone, Dolomite Marble the log response, the texture determines the As a generalization, metamorphic rocks are name used for the mineral mixture, and the Basalt Schist or Amphibolite rocks that have been exposed to high heat method of emplacement determines the Shale Slate and pressure. The main causes are: texture and internal porosity structure (if any). Granite Schist • Contact metamorphism – changes in the rock due to heat from a nearby magma Intrusive igneous rocks are formed inside the Rhyolite Schist source. earth. This type of igneous rock cools very Table 1. Metamorphic rock origins. • Regional metamorphism – changes slowly and is produced by magma from the caused by widespread elevated heat and interior of the earth.
    [Show full text]
  • New Data Оn Minerals
    RUSSIAN ACADEMY OF SCIENCES FERSMAN MINERALOGICAL MUSEUM VOLUME 48 New Data оn Minerals FOUNDED IN 1907 MOSCOW 2013 ISSN 5-900395-62-6 New Data on Minerals. 2013. Volume 48. 162 pages, 128 photos, drawings and schemes. Publication of Institution of Russian Academy of Sciences, Fersman Mineralogical Museum RAS. This volume contains description of laptevite-(Ce), a new vicanite group mineral found in the Darai-Pioz alkaline massif, rare minerals of the baratovite-katayamalite solid solution from the Khodzha-Achkan alkaline massif in Kirgizia, listvenite-like phlogopite-magnesite gumbeites of the Berezovsky gold deposit in the Urals, polycrys- talline diamond aggregates from the Lomonosov deposit in the Arkhangelsk diamond province, and gypsum seg- regations from the bottom of the Okhotsk and Japan Seas. The results of fine investigation of trace elements in the crystal structure of molybdenite and experimental modeling of Pt and Pd sulfide crystallization during cooling in the central part of the Cu-Fe-S system are given. Separate section is devoted to 150th anniversary of the birth of V.I. Vernadsky. It contains papers about geo- chemical mineralogy of V.I. Vernadsky, his activity in nuclear power, and mineralogical taxonomies suggested by V.I. Vernadsky, J.D. Dana, A.G. Betekhtin, I.N. Kostov, G.P. Barsanov, and A.A. Godovikov. In the section Mineralogical Museums and Collections, the first information on products of Chinese stone-cut art in the collection of the Fersman Mineralogical Museum, Russian Academy of Sciences, brief historical review of the collection of diamond crystals of the same museum, and detail information on the new acquisitions in the muse- um in 2011–2012 are given.
    [Show full text]
  • S202 Invernale
    Edizione del 3 Dicembre 2012 Slink 202 BRESCIA-SALO'-GARDONE RIVIERA-TOSCOLANO-GARGNANO / BRESCIA-VOBARNO-VESTONE - SERVIZIO INVERNALE ANDATA codice V02 S50 A50 B50 A52 B52 B54 P02 A54 A56 D58 A58 Y58 A60 B02 A62 A64 A66 A68 A70 A72 A74 P10 V72 A76 A78 V98 A80 A82 A84 W06 A86 B06 A88 A90 W12 A92 B92 B14 A94 B94 A96 B96 A98 codice V04 V16 W78 V22 V30 V36 V40 V42 V44 V48 V52 V60 V78 V90 W02 W04 W10 C89 W18 W20 W24 W30 W32 dettaglio 85S-3-2 P A BP1S54 1 A B3 1-F5 A B BRESCIA-Terminal SIA 05.45 05.55 06.10 06.25 06.40 06.55 07.00 07.10 07.25 07.40 07.55 08.10 08.40 08.45 09.10 09.40 10.10 10.40 11.10 11.40 12.10 12.10 12.25 12.40 13.10 13.40 14.10 14.40 14.40 15.10 15.25 15.40 16.10 16.25 16.40 16.55 17.10 17.10 17.25 17.40 17.55 18.10 BRESCIA-Porta Venezia 05.52 06.02 06.17 06.32 06.47 07.02 07.07 07.17 07.32 07.47 08.02 08.17 08.47 | 09.17 09.47 10.17 10.47 11.17 11.47 12.17 12.17 12.32 12.47 13.17 13.47 14.17 14.47 14.47 15.17 | 15.47 16.17 16.32 16.47 17.02 17.17 17.17 17.32 17.47 18.02 18.17 REZZATO-Ponte 06.06 06.19 06.34 06.49 07.04 07.19 07.24 07.34 07.49 08.04 08.19 08.34 09.04 | 09.34 10.04 10.34 11.04 11.34 12.04 12.34 12.34 12.49 13.04 13.34 14.04 14.34 15.04 15.04 15.34 | 16.04 16.34 16.49 17.04 17.19 | 17.34 17.49 18.04 18.19 18.34 MAZZANO 06.10 06.25 06.40 06.55 07.10 07.25 07.30 07.40 07.55 08.10 08.25 08.40 09.10 | 09.40 10.10 10.40 11.10 11.40 12.10 12.40 12.40 12.55 13.10 13.40 14.10 14.40 15.10 15.10 15.40 | 16.10 16.40 16.55 17.10 17.25 | 17.40 17.55 18.10 18.25 18.40 NUVOLERA 06.13 06.28 06.43 06.58 07.13 07.28 07.33
    [Show full text]
  • University Microfilms International 300 N
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round blkek mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • Ucementation
    CementationU EquantU Calcite Spar PeloidalU Cement peloids. Equant Spar, Example #1 Pennsylvania, Mercer County, McKnight Well The cement crystals filling the pore space of this skeletal grainstone are very “clean” and equal in size. Equant Cement, Example #2 West Virginia, Wood County, Black River Formation, 9951 ft In this intraclastic grainstone from the Black River Formation in West Virginia the primary pore-filling cement is equant spar. Close observation of this thin section reveals two generations of cement an early prismatic fringe around the intraclasts and the later equant spar cement. PeloidalU Cement Peloidal Cement, Example #1 West Virginia, Wood County, Black River Formation, 10018 ft This is a typical example of a peloidal cement in the Black River Formation in West Virginia. Notice that the neospar is not evenly distributed throughout the section, but the peloidal or clotted texture is evident throughout. Peloidal Cement, Example #2 West Virginia, Wood County, Black River Formation, 10034 ft In this section the most distinct peloidal texture is evident in the lower left corner of the slide. In addition to the peloidal cement there are also wavy argillaceous laminations with associated dolomite crystals. Peloidal Cement, Example #3 Pennsylvania, Union Furnace outcrop The clotted texture of this mudstone shows the partial development of peloidal cement. Notice the somewhat rounded grains with sparry material in between. Further neomorphism will result in textures similar to those observed in the other peloidal cement slides. Peloidal Cement, Example #4 West Virginia, Wood County, Black River Formation, 10054 ft This peloidal cement was photographed under crossed polars. Notice the fuzzy grain boundaries between the peloids and the neospar DrusyU Spar Drusy Spar, Example #1 West Virginia, Wood County, Trenton Formation, 8495 ft Notice the different crystal sizes in this drusy calcite spar cement.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italics refer to Figures. Page numbers in bold refer to Tables. aggrading neomorphism 48 backscattered electron (BSE) imaging albite and albitization 9 Niger Delta Tertiary sands 249 authigenic 272–273, 277–278 Pannonian Basin study 407 cement 11 back-scattered electron microscopy (BSEM) 15 Algeria see Illizi Basin Arbuckle Group 283, 291–292 alkali elements, quartz cement study 378–379, barite 10, 11, 274–275 382–384, 384 baroque dolomite see under dolomite aluminium, quartz cement study 377–378, 378, 379–382, Barra Velha Formation 379, 384 Mg-rich clay mineral growth Amenas-Bourarhat Sud study area see Hirnantian chemical controls 36–38 glaciation sandstones diagenetic controls 39–41 analytical techniques, summary of 13–15 environment of formation 33–34 see also named methods sedimentological controls 38–39 anhydrite 10, 11, 13, 274–275 structural controls 34–36 Anschutz Ranch East Field (USA) 161 summary of behaviours 41–43 apatite cement 12 basin modelling 249–250 aragonite 4, 5 Niger Delta Tertiary 250–252 dissolution 47–48 Bassein Limestone in eodiagenesis 5 depositional environment 70 Arbuckle Group facies 71 geological setting 285–287 geological setting 68–70 methods of analysis 283–284 methods of analysis 72–73 results results BSEM 291–292 matrix porosity and stylolite density 74–76 fluid inclusion 292–300 pore system 73–74 paragenesis 287–288 results discussed early 288 diagenetic phases 76–77, 77 late 288–291 dissolution mechanism 79–83 Sr isotopes 306–309 porosity generation 77–79 stable isotopes 300–306
    [Show full text]
  • Dedolomitization and Other Diagenesis in the Backreef Setting of the Permian Reef Complex in Dark Canyon, New Mexico
    DEDOLOMITIZATION AND OTHER DIAGENESIS IN THE BACKREEF SETTING OF THE PERMIAN REEF COMPLEX IN DARK CANYON, NEW MEXICO Jenna Lee Donatelli Submitted in partial fulfillment for the requirements for the Degree of Master of Science in Geology at New Mexico Institute of Mining and Technology. New Mexico Institute of Mining and Technology Socorro, NM March 2016 ABSTRACT The presence of dedolomite has only been noted in the backreef setting of the Permian Reef Complex in one previous study. This study closely examines dedolomite in the Tansill Formation in Dark Canyon, New Mexico petrographically, elementally, and isotopically along with other diagenetic cements and replacement phases found in this environment. The focus of this project was to petrographically examine the diagenetic events in the near backreef facies (the Tansill and Yates Formations) of the Permian Reef Complex in research cores from Dark Canyon in order to better understand how dedolomitization fits into the paragenetic sequence and its implications for the diagenetic history of the reef complex. This, coupled with elemental and isotopic analyses, as well as data from previous studies, helped to gain insight into the diagenetic environments in which these events took place. Aragonite and early calcite cements, evaporite precipitation/growth, and early dolomitization occurred at the surface during deposition of the reef and backreef facies. The higher iron content (2674.35 ppm) and finely-crystalline nature of the early stage dolomite relative to the later dolomite indicate that it is a protodolomite that formed on the surface. Later dolomitization was due to dense brines percolating through the subsurface via fractures and pore spaces.
    [Show full text]
  • Rootstrada Dei Vini - Cartina2018.Pdf
    Riva PERCORSI IN BICICLETTA/ BIKE TOURS 1° percorso 32 km | 2,5 ore Sirmione - Lugana I Un giro godereccio tra i vigneti della Lugana. Inizio e fine del percorso è la penisola di Sirmione, che può essere raggiunta anche in battello. Non ci sono particolari difficoltà durante il tragitto di 32 km. 7 15 D Genießer-Rundtour durch die Weinberge der Lugana. Start- Limone und Zielpunkt ist Sirmione, das auch mit der Fähre angefahren 4° percorso werden kann. Die 32 km lange Strecke weist keine besonderen 33 km | 3,5 - 4 ore Salò - Rocca di Manerba Schwierigkeiten auf. 1 I La Valtènesi si mostra dal suo dolce lato lacustre. E A round-tour for pleasure-lovers through the vineyards Attraversando ampi oliveti scopriamo la maestosa Rocca di of Lugana. Starting point and finish is Sirmione, which can Manerba. be reached by ferry. This route of 32 km does not present any particular difficulties. D Das Valtènesi zeigt sich von seiner sanften, dem Gardasee zugewandten, Seite. Der Rundweg führt durch Olivenhaine - und 8 vorbei am imposanten Felsen Rocca di Manerba. 2° percorso Tremosine 30 km | 2,5 - 3 ore Bedizzole - Valtènesi E The Valtènesi region presents itself from its soft side, the one facing Lake Garda. The round tour takes us through olive groves - Pieve I Un percorso variegato attraverso l’entroterra della Valtènesi. and past the impressive rock Rocca di Manerba. La pista ciclabile si snoda attraverso un dolce paesaggio collinare intorno al paese di Bedizzole. Qui domina la calma assoluta, 5° percorso lontano dai grossi movimenti turistici. 19 km | ca.
    [Show full text]