Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WMO Bulletin, Volume XVI, No. 2: April 1969
WORLD METEOROLOGICAL ORGANIZATION APRIL 1969 VOL. XVIII No. 2 THE WORLD METEOROLOGICAL ORGANIZATION (WMO) is a specialized agency of the United N ations. WMO was created: to faci litate international co-operation in the establi shment of networks or sta tions and centres to provide meteorological services and observations, to promote· the establishment a nd maintenance of systems for the rapid exchange of meteorological information, to promote standardization of meteorological observations and ensure the uniform publication of observations and statistics, to further the application of meteorology to aviation, shipping, water problems, agriculture and other human activities, to encourage research a nd training in meteorology. T he World Meteorological Co ngress is the supreme body of the Organization. lt brings together the delegates or a ll Members once every fo ur years to determine general policies for the fulfilment or the purposes of the Organization. ' The Executive Committee is composed of 24 directors of national Meteorological Services serving in an individual capacity; it meets at least once a year to supervise the programmes a pproved by Congress. Six Regional Associations are each composed of Members whose task is to co-ordinate meteorological activities within their respective regions. Eight Technical Commissions composed of experts designated by Members, are responsible for studying the special technical branches relating to meteorological observation, analysis, forecasting, research and the applications of meteorology. EXECUTIVE COMMITTEE President: A. NYBERG (Sweden) First Vice-President: W. J . GIBBS (Australia) Second Vice-President: E. K. FEDOROV (U .S.S.R.) Third Vice-President: N. A . AKINGBEHIN (Nigeria) Regional Association presidents Africa (1): M . -
Generation of GOES-16 True Color Imagery Without a Green Band
Confidential manuscript submitted to Earth and Space Science 1 Generation of GOES-16 True Color Imagery without a Green Band 2 M.K. Bah1, M. M. Gunshor1, T. J. Schmit2 3 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), 1225 West Dayton Street, 4 Madison, University of Wisconsin-Madison, Madison, Wisconsin, USA 5 2 NOAA/NESDIS Center for Satellite Applications and Research, Advanced Satellite Products 6 Branch (ASPB), Madison, Wisconsin, USA 7 8 Corresponding Author: Kaba Bah: ([email protected]) 9 Key Points: 10 • The Advanced Baseline Imager (ABI) is the latest generation Geostationary Operational 11 Environmental Satellite (GOES) imagers operated by the U.S. The ABI is improved in 12 many ways over preceding GOES imagers. 13 • There are a number of approaches to generating true color images; all approaches that use 14 the GOES-16 ABI need to first generate the visible “green” spectral band. 15 • Comparisons are shown between different methods for generating true color images from 16 the ABI observations and those from the Earth Polychromatic Imaging Camera (EPIC) on 17 Deep Space Climate Observatory (DSCOVR). 18 Confidential manuscript submitted to Earth and Space Science 19 Abstract 20 A number of approaches have been developed to generate true color images from the Advanced 21 Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-16. 22 GOES-16 is the first of a series of four spacecraft with the ABI onboard. These approaches are 23 complicated since the ABI does not have a “green” (0.55 µm) spectral band. Despite this 24 limitation, representative true color images can be built. -
Emergence, Attribution and Extremes Programme
Meteorological Society of New Zealand Annual Conference 2019 Wellington Monday 25th – Wednesday 27th November Presentation Abstracts Contents Our Sponsors ..................................................................................................................................... 3 Poster Presentation Abstracts .......................................................................................................... 4 Pecha Kucha Presentation Abstracts ............................................................................................. 24 Oral Presentation Abstracts ........................................................................................................... 41 Note: Abstracts are ordered alphabetically based on the presenting author’s surname. Victoria University of Wellington 2 Our Sponsors The Meteorological Society of New Zealand would like to acknowledge and thank the following two organisations for their support of our 2019 Annual Conference: 3 Poster Presentation Abstracts A machine learning approach to inferring the existence of extreme events in meteorological fields Leroy Bird1, Greg Bodeker1 and Jordis Tradowsky1 1Bodeker Scientific Automated detection of extreme weather events (EWEs) in meteorological fields is challenging for several reasons: (i) events of similar dynamical nature can have very different outcomes regarding extremes, (ii) some extremes result from features that are smaller than the spatial scale of the fields that are being analysed (e.g. thunderstorms), and (iii) the use of threshold -
Editorial for the Special Issue “Remote Sensing of Clouds”
remote sensing Editorial Editorial for the Special Issue “Remote Sensing of Clouds” Filomena Romano Institute of Methodologies for Environmental Analysis, National Research Council (IMAA/CNR), 85100 Potenza, Italy; fi[email protected] Received: 7 December 2020; Accepted: 8 December 2020; Published: 14 December 2020 Keywords: clouds; satellite; ground-based; remote sensing; meteorology; microphysical cloud parameters Remote sensing of clouds is a subject of intensive study in modern atmospheric remote sensing. Cloud systems are important in weather, hydrological, and climate research, as well as in practical applications. Because they affect water transport and precipitation, clouds play an integral role in the Earth’s hydrological cycle. Moreover, they impact the Earth’s energy budget by interacting with incoming shortwave radiation and outgoing longwave radiation. Clouds can markedly affect the radiation budget, both in the solar and thermal spectral ranges, thereby playing a fundamental role in the Earth’s climatic state and affecting climate forcing. Global changes in surface temperature are highly sensitive to the amounts and types of clouds. Hence, it is not surprising that the largest uncertainty in model estimates of global warming is due to clouds. Their properties can change over time, leading to a planetary energy imbalance and effects on a global scale. Optical and thermal infrared remote sensing of clouds is a mature research field with a long history, and significant progress has been achieved using both ground-based and satellite instrumentation in the retrieval of microphysical cloud parameters. This Special Issue (SI) presents recent results in ground-based and satellite remote sensing of clouds, including innovative applications for meteorology and atmospheric physics, as well as the validation of retrievals based on independent measurements. -
Cassini RADAR Sequence Planning and Instrument Performance Richard D
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 6, JUNE 2009 1777 Cassini RADAR Sequence Planning and Instrument Performance Richard D. West, Yanhua Anderson, Rudy Boehmer, Leonardo Borgarelli, Philip Callahan, Charles Elachi, Yonggyu Gim, Gary Hamilton, Scott Hensley, Michael A. Janssen, William T. K. Johnson, Kathleen Kelleher, Ralph Lorenz, Steve Ostro, Member, IEEE, Ladislav Roth, Scott Shaffer, Bryan Stiles, Steve Wall, Lauren C. Wye, and Howard A. Zebker, Fellow, IEEE Abstract—The Cassini RADAR is a multimode instrument used the European Space Agency, and the Italian Space Agency to map the surface of Titan, the atmosphere of Saturn, the Saturn (ASI). Scientists and engineers from 17 different countries ring system, and to explore the properties of the icy satellites. have worked on the Cassini spacecraft and the Huygens probe. Four different active mode bandwidths and a passive radiometer The spacecraft was launched on October 15, 1997, and then mode provide a wide range of flexibility in taking measurements. The scatterometer mode is used for real aperture imaging of embarked on a seven-year cruise out to Saturn with flybys of Titan, high-altitude (around 20 000 km) synthetic aperture imag- Venus, the Earth, and Jupiter. The spacecraft entered Saturn ing of Titan and Iapetus, and long range (up to 700 000 km) orbit on July 1, 2004 with a successful orbit insertion burn. detection of disk integrated albedos for satellites in the Saturn This marked the start of an intensive four-year primary mis- system. Two SAR modes are used for high- and medium-resolution sion full of remote sensing observations by a dozen instru- (300–1000 m) imaging of Titan’s surface during close flybys. -
Radar Remote Sensing - S
GEOINFORMATICS – Vol. I - Radar Remote Sensing - S. Quegan RADAR REMOTE SENSING S. Quegan Sheffield Centre for Earth Observation Science, University of Sheffield, U.K. Keywords: Scatterometry, altimetry, synthetic aperture radar, SAR, microwaves, scattering models, geocoding, radargrammetry, interferometry, differential interferometry, topographic mapping, digital elevation model, agriculture, forestry, hydrology, soil moisture, earthquakes, floods, oceanography, sea ice, land ice, snow Contents 1. Introduction 2. Basic Properties of Radar Systems 3. Characteristics of Radar Systems 4. What a Radar Measures 5. Radar Sensors and Their Applications 6. Synthetic Aperture Radar Applications 7. Future Prospects Glossary Bibliography Biographical Sketch Summary Radar sensors transmit radiation at radio wavelengths (i.e. from around 1 cm to several meters) and use the measured return to infer properties of the earth’s surface. The surface properties affecting the return (of which the most important are the dielectric constant and geometrical structure) are very different from those determining observations at optical and infrared frequencies. Hence radar offers distinctive perspectives on the earth. In addition, the transparency of the atmosphere at radar wavelengths means that cloud does not prevent observation of the earth, so radar is well suited to monitoring purposes. Three types of spaceborne radar instrument are particularly important. Scatterometers make very accurate measurements of the backscatter fromUNESCO the earth, their most impor –tant EOLSSuse being to derive wind speeds and directions over the ocean. Altimeters measure the distance between the satellite platform and the surface to centimetric accuracy, from which several important geophysical quantities can be recovered, such as the topography of the ocean surface and its variation, oceanSAMPLE currents, significant wave height, CHAPTERS and the mass balance and dynamics of the major ice sheets. -
Fundamentals of Remote Sensing
Fundamentals of Remote Sensing A Canada Centre for Remote Sensing Remote Sensing Tutorial Natural Resources Ressources naturelles Canada Canada Fundamentals of Remote Sensing - Table of Contents Page 2 Table of Contents 1. Introduction 1.1 What is Remote Sensing? 5 1.2 Electromagnetic Radiation 7 1.3 Electromagnetic Spectrum 9 1.4 Interactions with the Atmosphere 12 1.5 Radiation - Target 16 1.6 Passive vs. Active Sensing 19 1.7 Characteristics of Images 20 1.8 Endnotes 22 Did You Know 23 Whiz Quiz and Answers 27 2. Sensors 2.1 On the Ground, In the Air, In Space 34 2.2 Satellite Characteristics 36 2.3 Pixel Size, and Scale 39 2.4 Spectral Resolution 41 2.5 Radiometric Resolution 43 2.6 Temporal Resolution 44 2.7 Cameras and Aerial Photography 45 2.8 Multispectral Scanning 48 2.9 Thermal Imaging 50 2.10 Geometric Distortion 52 2.11 Weather Satellites 54 2.12 Land Observation Satellites 60 2.13 Marine Observation Satellites 67 2.14 Other Sensors 70 2.15 Data Reception 72 2.16 Endnotes 74 Did You Know 75 Whiz Quiz and Answers 83 Canada Centre for Remote Sensing Fundamentals of Remote Sensing - Table of Contents Page 3 3. Microwaves 3.1 Introduction 92 3.2 Radar Basic 96 3.3 Viewing Geometry & Spatial Resolution 99 3.4 Image distortion 102 3.5 Target interaction 106 3.6 Image Properties 110 3.7 Advanced Applications 114 3.8 Polarimetry 117 3.9 Airborne vs Spaceborne 123 3.10 Airborne & Spaceborne Systems 125 3.11 Endnotes 129 Did You Know 131 Whiz Quiz and Answers 135 4. -
Civilian Satellite Remote Sensing: a Strategic Approach
Civilian Satellite Remote Sensing: A Strategic Approach September 1994 OTA-ISS-607 NTIS order #PB95-109633 GPO stock #052-003-01395-9 Recommended citation: U.S. Congress, Office of Technology Assessment, Civilian Satellite Remote Sensing: A Strategic Approach, OTA-ISS-607 (Washington, DC: U.S. Government Printing Office, September 1994). For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP. Washington, DC 20402-9328 ISBN 0-16 -045310-0 Foreword ver the next two decades, Earth observations from space prom- ise to become increasingly important for predicting the weather, studying global change, and managing global resources. How the U.S. government responds to the political, economic, and technical0 challenges posed by the growing interest in satellite remote sensing could have a major impact on the use and management of global resources. The United States and other countries now collect Earth data by means of several civilian remote sensing systems. These data assist fed- eral and state agencies in carrying out their legislatively mandated pro- grams and offer numerous additional benefits to commerce, science, and the public welfare. Existing U.S. and foreign satellite remote sensing programs often have overlapping requirements and redundant instru- ments and spacecraft. This report, the final one of the Office of Technolo- gy Assessment analysis of Earth Observations Systems, analyzes the case for developing a long-term, comprehensive strategic plan for civil- ian satellite remote sensing, and explores the elements of such a plan, if it were adopted. The report also enumerates many of the congressional de- cisions needed to ensure that future data needs will be satisfied. -
Introduction to Remote Sensing
SESSION #2 Introduction to Remote Sensing Presenters: David Hunt and Jenny Hewson Session #2 Outline • Overview of remote sensing concepts • History of remote sensing • Current remote sensing technologies for land management 2 What Is Earth Observation and Remote Sensing? • “Obtaining information from an object without being in direct contact with it.” • More specifically, “obtaining information from the land surface through sensors mounted on aerial or satellite platforms.” Photo credit NAS Photo credit NASA A 3 Earth Observation Data and Tools Are Used to: • Monitor change • Alert to threats • Inform land management decisions • Track progress towards goals (such as REDD+, the UN's Sustainable Development Goals (SDGs), etc.) 4 Significance of Earth Observation Improving sustainable land management using Earth Observation is critical for: • Monitoring ecological threats (deforestation & fires) to territories • Mapping & resolving land tenure conflicts • Increasing knowledge about land use and dynamics • Mapping indigenous land boundaries and understanding their context within surrounding areas • Monitoring biodiversity 5 Deforestation Monitoring ESA video showing deforestation in Rondonia, Brazil from 1986 to 2010 6 Forest Fire Monitoring 7 Monitoring Land Use Changes 8 Monitoring Illegal Logging with Acoustic Alerts 1) Chainsaw noise is detected by 2) Acoustic sensors send alerts via acoustic sensors e-mail 1 km detection radius per sensor 9 Monitoring Biodiversity with Camera Traps • Identify and track species • Discover trends of how populations are changing • Use in ecotourism to raise awareness of conservation • https://www.wildlifeinsights.org/ 10 Land cover Dynamics 11 Mapping Land Boundaries • Participatory Mapping using Satellite imagery • Example from session #1 with the COMUNIDAD NATIVA ALTO MAYO 12 Satellite Remote Sensing What Are the Components of a Remote Sensing Stream? 1. -
Joint Organizing Committee
GARP JOINT ORGANIZING COMMITTEE GARP PUBLICATION S SERIES No.' 4 INTERNATIONAL COUNCIL WORLD METEOROLOGICAL OF SCIENTIFIC UNIONS ORGANIZATION GLOBAL ATMOSPHERIC RESEARCH PROGRAMME (GARP) WMO-ICSU Joint Organizing Committee THE PLANNING OF . , .. \ GARP TROPICAL EXPERI'ME,.NTS GARP PUBLICATIONS SERIES No. 4 January 1970 03···SO-76 C"2 © 1970, World Meteorological Organization International Conncil of Scientific Unions CONTENTS Page FOREWORD . V SUMMARY (English, French, Russian, Spanish) VII LIST OF ABBREVIATIONS . XIII 1. INTRODUCTION..... 1 1.1 The place of tropical experiments within the context of GARP. 1 1.2 Earlier recommendations concerning experiments in the tropics 2 1.3 The JOC Study Group on Tropical Disturbances ...... 3 1.4 The Report of the JOC to the Executive Committees of WMO and ICSU. 3 1.5 The genesis of the present report. ................. 4 2. SCIENTIFIC REQUIREMENTS FOR TROPICAL EXPERIMENTS. 5 2. 1 General considerations. ............ 5 2.2 The scales of atmospheric motions in the tropics. 5 2.3 The problems to be solved. ..... 6 2.4 The relation with previous experiments ..... 7 3. A IDERARCHY OF GARP EXPERIMENTAL STUDIES IN THE TROPICS. ..... .. 8 3. 1 The concept of GARP experimental studies ............ .. 8 3.2 An experimental study to define the interactions between the large wave- scale and the cloud-cluster scale (Scales A and B) ......... .. 9 3.3 An experimental study to determine the interaction between the scale of the cloud cluster and the meso-convective scales (Scales Band C). .... .. 10 3.4 Auxiliary experimental studies on convection over a tropical land mass. " 10 3. 5 Auxiliary experimental studies on the planetary boundary layer in the equa- torial region ......................... -
Principles of Radar Altimetry
A short course on Altimetry Paolo Cipollini1, Helen Snaith2 1 National Oceanography Centre, Southampton, U.K. 2 British Oceanographic Data Centre, Southampton, U.K. with contributions by Peter Challenor, Ian Robinson, R. Keith Raney + some other friends… 1 Outline • Rationale • why we need altimetry • A1 – Principles of altimetry • how it works in principle • New techniques • A2 – Altimeter Data Processing • From satellite height to surface height: corrections • (or how it is made accurate) • A3 – Altimetry and Oceanography • A4 – Geophysical parameters and applications • what quantities we measure • how we use them! 2 Rationale for Radar Altimetry over the oceans • Climate change • oceans are a very important component of the climate system • Altimeters monitor currents / ocean circulation… • …that can be used to estimate heat storage and transport • … and to assess the interaction between ocean and atmosphere • We also get interesting by- products: wind/waves, rain 3 The Climate System 4 The sea is not flat…. Surface dynamical features of height = tens of cm over lengths = hundreds of kms 5 P. Cipollini, H. Snaith – A short course on Altimetry Altimetry 1 – principles & instruments 6 Basic Principles • The altimeter is a radar at vertical incidence • The signal returning to the Satellite satellite is from quasi- orbit specular reflection OrbitOrbit AltimeterAltimeter height measurementmeasurement (range)(range) • Measure distance between satellite and sea Geoid Sea Surface (range) • Determine position of Reference satellite (precise orbit) ellipsoid • Hence determine height Geoid undulation of sea surface Ocean dynamic surface topography (DT) • Oceanographers require height relative to geoid DT= Orbit - Range - Geoid 7 Measuring ocean topography with radar • Measure travel time, 2T, from emit to return orbit h T×c c 8 • = ( ≈ 3x10 m/s) Nadir view • Resolution to ~1cm would need a pulse of h 3x10-10s (range) (0.3 nanoseconds) • 0.3ns… That would be a pulse sea surface bandwidth of >3 GHz… Quasi-Specular reflection Impossible! 8 Chirp, chirp…. -
Civilian Satellite Remote Sensing: a Strategic Approach
Civilian Satellite Remote Sensing: A Strategic Approach September 1994 OTA-ISS-607 NTIS order #PB95-109633 GPO stock #052-003-01395-9 Recommended citation: U.S. Congress, Office of Technology Assessment, Civilian Satellite Remote Sensing: A Strategic Approach, OTA-ISS-607 (Washington, DC: U.S. Government Printing Office, September 1994). For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP. Washington, DC 20402-9328 ISBN 0-16 -045310-0 Foreword ver the next two decades, Earth observations from space prom- ise to become increasingly important for predicting the weather, studying global change, and managing global resources. How the U.S. government responds to the political, economic, and technical0 challenges posed by the growing interest in satellite remote sensing could have a major impact on the use and management of global resources. The United States and other countries now collect Earth data by means of several civilian remote sensing systems. These data assist fed- eral and state agencies in carrying out their legislatively mandated pro- grams and offer numerous additional benefits to commerce, science, and the public welfare. Existing U.S. and foreign satellite remote sensing programs often have overlapping requirements and redundant instru- ments and spacecraft. This report, the final one of the Office of Technolo- gy Assessment analysis of Earth Observations Systems, analyzes the case for developing a long-term, comprehensive strategic plan for civil- ian satellite remote sensing, and explores the elements of such a plan, if it were adopted. The report also enumerates many of the congressional de- cisions needed to ensure that future data needs will be satisfied.