<<

an Introduction and Overview

Rooster Rock State Park & Crown Point. Oregon DOGAMI Lidar Project

Presented by Keith Marcoe GEOG581, Fall 2007. Portland State University.

What is Lidar?

„ Detection And Ranging

„ Active form of : information is obtained from a signal which is sent from a transmitter, reflected by a target, and detected by a receiver back at the source.

„ Airborne and Space Lidar Systems. Most are currently airborne.

„ 3 types of information can be obtained: a) Range to target (Topographic Lidar, or Altimetry) b) Chemical properties of target (Differential Absorption Lidar) c) Velocity of target (Doppler Lidar)

„ Focus on Laser Altimetry. Most active area today.

1 Lidar History

„ 60s and 70s - First laser remote sensing instruments (lunar laser ranging, laser ranging, oceanographic and atmospheric research)

„ 80s - First laser altimetry systems (NASA Atmospheric and Oceanographic Lidar (AOL) and Airborne Topographic Mapper (ATM))

„ 1995 - First commercial airborne Lidar systems developed.

„ Last 10 years - Significant development of commercial and non-commercial systems 1994 - SHOALS (US Army Corps of Engineers) 1996 - Orbiter Laser Altimer (NASA MOLA-2) 1997 - Shuttle Laser (NASA SLA) Early 2000s - North Carolina achieves statewide Lidar coverage (used for updating FEMA flood insurance maps) Statewide and regional consortiums being developed for the management and distribution of large volumes of Lidar data

„ Currently 2 predominate issues - Standardization of data formats Standardization of processing techniques to extract useful information

Comparison of Lidar and

Lidar Radar Uses optical signals (Near IR, Uses signals. Wavelengths ≈ 1 visible). Wavelengths ≈ 1 um cm. (Approx 100,000 times longer than Near IR)

Shorter wavelengths allow Target size limited by longer wavelength detection of smaller objects ( particles, ) Focused beam and high frequency Beam width and antenna length limit permit high spatial resolution spatial resolution (10s of meters). (< 1m horizontal) Synthetic aperture techniques reduce antenna length requirements. Nadir looking Side looking sensor. Limited to clear atmospheric Can operate in presence of . Daytime conditions, daytime or nighttime or nighttime coverage. coverage.

2 Topographic Lidar Operating Principles

Distinguish between Pulsed and CW Lidar systems.

„ Pulsed system: Transmitted signal consists of a series of laser pulses, 10,000 to 150,000 pulses/second (10 - 150 kHz pulse rate). Range to target calculated from time to receive pulse: Range = c*t / 2

„ CW system: Transmits sinusoidal signal of known wavelength Range calculated from number of full waveforms and the phase difference between transmitted and received signal. Much less common technique compared to pulsed system.

Pulsed System Operation

„ Wavelengths utilized: 1.0 - 1.5 µm (terrestrial studies) 0.50 - 0.55 µm (bathymetric studies)

„ Combination of scanning mirror and moving platform produces a 2D of range measurements.

„ Additionally recorded information: Angle from nadir of measurement GPS horizontal and vertical positions ( 1 Hz) Inertial Measurements (pitch, roll, yaw) (50 Hz)

„ On board processing: Slant distance calculated from range measurement + angle from nadir for each returned pulse Slant distance corrected using IMU measurements GPS data integrated to provide a georeferenced elevation value for each returned pulse. GPS measurements are crucial to vertical accuracy.

3 „ Pulsed systems are one of two types: - Small footprint: Ground unit = 5 - 30 cm Useful for detailed local mapping, edge detection, detailed vegetation canopy studies

- Large footprint: Ground unit = 10 - 25 m Larger swath width Useful for larger scale studies of canopy response

„ Footprint size is a function of IFOV Sensor altitude Viewing angle from nadir

4 Spatial Resolution Considerations for Pulsed System

„ Achievable point density is a function of: - IFOV of instrument

- Altitude of platform

- Number of points collected - platform speed - scan speed and scan angle (swath width) - altitude of platform - pulse frequency

„ For a given set of operating conditions, pulse frequency becomes the primary figure of merit.

„ Pulse repetition frequencies have increased from about 5 kHz in 1995 to 150 kHz presently, reducing spatial grid resolutions to < 0.5 meters

Typical Lidar Performance Characteristics (pulsed small footprint system, 2001)

Specification Typical Value Wavelength 1000-1500 nm Pulse Rep. Rate 140 kHz Pulse Width 10 nsec Scan Angle 40° - 75° Scan Rate 25 - 40 Hz Swath Width Up to 0.7 * altitude Z accuracy RMSE Approx 15 cm X,Y accuracy RMSE 10 - 100 cm Footprint 0.25 - 2 m (from1000m) Resolution 0.75 meters GPS frequency 1 Hz IMS Frequency 50 Hz Operating Altitude 500 - 2000 m

5 Post-Processing of Topographic Lidar Data

„ Near IR pulses capable of reflection off of multiple surfaces

„ Profile of received signal depends on nature of target surface: Vegetation - first return (crown) intermediate returns (underlying branches/leaves) last/ground return (earth surface) Buildings - single return (first = last) Bare Earth - single return (first = last)

„ Older Systems - Detected single (first) return from each pulse. Elevation profile is a Digital Surface Model (DSM).

„ Newer Systems - Capable of detecting multiple returns from each pulse (Waveform Capture). Dataset is unfiltered point cloud. Post Processing needed to distinguish between first, intermediate, and last returns.

From Flood, 2001

6 Post Processing Techniques

„ Filtering Last Returns from point cloud to generate Bare Earth DEM. Capable of producing bare earth DEMs in areas with moderately dense vegetation cover.

„ First Return - Last Return to determine Canopy Height

„ Filtering First and Intermediate returns to estimate vegetation , tree densities, individual tree structure information

„ Separate First Return signals at abrupt edges to delineate Building Features (small footprint systems)

„ Several Filtering Methods are currently being developed. Most combine automated algorithms with manual correction.

Lidar Applications

„ Update digital elevation models (NED)

„ Glacial Monitoring

„ Detecting Faults and measuring uplift

„

„ Shoreline and Beach Volume Changes

„ Bathymetric (SHOALS)

„ Risk Analysis

„ Habitat Mapping

„ Subsidence Issues

„ Telecom Planning

„ Urban Development

7 Free Lidar Sources

„ Puget Sound LIDAR Consortium

„ OR Dept. of and Mineral Industries (DOGAMI). Portland DEMs.

„ Louisiana State University

„ Red River Basin Decision Information Network

„ NOAA Coastal Services Center

„ USGS Center For Lidar Information Coordination and Knowledge (CLICK)

„ USACE Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX)

„ North Carolina Floodplain Mapping Program

Comparison of Lidar versus standard USGS 10m DEM

Bainbridge Island, WA. From Puget Sound Lidar Consortium

8 San Andreas Detection Using Lidar

Aerial Photo First Return DSM Last Return DEM showing fault

http://quake.usgs.gov/research/geology/lidar/example1.html

Dome Formation, Mt. St. Helens

09_03_2004 09_24_2004 09_30_2004

10_04_2004 10_14_2004 11_20_2004

from USGS Cascades Volcano Observatory

9 References Paul M. Mather. Computer Processing of Remotely Sensed Images. An Introduction. Copyright 2004, John Wiley and Sons.

Martin Flood, 2001. Laser Altimetry : from science to commercial LIDAR mapping. Photogrammetric & Remote Sensing, 67(11), 1209-1217.

Qi Chen, 2007. Airborne Lidar Data Processing and Information Extraction. Photogrammetric Engineering & Remote Sensing, 73(2), 109-112.

Jason Stoker, et al, 2006. CLICK : The New USGS Center for LIDAR Information Coordination and Knowledge. Photogrammetric Engineering & Remote Sensing, 72(6), 613-616.

David Harding, 2000. Principles of Airborne Laser Altimeter Terrain Mapping. NASA Goddard Space Flight Center.

NASA Tutorial: http://www.ghcc.msfc.nasa.gov/sparcle/sparcle_tutorial_morelidar.html

NOAA Coastal Services Center: http://www.csc.noaa.gov/crs/rs_apps/sensors/lidar.htm

10