Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’An, China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward Non-Invasive Measurement of Atmospheric Temperature Using Vibro-Rotational Raman Spectra of Diatomic Gases
remote sensing Article Toward Non-Invasive Measurement of Atmospheric Temperature Using Vibro-Rotational Raman Spectra of Diatomic Gases Tyler Capek 1,*,† , Jacek Borysow 1,† , Claudio Mazzoleni 1,† and Massimo Moraldi 2,† 1 Department of Physics, Michigan Technological University, Houghton, MI 49931, USA; [email protected] (J.B.); [email protected] (C.M.) 2 Dipartimento di Fisica e Astronomia, Universita’ degli Studi di Firenze, via Sansone 1, I-50019 Sesto Fiorentino, Italy; massimo.moraldi@fi.infn.it * Correspondence: [email protected] † These authors contributed equally to this work. Received: 8 October 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: We demonstrate precise determination of atmospheric temperature using vibro-rotational Raman (VRR) spectra of molecular nitrogen and oxygen in the range of 292–293 K. We used a continuous wave fiber laser operating at 10 W near 532 nm as an excitation source in conjunction with a multi-pass cell. First, we show that the approximation that nitrogen and oxygen molecules behave like rigid rotors leads to erroneous derivations of temperature values from VRR spectra. Then, we account for molecular non-rigidity and compare four different methods for the determination of air temperature. Each method requires no temperature calibration. The first method involves fitting the intensity of individual lines within the same branch to their respective transition energies. We also infer temperature by taking ratios of two isolated VRR lines; first from two lines of the same branch, and then one line from the S-branch and one from the O-branch. Finally, we take ratios of groups of lines. -
CHAPTER CONTENTS Page CHAPTER 5
CHAPTER CONTENTS Page CHAPTER 5. SPECIAL PROFILING TECHNIQUES FOR THE BOUNDARY LAYER AND THE TROPOSPHERE .............................................................. 640 5.1 General ................................................................... 640 5.2 Surface-based remote-sensing techniques ..................................... 640 5.2.1 Acoustic sounders (sodars) ........................................... 640 5.2.2 Wind profiler radars ................................................. 641 5.2.3 Radio acoustic sounding systems ...................................... 643 5.2.4 Microwave radiometers .............................................. 644 5.2.5 Laser radars (lidars) .................................................. 645 5.2.6 Global Navigation Satellite System ..................................... 646 5.2.6.1 Description of the Global Navigation Satellite System ............. 647 5.2.6.2 Tropospheric Global Navigation Satellite System signal ........... 648 5.2.6.3 Integrated water vapour. 648 5.2.6.4 Measurement uncertainties. 649 5.3 In situ measurements ....................................................... 649 5.3.1 Balloon tracking ..................................................... 649 5.3.2 Boundary layer radiosondes .......................................... 649 5.3.3 Instrumented towers and masts ....................................... 650 5.3.4 Instrumented tethered balloons ....................................... 651 ANNEX. GROUND-BASED REMOTE-SENSING OF WIND BY HETERODYNE PULSED DOPPLER LIDAR ................................................................ -
An LES-Based Airborne Doppler Lidar Simulator and Its Application to Wind Profiling in Inhomogeneous flow Conditions
Atmos. Meas. Tech., 13, 1609–1631, 2020 https://doi.org/10.5194/amt-13-1609-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. An LES-based airborne Doppler lidar simulator and its application to wind profiling in inhomogeneous flow conditions Philipp Gasch1, Andreas Wieser1, Julie K. Lundquist2,3, and Norbert Kalthoff1 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 2Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80303, USA 3National Renewable Energy Laboratory, Golden, CO 80401, USA Correspondence: Philipp Gasch ([email protected]) Received: 26 March 2019 – Discussion started: 5 June 2019 Revised: 19 February 2020 – Accepted: 19 February 2020 – Published: 2 April 2020 Abstract. Wind profiling by Doppler lidar is common prac- profiling at low wind speeds (< 5ms−1) can be biased, if tice and highly useful in a wide range of applications. Air- conducted in regions of inhomogeneous flow conditions. borne Doppler lidar can provide additional insights relative to ground-based systems by allowing for spatially distributed and targeted measurements. Providing a link between the- ory and measurement, a first large eddy simulation (LES)- 1 Introduction based airborne Doppler lidar simulator (ADLS) has been de- veloped. Simulated measurements are conducted based on Doppler lidar has experienced rapidly growing importance LES wind fields, considering the coordinate and geometric and usage in remote sensing of atmospheric winds over transformations applicable to real-world measurements. The the past decades (Weitkamp et al., 2005). Sectors with ADLS provides added value as the input truth used to create widespread usage include boundary layer meteorology, wind the measurements is known exactly, which is nearly impos- energy and airport management. -
Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations
Remote Sens. 2013, 5, 6079-6095; doi:10.3390/rs5116079 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations Songhua Wu *, Xiaoquan Song and Bingyi Liu Ocean Remote Sensing Institute, Ocean University of China, 238 Songling Road, Qingdao 266100, China; E-Mails: [email protected] (X.S.); [email protected] (B.L.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-532-6678-2573. Received: 8 October 2013; in revised form: 27 October 2013 / Accepted: 13 November 2013 / Published: 18 November 2013 Abstract: A lidar detects atmospheric parameters by transmitting laser pulse to the atmosphere and receiving the backscattering signals from molecules and aerosol particles. Because of the small backscattering cross section, a lidar usually uses the high sensitive photomultiplier and avalanche photodiode as detector and uses photon counting technology for collection of weak backscatter signals. Photon Counting enables the capturing of extremely weak lidar return from long distance, throughout dark background, by a long time accumulation. Because of the strong solar background, the signal-to-noise ratio of lidar during daytime could be greatly restricted, especially for the lidar operating at visible wavelengths where solar background is prominent. Narrow band-pass filters must therefore be installed in order to isolate solar background noise at wavelengths close to that of the lidar receiving channel, whereas the background light in superposition with signal spectrum, limits an effective margin for signal-to-noise ratio (SNR) improvement. This work describes a lidar prototype operating at the Fraunhofer lines, the invisible band of solar spectrum, to achieve photon counting under intense solar background. -
Raman Lidar for Meteorological Observations, RALMO – Part 1: Open Access Instrument Description Climate Climate of the Past 1 1 2 2 1,3 4 of The1 Past T
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmos. Meas. Tech., 6, 1329–1346, 2013 Atmospheric Atmospheric www.atmos-meas-tech.net/6/1329/2013/ doi:10.5194/amt-6-1329-2013 Measurement Measurement © Author(s) 2013. CC Attribution 3.0 License. Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Raman Lidar for Meteorological Observations, RALMO – Part 1: Open Access Instrument description Climate Climate of the Past 1 1 2 2 1,3 4 of the1 Past T. Dinoev , V. Simeonov , Y. Arshinov , S. Bobrovnikov , P. Ristori , B. Calpini , M. Parlange , and H. van den Discussions Bergh5 1 Open Access Laboratory of Environmental Fluid Mechanics and Hydrology (EFLUM), Ecole Polytechnique Fed´ erale´ de Lausanne Open Access EPFL-ENAC, Station 2, 1015 Lausanne, Switzerland Earth System 2 Earth System V.E. Zuev Institute of Atmospheric Optics SB RAS1, Academician Zuev Square, Tomsk, 634021, Russia Dynamics 3Division´ Lidar, CEILAP (UNIDEF-CITEDEF-MINDEF-CONICET), San Juan Bautista de La SalleDynamics 4397 (B1603ALO), Villa Martelli, Buenos Aires, Argentina Discussions 4Federal Office of Meteorology and Climatology MeteoSwiss, Atmospheric Data, P.O. Box 316, 1530 Payerne, Switzerland 5 Open Access Laboratory of Air and Soil Pollution, Ecole Polytechnique Fed´ erale´ de Lausanne EPFL, StationGeoscientific 6, Geoscientific Open Access 1015 Lausanne, Switzerland Instrumentation Instrumentation Correspondence to: V. B. -
The Benefits of Lidar for Meteorological Research: the Convective and Orographically-Induced Precipitation Study (Cops)
THE BENEFITS OF LIDAR FOR METEOROLOGICAL RESEARCH: THE CONVECTIVE AND OROGRAPHICALLY-INDUCED PRECIPITATION STUDY (COPS) Andreas Behrendt(1), Volker Wulfmeyer(1), Christoph Kottmeier(2), Ulrich Corsmeier(2) (1)Institute of Physics and Meteorology, University of Hohenheim, D-70593 Stuttgart, Germany, [email protected] (2) Institute for Meteorology and Climate Research (IMK), University of Karlsruhe/Forschungszentrum Karlsruhe, Karlsruhe, Germany ABSTRACT results of instrumental development within an intensive observations period. How can lidar serve to improve today's numerical Such a field experiment is the Convective and Oro- weather forecast? Which benefits does lidar offer com- graphically-induced Precipitation Study (COPS, pared with other techniques? Which measured parame- http://www.uni-hohenheim.de/spp-iop/) which takes ters, which resolution and accuracy, which platforms place in summer 2007 in a low-mountain range in and measurement strategies are needed? Using the next Southern-Western Germany and North-Eastern France. generation of high-resolution models, a refined model This area is characterized by high summer thunderstorm representation of atmospheric processes is currently in activity and particularly low skill of numerical weather development. Besides higher resolution, the refinements prediction models. COPS is part of the German Priority comprise improved parameterizations, new model phys- Program "Praecipitationis Quantitativae Predictio" ics – including, e.g., the effects of aerosols – and assimi- (PQP, http://www.meteo.uni-bonn.de/projekte/- lation of additional data. As example to discuss the role SPPMeteo/) and has been endorsed as World Weather lidar can play in this context we introduce the Convec- Research Program (WWRP) Research and Development tive and Orographically-induced Precipitation Study Project (Fig. -
Bi-Directional Domain Adaptation for Sim2real Transfer of Embodied Navigation Agents
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1 Bi-directional Domain Adaptation for Sim2Real Transfer of Embodied Navigation Agents Joanne Truong1 and Sonia Chernova1;2 and Dhruv Batra1;2 Abstract—Deep reinforcement learning models are notoriously This raises a fundamental question – How can we leverage data hungry, yet real-world data is expensive and time consuming imperfect but useful simulators to train robots while ensuring to obtain. The solution that many have turned to is to use that the learned skills generalize to reality? This question is simulation for training before deploying the robot in a real environment. Simulation offers the ability to train large numbers studied under the umbrella of ‘sim2real transfer’ and has been of robots in parallel, and offers an abundance of data. However, a topic of much interest in the community [4], [5], [6], [7], no simulation is perfect, and robots trained solely in simulation [8], [9], [10]. fail to generalize to the real-world, resulting in a “sim-vs-real In this work, we first reframe the sim2real transfer problem gap”. How can we overcome the trade-off between the abundance into the following question – given a cheap abundant low- of less accurate, artificial data from simulators and the scarcity of reliable, real-world data? In this paper, we propose Bi-directional fidelity data generator (a simulator) and an expensive scarce Domain Adaptation (BDA), a novel approach to bridge the sim- high-fidelity data source (reality), how should we best leverage vs-real gap in both directions– real2sim to bridge the visual the two to maximize performance of an agent in the expensive domain gap, and sim2real to bridge the dynamics domain gap. -
Conclusions Introduction Coherent Doppler LIDAR LIDAR Observation
Improvement of Long Range Doppler LIDARs of TM-SFW0603 Mitsubishi Electric Corporation (MELCO) Ikuya Kakimoto*1, Yutaka Kajiyama*1, Jong-Sung Ha*2, Hong-II Kim*2 *1 Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi Honmachi, Amagasaki-city, 661-8661, Japan *2 Korea Aerospace research Institute, 169-84 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea Introduction LIDAR observation system linking with Radar Wind measurement is considered as one of the most important issues for Thunderstorm Forecasting System Wind shear detection system the prediction and elucidation of meteorological phenomena. As the formal instrument for wind measurement, ground-based anemometer, radiosonde, Doppler radar and Wind Profiler are utilized so far. However, it is quite difficult to scan the three dimensional (3D) wind field including zenith, and only Doppler radar can be utilized to measure 3D wind speed and direction in the case of rainfall. In recent years, Doppler LIDARs have been developed and it can scan 3-D wind field even in the case of fine weather and is proceeded to be utilized in a variety of fields. Therefore, it is possible to implement all-weather wind measurement with the set of Doppler LIDAR and Doppler radar and this set is much effective to Fig. 6 Wind shear detection system monitor the safety of air at the airport, launch complex and other fields. Fig. 5 Thunderstorm forecasting system Coherent Doppler LIDAR Radars can detect turbulences in The indication of torrential rain can be the rain and LIDAR can do that DIABREZZATM A Series detected 20 min. before by Ka-band. in fine weather. -
Sea Surface Wind Speed Estimation from Space-Based Lidar Measurements Y
Sea surface wind speed estimation from space-based lidar measurements Y. Hu, K. Stamnes, M. Vaughan, Jacques Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, et al. To cite this version: Y. Hu, K. Stamnes, M. Vaughan, Jacques Pelon, C. Weimer, et al.. Sea surface wind speed estimation from space-based lidar measurements. Atmospheric Chemistry and Physics, European Geosciences Union, 2008, 8, pp.3593-3601. hal-00328304v2 HAL Id: hal-00328304 https://hal.archives-ouvertes.fr/hal-00328304v2 Submitted on 20 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys., 8, 3593–3601, 2008 www.atmos-chem-phys.net/8/3593/2008/ Atmospheric © Author(s) 2008. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics Sea surface wind speed estimation from space-based lidar measurements Y. Hu1, K. Stamnes2, M. Vaughan1, J. Pelon3, C. Weimer4, D. Wu5, M. Cisewski1, W. Sun1, P. Yang6, B. Lin1, A. Omar1, D. Flittner1, C. Hostetler1, C. Trepte1, D. Winker1, G. Gibson1, and M. Santa-Maria1 1Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA 2Dept. -
Processing Jump Point of Lidar Detection Data and Inversing the Aerosol Extinction Coefficient
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W9, 2019 ISPRS Workshop on Remote Sensing and Synergic Analysis on Atmospheric Environment (RSAE), 25–27 October 2019, Nanjing, China PROCESSING JUMP POINT OF LIDAR DETECTION DATA AND INVERSING THE AEROSOL EXTINCTION COEFFICIENT Hailun Zhang1, Hu Zhao1,﹡, Yapeng Liu2, Xingkai Wang2, Chang Shu2 1School of Electrical and Information Engineering, North MinZu University Yinchuan 750021, China - [email protected], [email protected] 2School of computer science and engineering, North MinZu University Yinchuan 750021, China - [email protected], [email protected], [email protected] Commission Ⅲ, WG Ⅲ/8 KEY WORDS:Extinction Coefficient, Jump Point, Fitting, Interpolation, Invention Method ABSTRACT: For a long time, the research of the optical properties of atmospheric aerosols has aroused a wide concern in the field of atmospheric and environmental. Many scholars commonly use the Klett method to invert the lidar return signal of Mie scattering. However, there are always some negative values in the detection data of lidar, which have no actual meaning,and which are jump points. The jump points are also called wild value points and abnormal points. The jump points are refered to the detecting points that are significantly different from the surrounding detection points, and which are not consistent with the actual situation. As a result, when the far end point is selected as the boundary value, the inversion error is too large to successfully invert the extinction coefficient profile. These negative points are jump points, which must be removed in the inversion process. In order to solve the problem, a method of processing jump points of detection data of lidar and the inversion method of aerosol extinction coefficient is proposed in this paper. -
A Comparison of Lidar and Radiosonde Wind Measurements Valerie-M
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 53 ( 2014 ) 214 – 220 EERA DeepWind’2014, 11th Deep Sea Offshore Wind R&D Conference A comparison of LiDAR and radiosonde wind measurements Valerie-M. Kumera, Joachim Reudera, Birgitte R. Furevika,b aGeophysical Institute, University of Bergen, Allegaten 70, 5007 Bergen, Norway bNorwegian Meteorological Institute, Allegaten 70, 5007 Bergen, Norway Abstract Doppler LiDAR measurements are already well established in the wind energy research and their accuracy has been tested against met mast data up to 100 m above ground. However, the new generation of scanning LiDAR have a much higher range and thus it is not possible to verify measurements at higher altitudes. Therefore, the LiDAR Measurement Campaign Sola (LIMECS) was conducted at the airport of Stavanger from March to August 2013 to compare LiDAR and radiosonde winds. It was a collaborative test campaign between the University of Bergen, the Norwegian Meteorological Office (MET), Christian Michelsen Research (CMR) and Avinor. With the airports’ location at the Norwegian West Coast, additional motivations were the investigations in characteristics of coastal winds, as well as the validation of the LES turbulence forecast for the airport of Stavanger. We deployed two Windcubes v1 and a scanning Windcube 100S at two different sites in Sola, one next to the runway and the other one near to the autosonde from MET. The Windcube 100S scans several cross-sections of the ambient flow on hourly basis. In combination with wind profiles up to 200 m (Windcubes v1) and 3 km (Windcube 100S) and temporally more frequent radiosonde ascents, we collect a variety of wind information in the coastal atmospheric boundary layer. -
Development of Lidar Techniques to Estimate
DEVELOPMENT OF LIDAR TECHNIQUES TO ESTIMATE ATMOSPHERIC OPTICAL PROPERTIES by Mariana Adam A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October, 2005 © Mariana Adam 2005 All rights reserved DEVELOPMENT OF LIDAR TECHNIQUES TO ESTIMATE ATMOSPHERIC OPTICAL PROPERTIES by Mariana Adam ABSTRACT The modified methodologies for one-directional and multiangle measurements, which were used to invert the data of the JHU elastic lidar obtained in clear and polluted atmospheres, are presented. The vertical profiles of the backscatter lidar signals at the wavelength 1064 nm were recorded in Baltimore during PM Supersite experiment. The profiles of the aerosol extinction coefficient over a broad range of atmospheric turbidity, which includes a strong haze event which occurred due to the smoke transport from Canadian forest fires in 2002, were obtained with the near-end solution, in which the boundary condition was determined at the beginning of the complete overlap zone. This was done using an extrapolation from the ground level of the aerosol extinction coefficient, calculated with the Mie theory. For such calculations the data of the ground-based in-situ instrumentation, the nephelometer and two particle size analyzers were used. An analysis of relative errors in the retrieved extinction profiles ii due to the uncertainties in the established boundary conditions was performed using two methods to determine the ground-level extinction coefficient, which in turn, imply two methods to determine aerosol index of refraction (using the nephelometer data and chemical species measurements). The comparison of the three analytical methods used to solve lidar equation (near-end, far-end and optical-depth solutions) is presented.