LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variable Renewable Energy Forecasting System Design and Implementation Plan
VARIABLE RENEWABLE ENERGY FORECASTING SYSTEM DESIGN AND IMPLEMENTATION PLAN USAID ENERGY PROGRAM 4 February 2019 This publication was produced for review by the United States Agency for International Development. It was prepared by Deloitte Consulting LLP. The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. VARIABLE RENEWABLE ENERGY FORECASTING SYSTEM DESIGN AND IMPLEMENTATION PLAN USAID ENERGY PROGRAM CONTRACT NUMBER: AID-OAA-I-13-00018 DELOITTE CONSULTING LLP USAID | GEORGIA USAID CONTRACTING OFFICER’S REPRESENTATIVE: NICHOLAS OKRESHIDZE AUTHOR(S): DAVIT MUJIRISHVILI LANGUAGE: ENGLISH 4 FEBRUARY 2019 DISCLAIMER: This publication was produced for review by the United States Agency for International Development. It was prepared by Deloitte Consulting LLP. The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. USAID ENERGY PROGRAM VARIABLE RENEWABLE ENERGY FORECASTING SYSTEM DESIGN AND IMPLEMENTATION PLAN i DATA Reviewed by: Valeriy Vlatchkov, Daniel Potash, Ivane Pirveli, Eka Nadareishvili Practice Area: Variable Renewable Energy Forecasting Key Words: Variable Renewable Energy; Forecasting, Procurement of Forecasting Services, Forecasting System Conceptual Design, Implementation Plan USAID ENERGY PROGRAM VARIABLE RENEWABLE ENERGY FORECASTING SYSTEM DESIGN AND IMPLEMENTATION PLAN ii ACRONYMS -
CHAPTER CONTENTS Page CHAPTER 5
CHAPTER CONTENTS Page CHAPTER 5. SPECIAL PROFILING TECHNIQUES FOR THE BOUNDARY LAYER AND THE TROPOSPHERE .............................................................. 640 5.1 General ................................................................... 640 5.2 Surface-based remote-sensing techniques ..................................... 640 5.2.1 Acoustic sounders (sodars) ........................................... 640 5.2.2 Wind profiler radars ................................................. 641 5.2.3 Radio acoustic sounding systems ...................................... 643 5.2.4 Microwave radiometers .............................................. 644 5.2.5 Laser radars (lidars) .................................................. 645 5.2.6 Global Navigation Satellite System ..................................... 646 5.2.6.1 Description of the Global Navigation Satellite System ............. 647 5.2.6.2 Tropospheric Global Navigation Satellite System signal ........... 648 5.2.6.3 Integrated water vapour. 648 5.2.6.4 Measurement uncertainties. 649 5.3 In situ measurements ....................................................... 649 5.3.1 Balloon tracking ..................................................... 649 5.3.2 Boundary layer radiosondes .......................................... 649 5.3.3 Instrumented towers and masts ....................................... 650 5.3.4 Instrumented tethered balloons ....................................... 651 ANNEX. GROUND-BASED REMOTE-SENSING OF WIND BY HETERODYNE PULSED DOPPLER LIDAR ................................................................ -
An LES-Based Airborne Doppler Lidar Simulator and Its Application to Wind Profiling in Inhomogeneous flow Conditions
Atmos. Meas. Tech., 13, 1609–1631, 2020 https://doi.org/10.5194/amt-13-1609-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. An LES-based airborne Doppler lidar simulator and its application to wind profiling in inhomogeneous flow conditions Philipp Gasch1, Andreas Wieser1, Julie K. Lundquist2,3, and Norbert Kalthoff1 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 2Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80303, USA 3National Renewable Energy Laboratory, Golden, CO 80401, USA Correspondence: Philipp Gasch ([email protected]) Received: 26 March 2019 – Discussion started: 5 June 2019 Revised: 19 February 2020 – Accepted: 19 February 2020 – Published: 2 April 2020 Abstract. Wind profiling by Doppler lidar is common prac- profiling at low wind speeds (< 5ms−1) can be biased, if tice and highly useful in a wide range of applications. Air- conducted in regions of inhomogeneous flow conditions. borne Doppler lidar can provide additional insights relative to ground-based systems by allowing for spatially distributed and targeted measurements. Providing a link between the- ory and measurement, a first large eddy simulation (LES)- 1 Introduction based airborne Doppler lidar simulator (ADLS) has been de- veloped. Simulated measurements are conducted based on Doppler lidar has experienced rapidly growing importance LES wind fields, considering the coordinate and geometric and usage in remote sensing of atmospheric winds over transformations applicable to real-world measurements. The the past decades (Weitkamp et al., 2005). Sectors with ADLS provides added value as the input truth used to create widespread usage include boundary layer meteorology, wind the measurements is known exactly, which is nearly impos- energy and airport management. -
Raman Lidar for Meteorological Observations, RALMO – Part 1: Open Access Instrument Description Climate Climate of the Past 1 1 2 2 1,3 4 of The1 Past T
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmos. Meas. Tech., 6, 1329–1346, 2013 Atmospheric Atmospheric www.atmos-meas-tech.net/6/1329/2013/ doi:10.5194/amt-6-1329-2013 Measurement Measurement © Author(s) 2013. CC Attribution 3.0 License. Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Raman Lidar for Meteorological Observations, RALMO – Part 1: Open Access Instrument description Climate Climate of the Past 1 1 2 2 1,3 4 of the1 Past T. Dinoev , V. Simeonov , Y. Arshinov , S. Bobrovnikov , P. Ristori , B. Calpini , M. Parlange , and H. van den Discussions Bergh5 1 Open Access Laboratory of Environmental Fluid Mechanics and Hydrology (EFLUM), Ecole Polytechnique Fed´ erale´ de Lausanne Open Access EPFL-ENAC, Station 2, 1015 Lausanne, Switzerland Earth System 2 Earth System V.E. Zuev Institute of Atmospheric Optics SB RAS1, Academician Zuev Square, Tomsk, 634021, Russia Dynamics 3Division´ Lidar, CEILAP (UNIDEF-CITEDEF-MINDEF-CONICET), San Juan Bautista de La SalleDynamics 4397 (B1603ALO), Villa Martelli, Buenos Aires, Argentina Discussions 4Federal Office of Meteorology and Climatology MeteoSwiss, Atmospheric Data, P.O. Box 316, 1530 Payerne, Switzerland 5 Open Access Laboratory of Air and Soil Pollution, Ecole Polytechnique Fed´ erale´ de Lausanne EPFL, StationGeoscientific 6, Geoscientific Open Access 1015 Lausanne, Switzerland Instrumentation Instrumentation Correspondence to: V. B. -
The Benefits of Lidar for Meteorological Research: the Convective and Orographically-Induced Precipitation Study (Cops)
THE BENEFITS OF LIDAR FOR METEOROLOGICAL RESEARCH: THE CONVECTIVE AND OROGRAPHICALLY-INDUCED PRECIPITATION STUDY (COPS) Andreas Behrendt(1), Volker Wulfmeyer(1), Christoph Kottmeier(2), Ulrich Corsmeier(2) (1)Institute of Physics and Meteorology, University of Hohenheim, D-70593 Stuttgart, Germany, [email protected] (2) Institute for Meteorology and Climate Research (IMK), University of Karlsruhe/Forschungszentrum Karlsruhe, Karlsruhe, Germany ABSTRACT results of instrumental development within an intensive observations period. How can lidar serve to improve today's numerical Such a field experiment is the Convective and Oro- weather forecast? Which benefits does lidar offer com- graphically-induced Precipitation Study (COPS, pared with other techniques? Which measured parame- http://www.uni-hohenheim.de/spp-iop/) which takes ters, which resolution and accuracy, which platforms place in summer 2007 in a low-mountain range in and measurement strategies are needed? Using the next Southern-Western Germany and North-Eastern France. generation of high-resolution models, a refined model This area is characterized by high summer thunderstorm representation of atmospheric processes is currently in activity and particularly low skill of numerical weather development. Besides higher resolution, the refinements prediction models. COPS is part of the German Priority comprise improved parameterizations, new model phys- Program "Praecipitationis Quantitativae Predictio" ics – including, e.g., the effects of aerosols – and assimi- (PQP, http://www.meteo.uni-bonn.de/projekte/- lation of additional data. As example to discuss the role SPPMeteo/) and has been endorsed as World Weather lidar can play in this context we introduce the Convec- Research Program (WWRP) Research and Development tive and Orographically-induced Precipitation Study Project (Fig. -
Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’An, China
atmosphere Article Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’an, China Chao Chen 1,2,3,4, Xiaoquan Song 1,* , Zhangjun Wang 1,2,3,4,*, Wenyan Wang 5, Xiufen Wang 2,3,4, Quanfeng Zhuang 2,3,4, Xiaoyan Liu 1,2,3,4 , Hui Li 2,3,4, Kuntai Ma 1, Xianxin Li 2,3,4, Xin Pan 2,3,4, Feng Zhang 2,3,4, Boyang Xue 2,3,4 and Yang Yu 2,3,4 1 College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; [email protected] (C.C.); [email protected] (X.L.); [email protected] (K.M.) 2 Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China; [email protected] (X.W.); [email protected] (Q.Z.); [email protected] (H.L.); [email protected] (X.L.); [email protected] (X.P.); [email protected] (F.Z.); [email protected] (B.X.); [email protected] (Y.Y.) 3 Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao 266100, China 4 National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China 5 Xi’an Meteorological Bureau of Shanxi Province, Xi’an 710016, China; [email protected] * Correspondence: [email protected] (X.S.); [email protected] (Z.W.) Abstract: A polarized micropulse lidar (P-MPL) employing a pulsed laser at 532 nm was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy Citation: Chen, C.; Song, X.; Wang, of Sciences). -
Bi-Directional Domain Adaptation for Sim2real Transfer of Embodied Navigation Agents
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1 Bi-directional Domain Adaptation for Sim2Real Transfer of Embodied Navigation Agents Joanne Truong1 and Sonia Chernova1;2 and Dhruv Batra1;2 Abstract—Deep reinforcement learning models are notoriously This raises a fundamental question – How can we leverage data hungry, yet real-world data is expensive and time consuming imperfect but useful simulators to train robots while ensuring to obtain. The solution that many have turned to is to use that the learned skills generalize to reality? This question is simulation for training before deploying the robot in a real environment. Simulation offers the ability to train large numbers studied under the umbrella of ‘sim2real transfer’ and has been of robots in parallel, and offers an abundance of data. However, a topic of much interest in the community [4], [5], [6], [7], no simulation is perfect, and robots trained solely in simulation [8], [9], [10]. fail to generalize to the real-world, resulting in a “sim-vs-real In this work, we first reframe the sim2real transfer problem gap”. How can we overcome the trade-off between the abundance into the following question – given a cheap abundant low- of less accurate, artificial data from simulators and the scarcity of reliable, real-world data? In this paper, we propose Bi-directional fidelity data generator (a simulator) and an expensive scarce Domain Adaptation (BDA), a novel approach to bridge the sim- high-fidelity data source (reality), how should we best leverage vs-real gap in both directions– real2sim to bridge the visual the two to maximize performance of an agent in the expensive domain gap, and sim2real to bridge the dynamics domain gap. -
Conclusions Introduction Coherent Doppler LIDAR LIDAR Observation
Improvement of Long Range Doppler LIDARs of TM-SFW0603 Mitsubishi Electric Corporation (MELCO) Ikuya Kakimoto*1, Yutaka Kajiyama*1, Jong-Sung Ha*2, Hong-II Kim*2 *1 Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi Honmachi, Amagasaki-city, 661-8661, Japan *2 Korea Aerospace research Institute, 169-84 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea Introduction LIDAR observation system linking with Radar Wind measurement is considered as one of the most important issues for Thunderstorm Forecasting System Wind shear detection system the prediction and elucidation of meteorological phenomena. As the formal instrument for wind measurement, ground-based anemometer, radiosonde, Doppler radar and Wind Profiler are utilized so far. However, it is quite difficult to scan the three dimensional (3D) wind field including zenith, and only Doppler radar can be utilized to measure 3D wind speed and direction in the case of rainfall. In recent years, Doppler LIDARs have been developed and it can scan 3-D wind field even in the case of fine weather and is proceeded to be utilized in a variety of fields. Therefore, it is possible to implement all-weather wind measurement with the set of Doppler LIDAR and Doppler radar and this set is much effective to Fig. 6 Wind shear detection system monitor the safety of air at the airport, launch complex and other fields. Fig. 5 Thunderstorm forecasting system Coherent Doppler LIDAR Radars can detect turbulences in The indication of torrential rain can be the rain and LIDAR can do that DIABREZZATM A Series detected 20 min. before by Ka-band. in fine weather. -
Meteorological Monitoring Guidance for Regulatory Modeling Applications
United States Office of Air Quality EPA-454/R-99-005 Environmental Protection Planning and Standards Agency Research Triangle Park, NC 27711 February 2000 Air EPA Meteorological Monitoring Guidance for Regulatory Modeling Applications Air Q of ua ice li ff ty O Clean Air Pla s nn ard in nd g and Sta EPA-454/R-99-005 Meteorological Monitoring Guidance for Regulatory Modeling Applications U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, NC 27711 February 2000 DISCLAIMER This report has been reviewed by the U.S. Environmental Protection Agency (EPA) and has been approved for publication as an EPA document. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii PREFACE This document updates the June 1987 EPA document, "On-Site Meteorological Program Guidance for Regulatory Modeling Applications", EPA-450/4-87-013. The most significant change is the replacement of Section 9 with more comprehensive guidance on remote sensing and conventional radiosonde technologies for use in upper-air meteorological monitoring; previously this section provided guidance on the use of sodar technology. The other significant change is the addition to Section 8 (Quality Assurance) of material covering data validation for upper-air meteorological measurements. These changes incorporate guidance developed during the workshop on upper-air meteorological monitoring in July 1998. Editorial changes include the deletion of the “on-site” qualifier from the title and its selective replacement in the text with “site specific”; this provides consistency with recent changes in Appendix W to 40 CFR Part 51. -
A Comparison of Lidar and Radiosonde Wind Measurements Valerie-M
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 53 ( 2014 ) 214 – 220 EERA DeepWind’2014, 11th Deep Sea Offshore Wind R&D Conference A comparison of LiDAR and radiosonde wind measurements Valerie-M. Kumera, Joachim Reudera, Birgitte R. Furevika,b aGeophysical Institute, University of Bergen, Allegaten 70, 5007 Bergen, Norway bNorwegian Meteorological Institute, Allegaten 70, 5007 Bergen, Norway Abstract Doppler LiDAR measurements are already well established in the wind energy research and their accuracy has been tested against met mast data up to 100 m above ground. However, the new generation of scanning LiDAR have a much higher range and thus it is not possible to verify measurements at higher altitudes. Therefore, the LiDAR Measurement Campaign Sola (LIMECS) was conducted at the airport of Stavanger from March to August 2013 to compare LiDAR and radiosonde winds. It was a collaborative test campaign between the University of Bergen, the Norwegian Meteorological Office (MET), Christian Michelsen Research (CMR) and Avinor. With the airports’ location at the Norwegian West Coast, additional motivations were the investigations in characteristics of coastal winds, as well as the validation of the LES turbulence forecast for the airport of Stavanger. We deployed two Windcubes v1 and a scanning Windcube 100S at two different sites in Sola, one next to the runway and the other one near to the autosonde from MET. The Windcube 100S scans several cross-sections of the ambient flow on hourly basis. In combination with wind profiles up to 200 m (Windcubes v1) and 3 km (Windcube 100S) and temporally more frequent radiosonde ascents, we collect a variety of wind information in the coastal atmospheric boundary layer. -
Meteorological Monitoring Plan
Meteorological Monitoring at Los Alamos LA-UR-03-8097 November 2003 Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36 Cover: (Top) Net radiation (shortwave and longwave) measurements at Technical Area (TA) 6. (Middle) Multiple measurement levels on the TA-6 tower. (Bottom) Typical tower instrumentation including a horizontal vane/propeller, a vertical propeller, and an aspirated thermometer with a solar radiation shield. An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. The Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. -
1 10.4 Comparative Analysis of Terminal Wind-Shear
10.4 COMPARATIVE ANALYSIS OF TERMINAL WIND-SHEAR DETECTION SYSTEMS John Y. N. Cho, Robert G. Hallowell, and Mark E. Weber MIT Lincoln Laboratory, Lexington, Massachusetts 1. INTRODUCTION One of the key factors in estimating the benefits of a terminal wind-shear detection system is its performance. Low-level wind shear, especially a microburst, is very Thus, it is necessary to quantify the wind-shear detection hazardous to aircraft departing or approaching an airport. probability for each sensor, preferably on an airport-by- The danger became especially clear in a series of fatal airport basis. To consider sensors that are not yet commercial airliner accidents in the 1970s and 1980s at deployed, a model must be developed that takes into U.S. airports. In response, the Federal Aviation Agency account the various effects that factor into the detection (FAA) developed and deployed three ground-based low- probability. We have developed such a model. The altitude wind-shear detection systems: the Low Altitude focus of this paper is on this model and the results Wind Shear Alert System (LLWAS) (Wilson and Gram- obtained with it. zow 1991), the Terminal Doppler Weather Radar (TDWR) (Michelson et al. 1990), and the Airport Surveil- 2. SCOPE OF STUDY lance Radar Weather Systems Processor (ASR-9 WSP) (Weber and Stone 1995). Since the deployment of these In addition to the three FAA wind-shear detection sys- sensors, commercial aircraft wind-shear accidents have tems mentioned above, we included the Weather Sur- dropped to near zero in the U.S. This dramatic decrease veillance Radar 1988-Doppler (WSR-88D, commonly in accidents caused by wind shear appears to confirm known as NEXRAD) (Heiss et al.