Principles of Wind Profiler Operation Wind Profiler Training Manual

Total Page:16

File Type:pdf, Size:1020Kb

Principles of Wind Profiler Operation Wind Profiler Training Manual 9 nts LIBRARY g P R I N C I P D P R O F I L E R OPE w TRAINING MANUAL NUMBER ONE : V* PREPARED FOR THE OFFICE OF METEOROLOGY NATIONAL WEATHER SERVICE fe no BY THE PROGRAM FOR REGIONAL OBSERVING AND FORECASTING SERVICES ENVIRONMENTAL RESEARCH LABORATORIES NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION PROFILER TRAINING MANUAL #1 Principles of Wind Profiler Operation Developed for the National Weather Service Office of Meteorology J 1 o s Lb: jul < r I? -J Douglas W. van de Kamp SIS. DOT OHMUMBT Profiler Program NOAA/ERL Boulder, Colorado (yw Poc, , c March 1988 55. 2 ■■ W NOTICE Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. NOAA does not authorize, for publicity or advertising, the use of any information from this publication concerning proprietary products or the tests of such products. 11 Author's Preface In the past decade, wind profilers have evolved from individual atmospheric research systems to a 30-site demonstration network which will be installed in the central United States by mid 1990, called the Wind Profiler Demonstration Network (WPDN). Although the research community has been observing wind profiler data for over five years, we have not explored all their uses, This manual is the first in a series of four manuals and videotapes summarizing our current experience with the operation, quality control, and meteorological use of wind profiler data. I would like to thank Tom Schlatter of the Program for Regional Observing and Fore­ casting Services (PROFS) and Fred Zbar, Brian Smith, Dan Smith, Joe Schaefer, Andy Edman, and Larry Dunn of the National Weather Service for their constructive reviews and comments. Thanks also to the Wind Profiler Research group of the Wave Propaga­ tion Laboratory for supplying the profiler data presented in this manual. - Ill Contents 1. Introduction and Short History of Wind Profilers ................................................... 1 1.1. What is a Wind Profiler?...................................................................................... 1 1.2. From Early Research Systems to the Present Development of a 30-Station Demonstration Network........................................................................................ 1 1.3. Description and Uses of Wind Profiler Data........................................................ 2 1.4. Advantages and Disadvantages of the Wind Profilers..........................................6 2. Principles of Operation ................................................................................................... 8 2.1. System Hardware ................................................................................................... 8 2.1.1. Transmitter and power supply ................................................................ 8 2.1.2. Antenna......................................................................................................... 9 2.1.3. Receiver and computer.......................................................................... 10 2.2. Antenna Configuration........................................................................................ 11 2.2.1. Number of beams needed .................................................................... 11 2.2.2. Pointing angles of each beam .............................................................. 12 2.2.3. How a phased array works.................................................................... 13 2.3. Use of Atmospheric Turbulence as a Measure of the Mean Wind ............ 15 2.3.1. Scales of turbulence .............................................................................. 15 2.3.2. Doppler shift............................................................................................. 15 2.4. The Doppler Signal Spectrum and Its Uses .................................................... 15 2.4.1. Returned power estimate........................................................................ 16 2.4.2. Radial velocity estimate.......................................................................... 16 2.4.3. Spectral width estimate.......................................................................... 17 2.5. From Radial Components to Horizontal Winds................................................ 17 3. Accuracy and Limitations of Wind Profiler Data .................................................... 20 3.1. Assumption of Uniformity of the Wind Field Across All Beams ..................... 20 3.2. Increased Signal-to-noise Ratio by Time-averaging .......................................... 21 3.3. Internal Electronic Noise....................................................................................... 21 3.4. External Electronic Noise ..................................................................................... 21 3.5. Side Lobes..............................................................................................................23 3.6. Precipitation and Vertical Velocity Correction.................................................... 23 3.7. Effect of Aircraft on the Data...............................................................................24 3.8. Expected Accuracy............................................................................................... 24 3.8.1. Profiler vs. rawinsonde .......................................................................... 24 3.8.2. Profiler vs. lidar ......................................................................................... 25 3.8.3. Profiler vs. profiler .....................................................................................25 4. Practical Information on the 30-Station Demonstration Network ......................27 4.1. Location of Profiling Sites.....................................................................................27 4.2. Products, Schedules, and Communications ...................................................... 27 4.3. Effects of Minimizing Satellite Interference .........................................................28 4.4. The Hub..................................................................................................................30 V 4.5. Expected Height Coverage...................................................................................31 4.6. Mean Time Between Failure (MTBF).................................................................. 31 4.7. Mean Time To Repair...........................................................................................32 4.8. Hub Failure..............................................................................................................32 5. References..................................................................................................................... 33 Appendix A. A Detailed Look at the Doppler Signal Spectrum...............................35 Appendix B. Examples of Wind Profiler Data................................................................40 VI 1. Introduction and Short History of Wind Profilers 1.1. What is a Wind Profiler? A wind profiler is a Doppler radar used to measure the atmospheric winds above a profiler site. Typical operation of a wind profiler produces a vertical profile of the winds every hour from near the Earth's surface to above the tropopause. The WPDN wind profilers are designed to operate reliably and unattended in nearly all weather conditions. To achieve this reliability, they have a minimum number of moving parts; therefore a fixed beam antenna is used. Obtaining wind profiles consistently to the tropopause in nearly all weather conditions requires the use of a relatively long wavelength radar. Typical NWS weather radars that have been operational for the past 30 years operate with wavelengths of 10 cm or less and require cloud or precipitation particles to act as reflectors. Wind profilers are relatively low-power, highly sensitive clear-air radars, operating with wavelengths from 33 cm to 6 meters. The radars detect fluctuations in atmospheric density, caused by the turbulent mixing of volumes of air with slightly different temperature and moisture content. The resulting fluctuations of the index of refraction are used as a tracer of the mean wind in the clear air. Although re­ ferred to as clear-air radars, wind profilers are capable of operating in the presence of clouds and precipitation. 1.2. From Early Research Systems to the Present Development of a 30-Station Demonstration Network Early radars (1920's-30's) were used primarily for upper atmospheric research con­ cerning the ionosphere. World War II sped the development and use of short wave­ length radars. It was not until the late 1960's and early 1970's that the potential for us­ ing sensitive clear-air radars to study the lower atmosphere became apparent. Chad­ wick and Gossard (1983) give an excellent account of the developments in clear-air radars. In the late 1970’s, the Aeronomy Laboratory of the Environmental Research Laborato­ ries (ERL) in Boulder, Colorado, built and tested a very high frequency (VHF) 50-mega­ hertz (MHz) radar near Platteville, Colorado. This radar was a scaled-down prototype of a Mesosphere-Stratosphere-Troposphere (MST) research radar built and operated near Poker Flat, Alaska. In 1980, the Wave Propagation Laboratory (WPL) of ERL began operation of the Platteville radar jointly with the Aeronomy Laboratory to measure tropospheric winds. This system operated for several years and produced coarse vertical resolution wind profiles.
Recommended publications
  • CHAPTER CONTENTS Page CHAPTER 5
    CHAPTER CONTENTS Page CHAPTER 5. SPECIAL PROFILING TECHNIQUES FOR THE BOUNDARY LAYER AND THE TROPOSPHERE .............................................................. 640 5.1 General ................................................................... 640 5.2 Surface-based remote-sensing techniques ..................................... 640 5.2.1 Acoustic sounders (sodars) ........................................... 640 5.2.2 Wind profiler radars ................................................. 641 5.2.3 Radio acoustic sounding systems ...................................... 643 5.2.4 Microwave radiometers .............................................. 644 5.2.5 Laser radars (lidars) .................................................. 645 5.2.6 Global Navigation Satellite System ..................................... 646 5.2.6.1 Description of the Global Navigation Satellite System ............. 647 5.2.6.2 Tropospheric Global Navigation Satellite System signal ........... 648 5.2.6.3 Integrated water vapour. 648 5.2.6.4 Measurement uncertainties. 649 5.3 In situ measurements ....................................................... 649 5.3.1 Balloon tracking ..................................................... 649 5.3.2 Boundary layer radiosondes .......................................... 649 5.3.3 Instrumented towers and masts ....................................... 650 5.3.4 Instrumented tethered balloons ....................................... 651 ANNEX. GROUND-BASED REMOTE-SENSING OF WIND BY HETERODYNE PULSED DOPPLER LIDAR ................................................................
    [Show full text]
  • An LES-Based Airborne Doppler Lidar Simulator and Its Application to Wind Profiling in Inhomogeneous flow Conditions
    Atmos. Meas. Tech., 13, 1609–1631, 2020 https://doi.org/10.5194/amt-13-1609-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. An LES-based airborne Doppler lidar simulator and its application to wind profiling in inhomogeneous flow conditions Philipp Gasch1, Andreas Wieser1, Julie K. Lundquist2,3, and Norbert Kalthoff1 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 2Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80303, USA 3National Renewable Energy Laboratory, Golden, CO 80401, USA Correspondence: Philipp Gasch ([email protected]) Received: 26 March 2019 – Discussion started: 5 June 2019 Revised: 19 February 2020 – Accepted: 19 February 2020 – Published: 2 April 2020 Abstract. Wind profiling by Doppler lidar is common prac- profiling at low wind speeds (< 5ms−1) can be biased, if tice and highly useful in a wide range of applications. Air- conducted in regions of inhomogeneous flow conditions. borne Doppler lidar can provide additional insights relative to ground-based systems by allowing for spatially distributed and targeted measurements. Providing a link between the- ory and measurement, a first large eddy simulation (LES)- 1 Introduction based airborne Doppler lidar simulator (ADLS) has been de- veloped. Simulated measurements are conducted based on Doppler lidar has experienced rapidly growing importance LES wind fields, considering the coordinate and geometric and usage in remote sensing of atmospheric winds over transformations applicable to real-world measurements. The the past decades (Weitkamp et al., 2005). Sectors with ADLS provides added value as the input truth used to create widespread usage include boundary layer meteorology, wind the measurements is known exactly, which is nearly impos- energy and airport management.
    [Show full text]
  • Evaluation of Three-Beam and Four-Beam Profiler Wind Measurement Techniques Using a Five-Beam Wind Profiler and Collocated Meteorological Tower
    AUGUST 2005 A DACHI ET AL. 1167 Evaluation of Three-Beam and Four-Beam Profiler Wind Measurement Techniques Using a Five-Beam Wind Profiler and Collocated Meteorological Tower AHORO ADACHI AND TAKAHISA KOBAYASHI Meteorological Research Institute, Tsukuba, Japan KENNETH S. GAGE AND DAVID A. CARTER NOAA Aeronomy Laboratory, Boulder, Colorado LESLIE M. HARTTEN Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA Aeronomy Laboratory, Boulder, Colorado WALLACE L. CLARK NOAA Aeronomy Laboratory, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado MASATO FUKUDA Japan Meteorological Agency, Chiyoda-ku, Tokyo, Japan (Manuscript received 9 August 2004, in final form 16 December 2004) ABSTRACT In this paper a five-beam wind profiler and a collocated meteorological tower are used to estimate the accuracy of four-beam and three-beam wind profiler techniques in measuring horizontal components of the wind. In the traditional three-beam technique, the horizontal components of wind are derived from two orthogonal oblique beams and the vertical beam. In the less used four-beam method, the horizontal winds are found from the radial velocities measured with two orthogonal sets of opposing coplanar beams. In this paper the observations derived from the two wind profiler techniques are compared with the tower mea- surements using data averaged over 30 min. Results show that, while the winds measured using both methods are in overall agreement with the tower measurements, some of the horizontal components of the three-beam-derived winds are clearly spurious when compared with the tower-measured winds or the winds derived from the four oblique beams.
    [Show full text]
  • Raman Lidar for Meteorological Observations, RALMO – Part 1: Open Access Instrument Description Climate Climate of the Past 1 1 2 2 1,3 4 of The1 Past T
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmos. Meas. Tech., 6, 1329–1346, 2013 Atmospheric Atmospheric www.atmos-meas-tech.net/6/1329/2013/ doi:10.5194/amt-6-1329-2013 Measurement Measurement © Author(s) 2013. CC Attribution 3.0 License. Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Raman Lidar for Meteorological Observations, RALMO – Part 1: Open Access Instrument description Climate Climate of the Past 1 1 2 2 1,3 4 of the1 Past T. Dinoev , V. Simeonov , Y. Arshinov , S. Bobrovnikov , P. Ristori , B. Calpini , M. Parlange , and H. van den Discussions Bergh5 1 Open Access Laboratory of Environmental Fluid Mechanics and Hydrology (EFLUM), Ecole Polytechnique Fed´ erale´ de Lausanne Open Access EPFL-ENAC, Station 2, 1015 Lausanne, Switzerland Earth System 2 Earth System V.E. Zuev Institute of Atmospheric Optics SB RAS1, Academician Zuev Square, Tomsk, 634021, Russia Dynamics 3Division´ Lidar, CEILAP (UNIDEF-CITEDEF-MINDEF-CONICET), San Juan Bautista de La SalleDynamics 4397 (B1603ALO), Villa Martelli, Buenos Aires, Argentina Discussions 4Federal Office of Meteorology and Climatology MeteoSwiss, Atmospheric Data, P.O. Box 316, 1530 Payerne, Switzerland 5 Open Access Laboratory of Air and Soil Pollution, Ecole Polytechnique Fed´ erale´ de Lausanne EPFL, StationGeoscientific 6, Geoscientific Open Access 1015 Lausanne, Switzerland Instrumentation Instrumentation Correspondence to: V. B.
    [Show full text]
  • Triton Wind Profiler B211334EN-B
    Tritonâ Wind Pro®ler Features • High height data — to 200 meters • No permitting required • Extremely low power consumption (7 watts) • Data access and monitoring via secure web portal • Ease of deployment — installed and collecting data within 2 hours • > 99.9 % operational uptime based on more than 800 commercial systems deployed worldwide since April 2008 Tritonâ Wind Pro®ler is a durable, robust, and independent sonic detection and ranging (SODAR) device used for pro®ling wind regimes at a given location. A Resource Assessment 120 meters, high quality filtered data Use Tritons for Every Stage of Your System For Today’s Wind captured by Triton normally exceeds Wind Project: Turbines 90 % (averaged over a 12-month period). • Greenfield prospecting Vaisala Triton Wind Profiler is Triton’s performance has been validated an advanced SODAR that provides wind by studies correlating its measurements • Micrositing and turbine suitability with anemometers at a number of sites. data well above the rotor tip-height of • Wind shear validation today’s large wind turbines. Triton • Hub height wind speed validation captures extensive data on anomalous Monitoring and Data Access wind events such as speed and direction Via Secure Web Portal • Ramp event forecasting shear and turbulence that directly affect Download and analyze your wind data at • Reducing spatial uncertainty wind turbines’ power output — and that any time, from any location via • Power curve testing and nacelle could affect a wind farm’s performance. the Internet. Access ten-minute averages anemometer correlation in real-time over a secure web server, Low Power Consumption and easily read and understand the data.
    [Show full text]
  • The Benefits of Lidar for Meteorological Research: the Convective and Orographically-Induced Precipitation Study (Cops)
    THE BENEFITS OF LIDAR FOR METEOROLOGICAL RESEARCH: THE CONVECTIVE AND OROGRAPHICALLY-INDUCED PRECIPITATION STUDY (COPS) Andreas Behrendt(1), Volker Wulfmeyer(1), Christoph Kottmeier(2), Ulrich Corsmeier(2) (1)Institute of Physics and Meteorology, University of Hohenheim, D-70593 Stuttgart, Germany, [email protected] (2) Institute for Meteorology and Climate Research (IMK), University of Karlsruhe/Forschungszentrum Karlsruhe, Karlsruhe, Germany ABSTRACT results of instrumental development within an intensive observations period. How can lidar serve to improve today's numerical Such a field experiment is the Convective and Oro- weather forecast? Which benefits does lidar offer com- graphically-induced Precipitation Study (COPS, pared with other techniques? Which measured parame- http://www.uni-hohenheim.de/spp-iop/) which takes ters, which resolution and accuracy, which platforms place in summer 2007 in a low-mountain range in and measurement strategies are needed? Using the next Southern-Western Germany and North-Eastern France. generation of high-resolution models, a refined model This area is characterized by high summer thunderstorm representation of atmospheric processes is currently in activity and particularly low skill of numerical weather development. Besides higher resolution, the refinements prediction models. COPS is part of the German Priority comprise improved parameterizations, new model phys- Program "Praecipitationis Quantitativae Predictio" ics – including, e.g., the effects of aerosols – and assimi- (PQP, http://www.meteo.uni-bonn.de/projekte/- lation of additional data. As example to discuss the role SPPMeteo/) and has been endorsed as World Weather lidar can play in this context we introduce the Convec- Research Program (WWRP) Research and Development tive and Orographically-induced Precipitation Study Project (Fig.
    [Show full text]
  • Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’An, China
    atmosphere Article Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’an, China Chao Chen 1,2,3,4, Xiaoquan Song 1,* , Zhangjun Wang 1,2,3,4,*, Wenyan Wang 5, Xiufen Wang 2,3,4, Quanfeng Zhuang 2,3,4, Xiaoyan Liu 1,2,3,4 , Hui Li 2,3,4, Kuntai Ma 1, Xianxin Li 2,3,4, Xin Pan 2,3,4, Feng Zhang 2,3,4, Boyang Xue 2,3,4 and Yang Yu 2,3,4 1 College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; [email protected] (C.C.); [email protected] (X.L.); [email protected] (K.M.) 2 Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China; [email protected] (X.W.); [email protected] (Q.Z.); [email protected] (H.L.); [email protected] (X.L.); [email protected] (X.P.); [email protected] (F.Z.); [email protected] (B.X.); [email protected] (Y.Y.) 3 Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao 266100, China 4 National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China 5 Xi’an Meteorological Bureau of Shanxi Province, Xi’an 710016, China; [email protected] * Correspondence: [email protected] (X.S.); [email protected] (Z.W.) Abstract: A polarized micropulse lidar (P-MPL) employing a pulsed laser at 532 nm was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy Citation: Chen, C.; Song, X.; Wang, of Sciences).
    [Show full text]
  • Observation of Hurricane Georges with a Vhf Wind Profiler and the San Juan Nexrad Radar Over Puerto Rico
    2A.6 OBSERVATION OF HURRICANE GEORGES WITH A VHF WIND PROFILER AND THE SAN JUAN NEXRAD RADAR OVER PUERTO RICO Edwin F. Campos1, Monique Petitdidier2 and Carlton Ulbrich3 1 Instituto Meteorológico Nacional, San José, Costa Rica 2 CETP-UVSQ-CNRS, Vélizy, France 3 Clemson University, SC Clemson, USA 1. INTRODUCTION 2. OBSERVING SYSTEM Hurricane Georges originated from a tropical Unique observations with a 46.7 MHz ST radar wave, observed by satellite and upper-air data, where taken during the passage of Hurricane which crossed the west coast of Africa late on 13 Georges over Puerto Rico. The measurements were September. Radiosonde data from Dakar, Senegal carried out at VHF (46.7MHz) with a 2µs pulse, the showed an attendant 35 to 45 knot easterly jet IPP being 1ms. Due to the extreme winds, the between 550 and 650 millibars (mb). By mid- antenna was fixed at constant zenith and azimuth morning of the 21st an upper-level low over Cuba, angles (8.8 degrees from the vertical and about 240 denoted in water vapor imagery, was moving degrees in the azimuth). The first 50 gates are westward away from Georges thereby reducing the consecutive and their sampling starts at 40 µs; the possibility of Georges moving to the northwest, last ten gates correspond to the calibration; the away from Puerto Rico. Later in the afternoon, the sampling of this group starting at 900 µs. The in- shear appeared to diminish and the outflow aloft phase and in-quadrature data are recorded without improved but Georges never fully recovered due in any coherent integration.
    [Show full text]
  • Bi-Directional Domain Adaptation for Sim2real Transfer of Embodied Navigation Agents
    IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1 Bi-directional Domain Adaptation for Sim2Real Transfer of Embodied Navigation Agents Joanne Truong1 and Sonia Chernova1;2 and Dhruv Batra1;2 Abstract—Deep reinforcement learning models are notoriously This raises a fundamental question – How can we leverage data hungry, yet real-world data is expensive and time consuming imperfect but useful simulators to train robots while ensuring to obtain. The solution that many have turned to is to use that the learned skills generalize to reality? This question is simulation for training before deploying the robot in a real environment. Simulation offers the ability to train large numbers studied under the umbrella of ‘sim2real transfer’ and has been of robots in parallel, and offers an abundance of data. However, a topic of much interest in the community [4], [5], [6], [7], no simulation is perfect, and robots trained solely in simulation [8], [9], [10]. fail to generalize to the real-world, resulting in a “sim-vs-real In this work, we first reframe the sim2real transfer problem gap”. How can we overcome the trade-off between the abundance into the following question – given a cheap abundant low- of less accurate, artificial data from simulators and the scarcity of reliable, real-world data? In this paper, we propose Bi-directional fidelity data generator (a simulator) and an expensive scarce Domain Adaptation (BDA), a novel approach to bridge the sim- high-fidelity data source (reality), how should we best leverage vs-real gap in both directions– real2sim to bridge the visual the two to maximize performance of an agent in the expensive domain gap, and sim2real to bridge the dynamics domain gap.
    [Show full text]
  • Conclusions Introduction Coherent Doppler LIDAR LIDAR Observation
    Improvement of Long Range Doppler LIDARs of TM-SFW0603 Mitsubishi Electric Corporation (MELCO) Ikuya Kakimoto*1, Yutaka Kajiyama*1, Jong-Sung Ha*2, Hong-II Kim*2 *1 Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi Honmachi, Amagasaki-city, 661-8661, Japan *2 Korea Aerospace research Institute, 169-84 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea Introduction LIDAR observation system linking with Radar Wind measurement is considered as one of the most important issues for Thunderstorm Forecasting System Wind shear detection system the prediction and elucidation of meteorological phenomena. As the formal instrument for wind measurement, ground-based anemometer, radiosonde, Doppler radar and Wind Profiler are utilized so far. However, it is quite difficult to scan the three dimensional (3D) wind field including zenith, and only Doppler radar can be utilized to measure 3D wind speed and direction in the case of rainfall. In recent years, Doppler LIDARs have been developed and it can scan 3-D wind field even in the case of fine weather and is proceeded to be utilized in a variety of fields. Therefore, it is possible to implement all-weather wind measurement with the set of Doppler LIDAR and Doppler radar and this set is much effective to Fig. 6 Wind shear detection system monitor the safety of air at the airport, launch complex and other fields. Fig. 5 Thunderstorm forecasting system Coherent Doppler LIDAR Radars can detect turbulences in The indication of torrential rain can be the rain and LIDAR can do that DIABREZZATM A Series detected 20 min. before by Ka-band. in fine weather.
    [Show full text]
  • A 449 MHZ MODULAR WIND PROFILER RADAR SYSTEM by BRADLEY JAMES LINDSETH B.S., Washington University in St
    A 449 MHZ MODULAR WIND PROFILER RADAR SYSTEM by BRADLEY JAMES LINDSETH B.S., Washington University in St. Louis, 2002 M.S., Washington University in St. Louis, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Electrical, Computer, and Energy Engineering 2012 This thesis entitled: A 449 MHz Modular Wind Profiler Radar System written by Bradley James Lindseth has been approved for the Department of Electrical, Computer, and Energy Engineering Prof. Zoya Popović Dr. William O.J. Brown Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. Lindseth, Bradley James (Ph.D., Electrical Engineering) A 449 MHz Modular Wind Profiler Radar System Thesis directed by Professor Zoya Popović and Dr. William O.J. Brown This thesis presents the design of a 449 MHz radar for wind profiling, with a focus on modularity, antenna sidelobe reduction, and solid-state transmitter design. It is one of the first wind profiler radars to use low-cost LDMOS power amplifiers combined with spaced antennas. The system is portable and designed for 2-3 month deployments. The transmitter power amplifier consists of multiple 1-kW peak power modules which feed 54 antenna elements arranged in a hexagonal array, scalable directly to 126 elements. The power amplifier is operated in pulsed mode with a 10% duty cycle at 63% drain efficiency.
    [Show full text]
  • Relative Forecast Impact from Aircraft, Profiler, Rawinsonde, VAD, GPS-PW, METAR and Mesonet Observations for Hourly Assimilation in the RUC
    16.2 Relative forecast impact from aircraft, profiler, rawinsonde, VAD, GPS-PW, METAR and mesonet observations for hourly assimilation in the RUC Stan Benjamin, Brian D. Jamison, William R. Moninger, Barry Schwartz, and Thomas W. Schlatter NOAA Earth System Research Laboratory, Boulder, CO 1. Introduction A series of experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied to assess the relative importance of the different data types for short-range (3h-12h duration) wind, temperature, and relative humidity forecasts at different vertical levels. This assessment of the value of 7 different observation data types (aircraft (AMDAR and TAMDAR), profiler, rawinsonde, VAD (velocity azimuth display) winds, GPS precipitable water, METAR, and mesonet) on short-range numerical forecasts was carried out for a 10-day period from November- December 2006. 2. Background Observation system experiments (OSEs) have been found very useful to determine the impact of particular observation types on operational NWP systems (e.g., Graham et al. 2000, Bouttier 2001, Zapotocny et al. 2002). This new study is unique in considering the effects of most of the currently assimilated high-frequency observing systems in a 1-h assimilation cycle. The previous observation impact experiments reported in Benjamin et al. (2004a) were primarily for wind profiler and only for effects on wind forecasts. This new impact study is much broader than that the previous study, now for more observation types, and for three forecast fields: wind, temperature, and moisture. Here, a set of observational sensitivity experiments (Table 1) were carried out for a recent winter period using 2007 versions of the Rapid Update Cycle assimilation system and forecast model.
    [Show full text]