Non-Intrusive Analysis of Electronic System Level Designs in Systemc

Total Page:16

File Type:pdf, Size:1020Kb

Non-Intrusive Analysis of Electronic System Level Designs in Systemc a thesis submitted for the degree of Dr.-Ing. SystemCThrough the Looking Glass: Non-Intrusive Analysis of Electronic System Level Designs in SystemC by Jannis Stoppe Supervisor: Prof. Dr. Rolf Drechsler Second referee: Prof. Dr. Stefan Edelkamp CONTENTS 1 introduction and motivation 1 2 preliminaries 7 2.1 Hardware Design Approaches 8 2.2 SystemC 13 3 extraction of systemc meta data 19 3.1 State of the Art 20 3.2 Debug Symbol Parsing 27 3.3 Extraction of Static Information via Debug Symbols 28 3.4 Extraction of Dynamic Information 31 3.5 Conclusion 39 4 extraction of systemc behaviour 41 4.1 Software-Based Approaches 42 4.2 Consecutive Snapshot Extraction 46 4.3 Compiler-based Behaviour Modification 48 4.4 Aspect-Oriented Analysis Insertion 50 4.5 Conclusion 62 5 filling the gaps with machine learning 65 5.1 Reverse-Engineering Module Logic 69 5.2 ESL-specific Additions 73 5.2.1 SystemC’s modularity 74 5.2.2 Time of extraction 75 5.2.3 Time delays 77 5.2.4 Internal states 78 5.2.5 User-defined datatypes 79 5.2.6 Circles 80 5.2.7 Summary 80 5.3 Conclusion 82 6 application 83 6.1 Visualization 84 6.1.1 Previous Work 85 6.1.2 Realization 87 6.2 Cone of Influence Extraction 91 6.3 Feature Localization 94 6.3.1 Previous Work 95 6.3.2 Realization 98 6.4 Validation of FSL specifications 100 6.5 Stimuli Generation via Machine Learning 102 iii Contents 6.5.1 Previous Work 103 6.5.2 Applying Machine Learning for CDSG 104 6.6 Conclusion 106 7 conclusion 107 iv DISCLAIMER I hereby declare that • this dissertation is my own original work, • it has been completed without claiming any illegitimate assistance and • I have acknowledged all sources used (both, verbatim and regard- ing their content). Jannis Stoppe, February 27, 2017 v I would like to thank Robert Wille for the assistance he offered whenever I needed it and the time he put into me and Rolf Drechsler for enabling me to present my ideas to the world and giving me the opportunity to work in a beautiful environment. Your support has been invaluable. I would also like to thank my wife and children for being a patient, loving support during stressful times. You give meaning and make me endure, which is more than I ever could have hoped for. 1 INTRODUCTION AND MOTIVATION We can only see a short distance ahead, but we can see plenty there that needs to be done. Alan Turing [113] The complexity of digital systems is increasing. Ever since Gordon E. Moore projected that the amount of components in integrated circuits would double every year in 1965 [75] (and later revised that to every two years in 1975 [76]), his prediction would hold. This exponential growth not only leads to faster and more complex sys- tems, it also results in serious issues concerning their design: A current 18-core Intel Haswell Xeon chip consists of more than 5 billion transis- tors [79] – nearly twice as many as there are base pairs in the human DNA [115]. Being able to manufacture such large systems, while being an impres- sive achievement by itself, still requires them to be designed in the first place. This simple aspect is a serious problem for the development of modern chips as the design tools must enable the designers to handle such large systems: if these large systems cannot be designed, they can- not be manufactured. Classic Hardware Description Languages (HDLs) that have been de- signed to model hardware are – by definition – close to the hardware they describe. This also means that systems that are written using these HDLs cannot easily be run and/or tested if the description is still incom- plete. Thus, the development process becomes a bottom-up approach, requiring designers to first build the system as a whole and then start testing it. Issues with the overall architecture can therefore only be found once the system has been fully implemented, making decisions that need to revise architectural properties expensive and thus large sys- tems tough to be designed. Traditional HDLs hence struggle with the complexity of modern hard- ware. In order to keep up with the manufacturing advances, the designs are following a modular approach and the distinct parts are re-used. Es- pecially in conjunction with well-scaling parts such as memory (which can simply be “made larger” in order to gain the according benefits), these larger designs can still be achieved – at least to a certain degree. Still, complexity remains a key issue, especially for designs that cannot be scaled easily or do not benefit from such a scaling. HDLs are there- fore increasingly facing the issue of the design gap [35], i.e. the problem 1 introduction and motivation that systems cannot be designed in accordance to the available manufac- turing capabilities due to their complexity. In order to handle this complexity, more abstract description lan- guages have been introduced. These so-called system level descriptions are used to model the coarse structure using established features (such as modules and signals) but use an underlying high-level programming language (such as C++) to describe the detailed behaviour of these parts. This means that a system can be prototyped more quickly and the system as a whole may be tested before the actual hardware (or software) parts have been implemented. The current de-facto standard for system level design is SystemC [7]. Implemented as a C++ library and specified in an open standard [81], it combines the benefits of an established high-level programming lan- guage (such as tool chains, libraries, Integrated Development Environ- ments (IDEs) etc.) with the ability to describe hardware designs on an abstract level and simulate them despite being implemented in this ab- stract way. Although these system level languages strive to reduce the amount of complexity needed to create a prototypical system design, the designs still are considerably complex. To appropriately model all parts of a sys- tem and their interactions, the design usually becomes quite large, even when working on higher levels of abstraction. The sheer size of a de- sign may make it difficult for new designers to join a project. Acquiring knowledge about a design, either to introduce new members into a team or to keep other people working on the project up to date with recent changes, is therefore a critical part of the design process. This Design Understanding can be approached in a variety of ways, de- pending on the available sources of information. Reading the source code of the design is usually inefficient and not an appropriate way of starting to understand a design, especially for larger designs. While a proper (manually created) documentation is usually the best way to introduce designers to certain parts of the work, the creation and es- pecially maintenance of a manual is a time-consuming (and therefore expensive) process with no immediate benefit for a project, making it sometimes infeasible to keep the documentation in an appropriate con- dition. Methods to automatically generate or retrieve more abstract represen- tations of hardware designs to allow designers to quickly grasp impor- tant structures are one way to approach the problem of imperfect, man- ually created meta documents. The automatic generation of e.g. visual representations of system designs is a common way to quickly allow designers to take a glance at a system’s general structure. While this ap- proach of course needs to address issues such as the complexity of the resulting images [45] or the performance of the visualisation [58, 128], 2 introduction and motivation deriving the structure to be displayed from the source code has been a straightforward procedure for classic HDLs. System level descriptions in general and SystemC implementations in particular level descriptions are, however, harder to analyse. The hardware structures are not described statically as in classic HDLs but instead are created dynamically at run-time, making a static analysis ap- proach to extract the structure more difficult or even impossible. Addi- tionally, C++ is an older language with lots of different dialects available that is not even considered context-free. This means that writing a single parser that could serve as a front end to analyse a design is an equally futile task. Lastly, compilers are used to translate the system descrip- tions into an executable form – in case of C++ binary code which can directly be executed on a given computer. This means that once the pro- gram has been processed to be executable, it is even harder or downright impossible to analyse. This work proposes new methods and approaches to analyse SystemC designs despite these issues and without shifting the burden to the de- signer (by e.g. requiring the source code to adhere to certain standards). More precisely, the research question of this thesis is How can the desired information from a given SystemC design be extracted without assuming restricted language means and with- out modifying the existing infrastructure like parsers or compilers? This means that there are two core requirements to any solution. The first is that the source code should be considered untouchable. If the solution to the analysis problem is anything that requires major source code alterations, the designers may as well simply add the required trac- ing functionality to their code without utilizing another solution. As the time required to use a solution can be directly translated to the money that an engineer needs to be paid, the solution must be easily added in order to prevent large costs for something like an analysis tool.
Recommended publications
  • Prostep Ivip CPO Statement Template
    CPO Statement of Mentor Graphics For Questa SIM Date: 17 June, 2015 CPO Statement of Mentor Graphics Following the prerequisites of ProSTEP iViP’s Code of PLM Openness (CPO) IT vendors shall determine and provide a list of their relevant products and the degree of fulfillment as a “CPO Statement” (cf. CPO Chapter 2.8). This CPO Statement refers to: Product Name Questa SIM Product Version Version 10 Contact Ellie Burns [email protected] This CPO Statement was created and published by Mentor Graphics in form of a self-assessment with regard to the CPO. Publication Date of this CPO Statement: 17 June 2015 Content 1 Executive Summary ______________________________________________________________________________ 2 2 Details of Self-Assessment ________________________________________________________________________ 3 2.1 CPO Chapter 2.1: Interoperability ________________________________________________________________ 3 2.2 CPO Chapter 2.2: Infrastructure _________________________________________________________________ 4 2.3 CPO Chapter 2.5: Standards ____________________________________________________________________ 4 2.4 CPO Chapter 2.6: Architecture __________________________________________________________________ 5 2.5 CPO Chapter 2.7: Partnership ___________________________________________________________________ 6 2.5.1 Data Generated by Users ___________________________________________________________________ 6 2.5.2 Partnership Models _______________________________________________________________________ 6 2.5.3 Support of
    [Show full text]
  • Powerpoint Template
    Accellera Overview February 27, 2017 Lu Dai | Accellera Chairman Welcome Agenda . About Accellera . Current news . Technical activities . IEEE collaboration 2 © 2017 Accellera Systems Initiative, Inc. February 2017 Accellera Systems Initiative Our Mission To provide a platform in which the electronics industry can collaborate to innovate and deliver global standards that improve design and verification productivity for electronics products. 3 © 2017 Accellera Systems Initiative, Inc. February 2017 Broad Industry Support Corporate Members 4 © 2017 Accellera Systems Initiative, Inc. February 2017 Broad Industry Support Associate Members 5 © 2017 Accellera Systems Initiative, Inc. February 2017 Global Presence SystemC Evolution Day DVCon Europe DVCon U.S. SystemC Japan Design Automation Conference DVCon China Verification & ESL Forum DVCon India 6 © 2017 Accellera Systems Initiative, Inc. February 2017 Agenda . About Accellera . Current news . Technical activities . IEEE collaboration 7 © 2017 Accellera Systems Initiative, Inc. February 2017 Accellera News . Standards - IEEE Approves UVM 1.2 as IEEE 1800.2-2017 - Accellera relicenses SystemC reference implementation under Apache 2.0 . Outreach - First DVCon China to be held April 19, 2017 - Get IEEE free standards program extended 10 years/10 standards . Awards - Thomas Alsop receives 2017 Technical Excellence Award for his leadership of the UVM Working Group - Shrenik Mehta receives 2016 Accellera Leadership Award for his role as Accellera chair from 2005-2010 8 © 2017 Accellera Systems Initiative, Inc. February 2017 DVCon – Global Presence 29th Annual DVCon U.S. 4th Annual DVCon Europe www.dvcon-us.org 4th Annual DVCon India www.dvcon-europe.org 1st DVCon China www.dvcon-india.org www.dvcon-china.org 9 © 2017 Accellera Systems Initiative, Inc.
    [Show full text]
  • Co-Simulation Between Cλash and Traditional Hdls
    MASTER THESIS CO-SIMULATION BETWEEN CλASH AND TRADITIONAL HDLS Author: John Verheij Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) Computer Architecture for Embedded Systems (CAES) Exam committee: Dr. Ir. C.P.R. Baaij Dr. Ir. J. Kuper Dr. Ir. J.F. Broenink Ir. E. Molenkamp August 19, 2016 Abstract CλaSH is a functional hardware description language (HDL) developed at the CAES group of the University of Twente. CλaSH borrows both the syntax and semantics from the general-purpose functional programming language Haskell, meaning that circuit de- signers can define their circuits with regular Haskell syntax. CλaSH contains a compiler for compiling circuits to traditional hardware description languages, like VHDL, Verilog, and SystemVerilog. Currently, compiling to traditional HDLs is one-way, meaning that CλaSH has no simulation options with the traditional HDLs. Co-simulation could be used to simulate designs which are defined in multiple lan- guages. With co-simulation it should be possible to use CλaSH as a verification language (test-bench) for traditional HDLs. Furthermore, circuits defined in traditional HDLs, can be used and simulated within CλaSH. In this thesis, research is done on the co-simulation of CλaSH and traditional HDLs. Traditional hardware description languages are standardized and include an interface to communicate with foreign languages. This interface can be used to include foreign func- tions, or to make verification and co-simulation possible. Because CλaSH also has possibilities to communicate with foreign languages, through Haskell foreign function interface (FFI), it is possible to set up co-simulation. The Verilog Procedural Interface (VPI), as defined in the IEEE 1364 standard, is used to set-up the communication and to control a Verilog simulator.
    [Show full text]
  • Development of Systemc Modules from HDL for System-On-Chip Applications
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 Development of SystemC Modules from HDL for System-on-Chip Applications Siddhartha Devalapalli University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Electrical and Computer Engineering Commons Recommended Citation Devalapalli, Siddhartha, "Development of SystemC Modules from HDL for System-on-Chip Applications. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2119 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Siddhartha Devalapalli entitled "Development of SystemC Modules from HDL for System-on-Chip Applications." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Electrical Engineering. Dr. Donald W. Bouldin, Major Professor We have read this thesis and recommend its acceptance: Dr. Gregory D. Peterson, Dr. Chandra Tan Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Siddhartha Devalapalli entitled "Development of SystemC Modules from HDL for System-on-Chip Applications".
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Emulation of Systemc
    UNIVERSITY OF CALIFORNIA RIVERSIDE Emulation of SystemC Applications for Portable FPGA Binaries A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Scott Spencer Sirowy June 2010 Dissertation Committee: Dr. Frank Vahid, Chairperson Dr. Tony Givargis Dr. Sheldon X.-D. Tan Copyright by Scott Spencer Sirowy 2010 The Dissertation of Scott Spencer Sirowy is approved: Committee Chairperson University of California, Riverside ABSTRACT OF THE DISSERTATION Emulation of SystemC Applications for Portable FPGA Binaries by Scott Spencer Sirowy Doctor of Philosophy, Graduate Program in Computer Science University of California, Riverside, June 2010 Dr. Frank Vahid, Chairperson As FPGAs become more common in mainstream general-purpose computing platforms, capturing and distributing high-performance implementations of applications on FPGAs will become increasingly important. Even in the presence of C-based synthesis tools for FPGAs, designers continue to implement applications as circuits, due in large part to allow for capture of clever spatial, circuit-level implementation features leading to superior performance and efficiency. We demonstrate the feasibility of a spatial form of FPGA application capture that offers portability advantages for FPGA applications unseen with current FPGA binary formats. We demonstrate the portability of such a distribution by developing a fast on-chip emulation framework that performs transparent optimizations, allowing spatially-captured FPGA applications to immediately run on FPGA platforms without costly and hard-to-use synthesis/mapping tool flows, and sometimes faster than PC-based execution. We develop several dynamic and transparent optimization techniques, including just-in-time compilation , bytecode acceleration , and just-in-time synthesis that take advantage of a platform’s available resources, resulting in iv orders of magnitude performance improvement over normal emulation techniques and PC-based execution.
    [Show full text]
  • Hardware Description Languages Compared: Verilog and Systemc
    Hardware Description Languages Compared: Verilog and SystemC Gianfranco Bonanome Columbia University Department of Computer Science New York, NY Abstract This library encompasses all of the necessary components required to transform C++ into a As the complexity of modern digital systems hardware description language. Such additions increases, engineers are now more than ever include constructs for concurrency, time notion, integrating component modeling by means of communication, reactivity and hardware data hardware description languages (HDLs) in the types. design process. The recent addition of SystemC to As described by Edwards [1], VLSI an already competitive arena of HDLs dominated verification involves an initial simulation done in by Verilog and VHDL, calls for a direct C or C++, usually for proof of concept purposes, comparison to expose potential advantages and followed by translation into an HDL, simulation of flaws of this newcomer. This paper presents such the model, applying appropriate corrections, differences and similarities, specifically between hardware synthesization and further iterative Verilog and SystemC, in effort to better categorize refinement. SystemC is able to shorten this the scopes of the two languages. Results are based process by combining the first two steps. on simulation conducted in both languages, for a Consequently, this also decreases time to market model with equal specifications. for a manufacturer. Generally a comparison between two computer languages is based on the number of Introduction lines of code and execution time required to achieve a specific task, using the two languages. A Continuous advances in circuit fabrication number of additional parameters can be observed, technology have augmented chip density, such as features, existence or absence of constructs consequently increasing device complexity.
    [Show full text]
  • Real-Time Operating System Modelling and Simulation Using Systemc
    Real-Time Operating System Modelling and Simulation Using SystemC Ke Yu Submitted for the degree of Doctor of Philosophy Department of Computer Science June 2010 Abstract Increasing system complexity and stringent time-to-market pressure bring chal- lenges to the design productivity of real-time embedded systems. Various System- Level Design (SLD), System-Level Design Languages (SLDL) and Transaction- Level Modelling (TLM) approaches have been proposed as enabling tools for real-time embedded system specification, simulation, implementation and verifi- cation. SLDL-based Real-Time Operating System (RTOS) modelling and simula- tion are key methods to understand dynamic scheduling and timing issues in real- time software behavioural simulation during SLD. However, current SLDL-based RTOS simulation approaches do not support real-time software simulation ade- quately in terms of both functionality and accuracy, e.g., simplistic RTOS func- tionality or annotation-dependent software time advance. This thesis is concerned with SystemC-based behavioural modelling and simu- lation of real-time embedded software, focusing upon RTOSs. The RTOS-centric simulation approach can support flexible, fast and accurate real-time software tim- ing and functional simulation. They can help software designers to undertake real- time software prototyping at early design phases. The contributions in this thesis are fourfold. Firstly, we propose a mixed timing real-time software modelling and simula- tion approach with various timing related techniques, which are suitable for early software modelling and simulation. We show that this approach not only avoids the accuracy drawback in some existing methods but also maintains a high simu- lation performance. Secondly, we propose a Live CPU Model to assist software behavioural timing modelling and simulation.
    [Show full text]
  • Integrating Systemc Models with Verilog Using the Systemverilog
    Integrating SystemC Models with Verilog and SystemVerilog Models Using the SystemVerilog Direct Programming Interface Stuart Sutherland Sutherland HDL, Inc. [email protected] ABSTRACT The Verilog Programming Language Interface (PLI) provides a mechanism for Verilog simulators to invoke C programs. One of the primary applications of the Verilog PLI is to integrate C- language and SystemC models into Verilog simulations. But, Verilog's PLI is a complex interface that can be daunting to learn, and often slows down simulation performance. SystemVerilog includes a new generation of a Verilog to C interface, called the “Direct Programming Interface” or “DPI”. The DPI replaces the complex Verilog PLI with a simple and straight forward import/ export methodology. • How does the SystemVerilog DPI work, and is it really easier to use than the Verilog PLI? • Can the SystemVerilog DPI replace the Verilog PLI for integrating C and SystemC models with Verilog models? • Is the SystemVerilog DPI more efficient (for faster simulations) that the Verilog PLI? • Is there anything the SystemVerilog DPI cannot do that the Verilog PLI can? This paper addresses all of these questions. The paper shows that if specific guidelines are followed, the SystemVerilog DPI does indeed simplify integrating SystemC models with Verilog models. Table of Contents 1.0 What is SystemVerilog? ........................................................................................................2 2.0 Why integrate SystemC models with Verilog models? .........................................................2
    [Show full text]
  • A Mixed Language Fault Simulation of VHDL and Systemc
    A Mixed Language Fault Simulation of VHDL and SystemC Silvio Misera, Heinrich Theodor Vierhaus, Lars Breitenfeld, André Sieber Brandenburg University of Technology Cottbus, Computer Engineering Department <sm, htv, lars.breitenfeld, [email protected]> Abstract instead, which typically have only a limited capability to handle effective and realistic fault models [7, 10]. Fault simulation technology is essential key not This is the reason why we implemented FIT [1] as a only to the validation of test patterns for ICs and SoCs, hierarchical fault simulation environment, which uses a but also to the analysis of system behavior under fault mixture of structural VHDL model at the gate level transient and intermittent faults. For this purpose, we and C++-models for large-size macros. Furthermore, developed a hierarchical fault simulation environment FIT supports non-trivial fault models such as single- that uses structural VHDL models at the gate level, but event upsets (SEUs). is able to model embedded blocks in C++. With While C++ is relatively effective in some cases, it SystemC becoming a de-facto standard in high-level cannot handle typical properties of hardware such as modeling, a simulation approach had to be developed concurrency. SystemC [3] has recently emerged as a which makes effective use of SystemC technology by C++-compatible extension, which is able to model encapsulating such “threads” into the fault simulation such effects. For a real system-level fault simulation, environment. Furthermore, it can be shown that concurrency becomes a must. Therefore the SystemC allows the modeling of complex transistor- compatibility of SystemC concepts and structures with level structures, for which equivalent gate-level the basic approach followed with FIT had to be representations are not adequate.
    [Show full text]
  • Parallel Systemc Simulation for Electronic System Level Design
    Parallel SystemC Simulation for Electronic System Level Design Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch–Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom–Ingenieur Jan Henrik Weinstock aus Göttingen Berichter: Universitätsprofessor Dr. rer. nat. Rainer Leupers Universitätsprofessor Dr.-Ing. Diana Göhringer Tag der mündlichen Prüfung: 19.06.2018 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Abstract Over the past decade, Virtual Platforms (VPs) have established themselves as essential tools for embedded system design. Their application fields range from rapid proto- typing over design space exploration to early software development. This makes VPs a core enabler for concurrent HW/SW design – an indispensable design approach for meeting today’s aggressive marketing schedules. VPs are essentially a simulation of a complete microprocessor system, detailed enough to run unmodified target binary code. During simulation, VPs provide non-intrusive debugging access as well as re- porting on non-functional system parameters, such as execution timing and estimated power and energy consumption. To accelerate the construction of a VP for new systems, developers typically rely on pre-existing simulation environments. SystemC is a popular example for this and has become the de-facto reference for VP design since it became an official IEEE stan- dard in 2005. Since then, however, SystemC has failed to keep pace with its user’s demands for high simulation speed, especially when embedded multi-core systems are concerned. Because SystemC only utilizes a single processor of the host computer, the underlying sequential discrete event simulation algorithm becomes a performance bottleneck when simulating multiple virtual processors.
    [Show full text]
  • An Extension to Systemc-A to Support Mixed-Technology Systems with Distributed Components
    An extension to SystemC-A to support mixed-technology systems with distributed components Chenxu Zhao and Tom J. Kazmierski School of Electronics and Computer Science University of Southampton, UK Email: cz05r,[email protected] Abstract— This contribution proposes syntax extensions to VHDL-AMSP) has been presented [10]. Pending the develop- SystemC-A that support mixed-technology system modelling ment of a new standard, a preprocessor has been developed to where components might exhibit distributed behaviour modelled convert VHDL-AMSP into the existing VHDL-AMS 1076.1 by partial differential equations. The important need for such extensions arises from the well known modelling difficulties in standard automatically which can be simulated using currently hardware description languages where complex electronics in a available simulators. In this paper, we propose the first full mixed-technology system interfaces with distributed components implementation of the PDE extension to SystemC-A where from different physical domains, e.g. mechanical, magnetic or no preprocessor is required. thermal. A digital MEMS accelerometer with distributed me- The proposed extension has particular advantages in mixed chanical sensing element is used as a case study to illustrate modelling capabilities offered by the proposed extended syntax physical technology systems that exhibit distributed physical of SystemC-A. effects. For example, electromechanical Sigma-Delta MEMS sensor designs, e.g. accelerometers and gyroscopes, which I. INTRODUCTION are based on incorporation of mechanical sensing elements into Σ∆ modulator control loops, have attracted great re- SystemC-A [1] is a superset of SystemC intended to extend search interest [12]. The mechanical sensing element, which is the modelling capabilities of SystemC [2] to the analogue usually modeled by the lumped mass-spring-damper model(a domain.
    [Show full text]
  • High-Speed Data Acquisition and Optimal Filtering Based on Programmable Logic for Single-Photoelectron (SPE) Measurement Setup
    High-speed data acquisition and optimal filtering based on programmable logic for single-photoelectron (SPE) measurement setup Experiment #7 Herman P. Lima Jr (CBPF), Rafael Nobrega (UFJF) [email protected], [email protected] Challenge library ieee; use ieee.std_logic_1164.all; entity logica is port (A,B,C : in std_logic; D,E,F : in std_logic; SAIDA : out std_logic); end logica; architecture v_1 of logica is begin SAIDA <= (A and B) or (C and D) or (E and F); end v_1; Herman Lima Jr References • Fundamentals of Digital Logic with VHDL Design, Stephen Brown, Zvonko Vranesic, McGraw-Hill, 2000. • The Designer’s Guide to VHDL, Peter Ashenden, 2nd Edition, Morgan Kaufmann, 2002. • VHDL Coding Styles and Methodologies, Ben Cohen, 2nd Edition, Kluwer Academic Publishers, 1999. • Digital Systems Design with VHDL and Synthesis: An Integrated Approach, K. C. Chang, Wiley-IEEE Computer Society Press, 1999. • Application-Specific Integrated Circuits, Michael Smith, Addison-Wesley, 1997. • www.altera.com (datasheets, application notes, reference designs) • www.xilinx.com (datasheets, application notes, reference designs) • www.doulos.com/knowhow/vhdl_designers_guide (The Designer’s Guide to VHDL) • www.acc-eda.com/vhdlref/index.html (VHDL Language Guide) • www.vhdl.org Herman Lima Jr Background required Digital Electronics: logic gates flip-flops multiplexers comparators counters ... Herman Lima Jr Agenda Digital electronics: evolution, current technologies Programmable Logic Introduction to VHDL (for synthesis) Herman Lima Jr Digital Electronics:
    [Show full text]