Epigenetic Mechanisms Underlying Developmental Plasticity in Horned Beetles

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetic Mechanisms Underlying Developmental Plasticity in Horned Beetles Hindawi Publishing Corporation Genetics Research International Volume 2012, Article ID 576303, 14 pages doi:10.1155/2012/576303 Review Article Epigenetic Mechanisms Underlying Developmental Plasticity in Horned Beetles Sophie Valena and Armin P. Moczek Department of Biology, Indiana University, 915 E Third Street, Myers Hall 150, Bloomington, IN 47405-7107, USA Correspondence should be addressed to Armin P. Moczek, [email protected] Received 13 September 2011; Accepted 5 December 2011 Academic Editor: Eveline Verhulst Copyright © 2012 S. Valena and A. P. Moczek. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. All developmental plasticity arises through epigenetic mechanisms. In this paper we focus on the nature, origins, and consequences of these mechanisms with a focus on horned beetles, an emerging model system in evolutionary developmental genetics. Specifically, we introduce the biological significance of developmental plasticity and summarize the most important facets of horned beetle biology. We then compare and contrast the epigenetic regulation of plasticity in horned beetles to that of other organisms and discuss how epigenetic mechanisms have facilitated innovation and diversification within and among taxa. We close by highlighting opportunities for future studies on the epigenetic regulation of plastic development in these and other organisms. 1. Introduction system in evo-devo in general and the evolutionary develop- mental genetics of plasticity in particular. Organismal form and function emerge during ontogeny We begin our review with a general introduction to through complex interactions between gene products, envi- the concept of developmental plasticity. We then introduce ronmental conditions, and ontogenetic processes [1, 2]. The our focal organisms, horned beetles, summarize the most causes, nature, and consequences of these interactions are the relevant forms of plasticity that have evolved in these remark- central foci of epigenetics [3]. Broadly, epigenetics seeks to able organisms, review what is known about the underlying understand how phenotypes emerge through developmental epigenetic mechanisms, and highlight future research direc- processes, and how that emergence is altered to enable evolu- tions. Lastly, we discuss how studies in Onthophagus species tionary modification, radiation, and innovation. Epigenetic could provide meaningful insight into three major foci in mechanisms can operate at any level of biological organiza- evo-devo research: the development and evolution of shape, tion above the sequence level, from the differential methyla- the process of evolution via genetic accommodation, and tion of genes to the somatic selection of synaptic connections the origin of novel traits. We begin, however, with a brief and the integration of tissue types during organogenesis. introduction of the significance of plasticity in development Here, we take this inclusive definition of epigenetics and and evolution. apply it to the phenomenon of developmental plasticity, de- fined as a genotype’s or individual’s ability to respond to changes in environmental conditions through changes in its 2. The Biology of Developmental Plasticity phenotypes [4]. All developmental plasticity is, by definition, Developmental plasticity refers to an individual’s ability to epigenetic in origin, as the genotype of the responding in- respond to environmental changes by adjusting aspects of dividual remains unaltered in the process. It is the nature, its phenotype, often in an adaptive manner. In each case a origins, and consequences of the underlying epigenetic single genotype is able, through the agency of environment- mechanisms that we focus on in this review. We do so with sensitive development, to give rise to vastly different phe- specific reference to horned beetles, an emerging model notypes. Developmental plasticity is perhaps most obvious 2 Genetics Research International in the expression of alternative morphs or polyphenisms, as of possible evolutionary responses. Consistent with a long- in the seasonal morphs of butterflies, winged or wingless assumed role of developmental plasticity in evolution adult aphids, aquatic or terrestrial salamanders, or the dif- (reviewed in [2]), a growing number of artificial selection ferent castes of social insects (reviewed in [2]). However, experiments on a broad range of organisms (Drosophila:[6]; developmental plasticity is also inherent in more modest, but see [7], Arabidopsis [8], fungi [9], and Lepidoptera [10]) often continuous changes in response to environmental con- have now demonstrated unequivocally that developmental ditions, such as tanning (in response to sun exposure), systems confronted with challenging or novel environments muscle buildup (in response to workouts) or immunity (fol- can indeed expose novel phenotypic and genetic variants lowing an infection resulting in an immune response). that, in turn, provide ample substrate for rapid, selective Lastly, developmental plasticity is a necessary prerequisite evolution of novel phenotypes. Similarly, studies on natural for developmental canalization, or the production of an populations are providing growing evidence that ancestral invariant phenotype in the face of environmental fluctuation. patterns of plasticity have enabled and guided more refined Here, plastic compensatory adjustments on some level of bi- evolutionary responses in derived populations (e.g., [11]). ological organization enable the homeostatic maintenance of Developmental plasticity thus plays a central role in the developmental outputs at others, such as the maintenance of production and evolution of phenotypic variation. Further blood sugar levels in the face of fluctuating nutrition and understanding of the nature of this role likely requires a activity, or the maintenance of scaling relationships despite thorough understanding of the epigenetic mechanisms that nutrition-dependent variation of overall body size in most enable plastic responses to environmental variation. As out- organisms. Developmental plasticity is thus a ubiquitous lined in the following sections horned beetles have begun to feature of organismal development, applicable to all levels of provide diverse opportunities to investigate the mechanisms biological organization, and rich in underlying mechanisms. underlying the epigenetic regulation of developmental plas- Developmental plasticity not only enables coordinated ticity and to probe their significance in the developmental and integrated responses in development but also has origin and evolutionary diversification of form and behavior. great potential to affect evolutionary processes and outcomes We begin with a brief introduction of the biology of these (reviewed in [4, 5]). Developmental plasticity enables organ- organisms. isms to adaptively adjust their phenotype to changing en- vironmental conditions. On one side, developmental plas- ticity may thus impede genetic divergences that might oth- 3. The Biology of Horned Beetles erwise evolve between populations subject to disparate environmental conditions. On the other, plasticity buffers Beetles are holometabolous insects and constitute the most populations against local extinctions, thus increasing the diverse insect order on the planet. Horned beetles comprise opportunity for the evolution of local adaptations and diver- a polyphyletic group of diverse beetle families marked by the sification. development of horns or horn-like structures in at least some Similarly, developmental plasticity may both impede and species (reviewed in [12, 13]). Horn evolution has reached facilitate evolutionary diversification by providing additional its extremes, both in terms of exaggeration and diversity, targets for selection to operate on, by offering modules for in two subfamilies within the Scarabaeidae, the Dynastinae the regulation of development that can be reused across (i.e., rhinoceros beetles), and the Scarabaeinae, or true dung developmental contexts, and by creating novel trait interac- beetles (Figure 1). In both subfamilies, thousands of species tions. In each case, developmental plasticity may result in express horns and have diversified with respect to location, pleiotropic constraints on adaptive evolution, but also has shape, and number of horns expressed. In extreme cases, the potential to shift the evolutionary trajectories available to horn expression more than doubles body length and may lineages into phenotypic space that otherwise would remain account for approximately 30% of body mass. unexplored [5]. Despite the remarkable morphological diversity that ex- The role of developmental plasticity in evolution is ists among horned beetle species, horns are used invariably perhaps most important when we consider the consequences for very similar purposes: as weapons in aggressive encoun- of organisms encountering novel environments, for instance ters with conspecifics (reviewed in [12]). In the vast majority during the natural colonization of a new habitat or the of species, horn expression is restricted to, or greatly exag- anthropogenic alteration of ecosystems due to global climate gerated in, males, and absent or rudimentary in females. change, habitat degradation, and the invasion of alien species In these cases horns are used by males as weapons in male [5]. Here, developmental plasticity enables the production
Recommended publications
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]
  • Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus Rotundipennis (Scudder, 1878) Via Correlative Microscopy
    JOURNAL OF MORPHOLOGY 278:334–359 (2017) Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus rotundipennis (Scudder, 1878) via Correlative Microscopy Derek A. Woller* and Hojun Song Department of Entomology, Texas A&M University, College Station, Texas ABSTRACT We investigated probable functions of the males, in terms of the number of components interacting genitalic components of a male and a involved in copulation and reproduction (Eberhard, female of the flightless grasshopper species Melanoplus 1985; Arnqvist, 1997; Eberhard, 2010). This rela- rotundipennis (Scudder, 1878) (frozen rapidly during tive complexity has often masked our ability to copulation) via correlative microscopy; in this case, by understand functional genitalic morphology, partic- synergizing micro-computed tomography (micro-CT) with digital single lens reflex camera photography with ularly during the copulation process. This process focal stacking, and scanning electron microscopy. To is difficult to examine intensely due to its often- assign probable functions, we combined imaging results hidden nature (internal components shielded from with observations of live and museum specimens, and view by external components) and because it is function hypotheses from previous studies, the majority often easily interrupted by active observation, but of which focused on museum specimens with few inves- some studies investigating function have manipu- tigating hypotheses in a physical framework of copula- lated genitalia as a way around such issues tion. For both sexes, detailed descriptions are given for (Briceno~ and Eberhard, 2009; Grieshop and Polak, each of the observed genitalic and other reproductive 2012; Dougherty et al., 2015). Adding further com- system components, the majority of which are involved in copulation, and we assigned probable functions to plexity to understanding function, several studies these latter components.
    [Show full text]
  • Insect Morphology and Systematics (Ento-131) - Notes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276175248 Insect Morphology and Systematics (Ento-131) - Notes Book · April 2010 CITATIONS READS 0 14,110 1 author: Cherukuri Sreenivasa Rao National Institute of Plant Health Management (NIPHM), Hyderabad, India 36 PUBLICATIONS 22 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Agricultural College, Jagtial View project ICAR-All India Network Project on Pesticide Residues View project All content following this page was uploaded by Cherukuri Sreenivasa Rao on 12 May 2015. The user has requested enhancement of the downloaded file. Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL EntoEnto----131131131131 Insect Morphology & Systematics Prepared by Dr. Cherukuri Sreenivasa Rao M.Sc.(Ag.), Ph.D.(IARI) Associate Professor & Head Department of Entomology Agricultural College Jagtial-505529 Karminagar District 1 Page 2010 Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL ENTO 131 INSECT MORPHOLOGY AND SYSTEMATICS Total Number of Theory Classes : 32 (32 Hours) Total Number of Practical Classes : 16 (40 Hours) Plan of course outline: Course Number : ENTO-131 Course Title : Insect Morphology and Systematics Credit Hours : 3(2+1) (Theory+Practicals) Course In-Charge : Dr. Cherukuri Sreenivasa Rao Associate Professor & Head Department of Entomology Agricultural College, JAGTIAL-505529 Karimanagar District, Andhra Pradesh Academic level of learners at entry : 10+2 Standard (Intermediate Level) Academic Calendar in which course offered : I Year B.Sc.(Ag.), I Semester Course Objectives: Theory: By the end of the course, the students will be able to understand the morphology of the insects, and taxonomic characters of important insects.
    [Show full text]
  • External Insect Morphology: a Negative Factor in Attitudes Toward Insects and Likelihood of Incorporation in Future Science Education Settings
    International Journal Journal of Environmental of Environmental & Science & Educat Scienceion Education Vol. 7, No. 2, April 2012, 313-325 Vol. 3, No. 3, July 2008, xx-xx External insect morphology: A negative factor in attitudes toward insects and likelihood of incorporation in future science education settings Ron Wagler Amy Wagler Received 14 September 2011; Accepted 22 February 2012 This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher’s attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers participated and a randomized design with a control group was used for the study. The participants were shown pictures of three insects (i.e., butterfly, lady beetle or dragonfly) and were asked to rate their attitude toward the insects and beliefs concerning the likelihood of incorporat- ing the insects into future science education settings. The treatment group was shown a picture of the larva and adult stage of the insect. The control group was only shown the adult stage of the insect. Unique to this study, is the finding that the external morphology of an insect is a causal factor that can negatively affect preservice elementary teacher’s attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. Implications are discussed that can assist preservice teacher training programs. Keywords: Attitude; Belief; Elementary; Insect; Morphology; Preservice Introduction Based upon life history, global biodiversity and sheer numbers, insects are arguably the most evolutionarily and biologically successful group of animals on Earth.
    [Show full text]
  • The Sensory Structures of the Antennal Flagellum in Hyalesthes Obsoletus
    Arthropod Structure & Development 38 (2009) 473–483 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd The sensory structures of the antennal flagellum in Hyalesthes obsoletus (Hemiptera: Fulgoromorpha: Cixiidae): A functional reduction? Roberto Romani a,*, Marco Valerio Rossi Stacconi a, Paola Riolo b, Nunzio Isidoro b a Dipartimento di Scienze Agrarie e Ambientali, Perugia University, 06121 Perugia, Italy b Dipartimento Scienze Ambientali e delle Produzioni Vegetali, Marche Polytechnic University, 60131 Ancona, Italy article info abstract Article history: Despite their relevance as harmful pests on plants of economic importance, Hemiptera Fulgoromorpha Received 3 April 2009 have been poorly studied as regards their antennal sensory structures. In particular, the flagellum has Accepted 6 August 2009 been neglected and, therefore, to date there are no data on its structural organization and sensory equipment. In order to fill this gap, we carried out a study on the sensillum types and distribution on the Keywords: flagellum of the planthopper Hyalesthes obsoletus Signoret, an efficient vector of the stolbur phytoplasma, Ultrastructure the cause of various crop diseases. In this cixiid species the antenna is composed of three segments, the Sensilla scape, an enlarged pedicel and a long flagellum. This latter is made of a single segment and presents Scolopidia Thermo-hygroreceptors a basal, bulb-like enlargement from which two processes arise, a short spur and a long arista. Combining scanning electron microscopy, transmission electron microscopy and focused ion beam investigations, CO2 receptors Phytoplasma vectors we discovered the presence of a total number of 6 sensilla, belonging to 4 different types: a single FIB scolopidium extending from the bulb to the arista, three sensilla styloconica within the cuticular spur and two different sensilla coeloconica inside the bulb.
    [Show full text]
  • Plasticity and Constraints in Development and Evolution JASON HODIN* Science and Math, Seattle Central Community College, Seattle, Washington 98122
    JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 288:1–20 (2000) Plasticity and Constraints in Development and Evolution JASON HODIN* Science and Math, Seattle Central Community College, Seattle, Washington 98122 ABSTRACT Morphological similarities between organisms may be due to either homology or homoplasy. Homologous structures arise by common descent from an ancestral form, whereas homoplasious structures are independently derived in the respective lineages. The finding that simi- lar ontogenetic mechanisms underlie the production of the similar structures in both lineages is not sufficient evidence of homology, as such similarities may also be due to parallel evolution. Parallel- isms are a class of homoplasy in which the two lineages have come up with the same solution independently using the same ontogenetic mechanism. The other main class of homoplasy, conver- gence, is superficial similarity in morphological structures in which the underlying ontogenetic mecha- nisms are distinct. I argue that instances of convergence and parallelism are more common than is generally realized. Convergence suggests flexibility in underlying ontogenetic mechanisms and may be indicative of developmental processes subject to phenotypic plasticity. Parallelisms, on the other hand, may characterize developmental processes subject to constraints. Distinguishing between ho- mology, parallelisms and convergence may clarify broader taxonomic patterns in morphological evo- lution. J. Exp. Zool. (Mol. Dev. Evol.) 288:1–20, 2000. © 2000 Wiley-Liss, Inc. As the fields of developmental and evolution- lar approach. I argue, on the contrary, that since ary biology continue to converge, an underlying innovations are manifest at the morphological pattern is beginning to emerge: namely that the level, it is necessary to integrate a morphological astonishing diversity of morphological variation with a molecular approach if we hope to uncover in plants and animals is built on a scaffolding of any such underlying principles.
    [Show full text]
  • The Internal Anatomy of the Silverfish Otenclepisma Campbelli Barnhart and Lepisma Saccharina Linnaeus (Thysanura: Lepismatidae)
    THE INTERNAL ANATOMY OF THE SILVERFISH OTENCLEPISMA CAMPBELLI BARNHART AND LEPISMA SACCHARINA LINNAEUS (THYSANURA: LEPISMATIDAE) DISSERTATION Presented in Pertial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By CLYDE STERLING BARNHART, SR., B.Sc., M.Sc The Ohio State University 1958 Approved byj Department PREFACE In 19^7 the writer began a study of the trachea- tion of a silverfish collected from the Main Library on the Ohio State University campus. This began under the direction of the late Dr. C. H. Kennedy, professor of Entomology, the Ohio State University, in his course on Insect anatomy. Professor Kennedy was Impressed with the minute detail with which the tracheation could be traced since this insect was so small. It was his interest and encouragement which prompted the writer to continue this work beyond the course and later to expand it into the more complete study embodied in this dissertation. The writer is grateful to the late professor Kennedy for his part in providing the original encouragement for this study. The writer wishes also to express his sincere gratitude to Dr. Donald J. Borror, professor of Entomo­ logy* The Ohio State University, for his helpful guidance and suggestions in bringing the work of this dissertation to completion. li TABLE CP CONTENTS Pege INTRODUCTION................................... 1 MATERIALS AND METHODS........................... 2 TIES RESPIRATORY SYSTEM.......................... 4 THE ALIMENTARY CANAL............................ 14 THE CENTRAL NERVOUS SYSTEM...................... 24 THE DORSAL VESSEL............................... 28 THE REPRODUCTIVE ORGANS......................... 32 ABBREVIATIONS USED ON FIGURES.................... 40 FIGURES........................................ 43 SUMMARY......................................... 65 BIBLIOGRAPHY.................................... 68 ill LIST OF ILLUSTRATIONS Figure Page 1 Tracheation of the head, thorax, and first abdominal segment of C .
    [Show full text]
  • The Biology and External Morphology of Bees
    3?00( The Biology and External Morphology of Bees With a Synopsis of the Genera of Northwestern America Agricultural Experiment Station v" Oregon State University V Corvallis Northwestern America as interpreted for laxonomic synopses. AUTHORS: W. P. Stephen is a professor of entomology at Oregon State University, Corval- lis; and G. E. Bohart and P. F. Torchio are United States Department of Agriculture entomolo- gists stationed at Utah State University, Logan. ACKNOWLEDGMENTS: The research on which this bulletin is based was supported in part by National Science Foundation Grants Nos. 3835 and 3657. Since this publication is largely a review and synthesis of published information, the authors are indebted primarily to a host of sci- entists who have recorded their observations of bees. In most cases, they are credited with specific observations and interpretations. However, information deemed to be common knowledge is pre- sented without reference as to source. For a number of items of unpublished information, the generosity of several co-workers is ac- knowledged. They include Jerome G. Rozen, Jr., Charles Osgood, Glenn Hackwell, Elbert Jay- cox, Siavosh Tirgari, and Gordon Hobbs. The authors are also grateful to Dr. Leland Chandler and Dr. Jerome G. Rozen, Jr., for reviewing the manuscript and for many helpful suggestions. Most of the drawings were prepared by Mrs. Thelwyn Koontz. The sources of many of the fig- ures are given at the end of the Literature Cited section on page 130. The cover drawing is by Virginia Taylor. The Biology and External Morphology of Bees ^ Published by the Agricultural Experiment Station and printed by the Department of Printing, Ore- gon State University, Corvallis, Oregon, 1969.
    [Show full text]
  • Insect Morphology and Physiology 1. Catalog Description A. BIO 5
    CGS Agenda CGS Agenda Item: 04-17 Proposal Effective Date: Spring, 2006 Eastern Illinois University New Course Proposal BIO 5210 – Insect Morphology and Physiology 1. Catalog description a. BIO 5210 b. Insect Morphology and Physiology c. (3-3-4) d. S-even-numbered years e. Insect Morphol. f. An in-depth examination of the physiology processes and morphological adaptations by which insects function in their physical, chemical and biological environments. Experimental methods and research equipment appropriate to the discipline will be introduced. g. Prerequisites: BIO 3720 or equivalent, or by consent of instructor. h. Spring 2006 2. Objectives of the course a. Students will: 1. learn and discuss basic principles used in the study of insect morphology and physiology through a systems approach illustrated by both generalized and specialized taxa. 2. apply basic principles and develop skills using experimental methods and equipment relevant to the study of insect morphology and physiology. 3. apply experimental techniques and analyze results of individualized projects investigating aspects of insect morphology and physiology in the laboratory. 4. conduct library research of current literature relevant to their project topic and synthesize literature with their own project results. 5. analyze experimental results to write a formal scientific research paper and demonstrate effective verbal communication of the application and synthesis of insect morphology and physiology through an oral presentation of project results. b. Assessment will be
    [Show full text]
  • Insect Morphology
    PRINCIPLES OF INSECT MORPHOLOGY BY R. E. SNODGRASS United States Department of Agriculture Bureau of Entomolo(JY and Plant Quarantine FIRST EDITION SECOND IMPRESSION McGRA W-HILL BOOK COMPANY, INC. NEW YORK AND LONDON 1935 McGRAW-HILL PUBLICATIONS- IN THE ZOOLOGICAL SCaNCES A. FRANKLIN SHULL, CONSULTING EDITOR PRINCIPLES OF INSECT MORPHOLOGY COPYRIGHT, 1935, BY THE l\1CGRAW-HILIi BOOK COMPANY, INC. PRINTED IN THE UNITED STATES OF AMERICA All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission oj the publishers. \ NLVS/IVRI 111111111 II 1111 1111111111111 01610 TaE MAPLE PRESS COMPANY, YORK, PA. PREFACE The principal value of fa cis is that they give us something to think about. A scientific textbook, therefore, should contain a fair amount of reliable information, though it may be a matter of choice with the author whether he leaves it to the reader to formulate his own ideas as to the meaning of the facts, or whether he attempts to guide the reader's thoughts along what seem to him to be the proper channels. The writer of the present text, being convinced that generalizations are more important than mere knowledge of facts, and being also somewhat partial to his own way of thinking about insects, has not been able to refrain entirely from presenting the facts of insect anatomy in a way to suggest relations between them that possibly exist only in his own mind. Each of the several chapters of this book, in other words, is an attempt to give a coherent morphological view of the fundamental nature and the apparent evolution of a particular group of organs or associated struc­ tures.
    [Show full text]
  • Introduction to Entomology
    ® EXTENSION Know how. Know now. EC1588 Introduction to Entomology James A. Kalisch, Entomology Extension Associate Ivy Orellana, Extension Assistant Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture. University of Nebraska–Lincoln Extension educational programs abide with the nondiscrimination policies of the University of Nebraska–Lincoln and the United States Department of Agriculture. © 2014, The Board of Regents of the University of Nebraska on behalf of the University of Nebraska–Lincoln Extension. All rights reserved. Introduction to Entomology James A. Kalisch, Entomology Extension Associate Ivy Orellana, Extension Assistant Insects and mites are among the known to exist. They have three the insects . Within the class Insecta, most numerous animals on earth. In a characteristics in common — a seg- various characteristics are used to typical midsummer landscape and gar- mented body, jointed legs, and an group insects into orders (Table 1). den, there are approximately a thou- exoskeleton. The Arthropoda phylum These characteristics are easily visible sand insects in addition to mites and is divided into classes, and some com- and do not require a microscope; for spiders! The goals of this publication is mon names of each class includes example, mouthparts, wings, and type to introduce the science of entomology the crustaceans, centipedes, milli- of metamorphosis are all identifying and insect identification to those who pedes, spiders, ticks and mites, and characteristics. are active in outdoor landscapes or natural settings. Insects play a valuable role in our Table 1. The following table describes the common names associated with natural world.
    [Show full text]
  • Insect Morphology 2020-08-04 14:30:47
    3.2: INSECT MORPHOLOGY 2020-08-04 14:30:47 InseCt Morphology Distinguishing harmful insects from benecial or benign insects is important. Proper identication is a key step towards making future management decisions. Insects are typically identied based on wing and mouthpart types, however there are many other distinguishing characteristics that can help with identication. The insect body can be divided into three main regions—the head, which contains the antennae, eyes, and mouthparts; the thorax, which has the legs and wings; and nally the abdomen, which contains a large portion of the digestive system and the reproductive parts. Morphology of the northern corn rootworm beetle. Morphology of the green cloverworm larva. Wings are one of the main features that allow us to categorize different types of insects. Most adult insects have wings, while larvae and nymphs do not. Wings provide both a great deal of mobility to insects and a useful key for eld scouts to distinguish species. The adult stage of caterpillars (moths) that injure corn and soybean can be identied by wing patterns and colors. Many beetles can also be identied by distinctive markings on their forewings. Wings Insect mouthparts are important for two main reasons. First, they may be used to identify the insect species. Second, mouthparts provide information on how insects feed and what sort of damage they cause. For instance, insects with sucking mouthparts use them like a straw or hypodermic needle. All ies have sucking mouthparts, and mosquitoes are a great example of insects that use sucking mouthparts like a straw to ‘suck up’ blood.
    [Show full text]