Diversity and Evolution of the Insect Ventral Nerve Cord

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Evolution of the Insect Ventral Nerve Cord Diversity and Evolution of the Insect Ventral Nerve Cord Jeremy E. Niven,1'2 Christopher M. Graham,2 and Malcolm Burrows2 Smithsonian Tropical Research Institute, Panama City, Republic of Panama -Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; email: [email protected]; [email protected] Annu. Rev. Entomol. 2008. 53:253-71 Key Words First published online as a Review in Advance on ganglion, central nervous system, phylogeny, energetic costs, September 5, 2007 modularity, convergence The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article's doi: Is the remarkable diversity in the behavior of insects reflected in 10.1146/annurev.ento.52.110405.091322 the organization of their nervous systems? The ventral nerve cords Copyright © 2008 by Annual Reviews. (VNCs) have been described from over 3 00 insect species covering All rights reserved all the major orders. Interpreting these data in the context of phy- 0066-4170/08/0107-0253$20.00 logenetic relationships reveals remarkable diversity. The presumed ancestral VNC structure is rarely observed; instead the VNCs of most insects show extensive modification and substantial conver- gence. Modifications include shifts in neuromere positions, their fusion to form composite ganglia, and, potentially, their separation to revert to individual ganglia. These changes appear to be facili- tated by the developmental and functional modularity of the VNC, a neuromere for each body segment. The differences in VNC struc- ture emphasize trade-offs between behavioral requirements and the costs incurred while maintaining the nervous system and signaling between its various parts. The diversity in structure also shows that nervous systems may undergo dramatic morphological changes dur- ing evolution. -r. INTRODUCTION developmental constraint (49, 117), although some individual brain regions can change dra- The insects are the most speciose group of matically in volume relative to body mass (8, Ventral nerve cord animals on the planet, making up 63% of 117). Although no such relationships have (VNC): the chain of all named species (53). They have a vast be- been described for insects, it seems likely that ganglia linked by havioral repertoire that encompasses numer- paired connectives the structure of the nervous system in modern ous locomotory, feeding, and reproductive and lying beneath insect species has been influenced by the de- the alimentary canal strategies, as well as learning, navigation, and sign of the ancestral nervous system (43, 55, communication. Their behavior may differ Central nervous 67,115). system (CNS): radically in the wide range of habitats that dif- Strong selective pressures to generate region of the nervous ferent insects inhabit. Closely related species, adaptive behavior with a limited energy bud- system composed of as well as castes, sexes, and morphs within get suggest that the nervous system should the brain, species, may also show dramatic differences subesophageal be diverse and specialized, within the bounds in behavior. Furthermore, larval and adult in- ganglion, and ventral set by both physical and developmental nerve cord along sects frequently differ radically in lifestyle, constraints on these evolutionary processes. with several smaller body form, and behavior. The evolution of Many comparative studies of the neurons or ganglia this behavioral diversity must have required neural circuits of insects and other inverte- Neuromere: part of morphological or physiological changes in the brates have concluded that neuronal mor- the central nervous nervous system or sometimes both. The ner- phology is highly conserved during evolution system belonging to vous systems of both invertebrates and ver- one body segment (43, 67, 106), although at more recent phy- tebrates, however, are constrained by limited that contains the logenetic scales, anatomical variation may be neural circuitry energy budgets for neural processing (74, 87, sufficient to infer phylogenetic relationships responsible for the 88), physical limitations of their design (45) (4,25,26, 112, 115). Thus, the extent of mor- processing of sensory and the space they can occupy (118), and the phological and physiological diversity within signals of a segment processes by which they are formed during and for controlling insect nervous systems remains unclear. The development (49). the movements of insect ventral nerve cord (VNC) provides an that segment Large amounts of energy are needed to ideal starting point from which to assess the maintain a nervous system and to process in- extent of diversity of central nervous systems formation within neural circuits (6, 76, 88, (CNSs), particularly given its modular struc- 90). Constraints on the energy budget of an- ture, with a neuromere associated with each imals therefore suggest that there is strong body segment. Indeed, the small size and low selective pressure to reduce neural structures resting metabolic rates relative to body mass and neural processing to the minimum nec- of many insects and the high energetic de- essary to behave appropriately (87, 88, 121). mands of behaviors such as flight (1, 89, 104) In contrast, improved performance in specific mean that several factors such as space and en- behavioral tasks is correlated with the expan- ergy constraints may be more acute in the ner- sion of particular regions of both insect and vous systems of insects compared with those vertebrate brains (e.g. 46, 47, 56, 79), which of vertebrates. The overall structure of the is likely to incur additional energetic costs, insect VNC has been documented for many thus implying strong selective pressure to im- species from all of the major insect orders prove behavioral performance. Physical con- (Figure 1) (13-18, 29, 42, 81, 86, 123, 138). straints within the nervous system have also Here, we combine data on the overall struc- been identified. For example, noise generated ture of the insect VNC with phylogenetic ap- by the random fluctuations of voltage-gated proaches and recent advances in understand- ion channels places lower limits on axon di- ing the costs associated with nervous systems ameter (45). Similarly, in mammals, concomi- to assess the diversity and evolution of the tant changes in the volumes of specific brain insect VNC. regions relative to body mass may represent a 2H Niven • Graham • BWTOVJS NEUROMERES, GANGLIA, distortion of the two original outlines with, AND FUSION at most, a small indentation between neu- romeres. Insects are segmental animals and their CNSs Ganglion: part of reflect, although sometimes only obliquely, the central nervous their segmentally based developmental pro- system consisting of one or more gram. The number of pregnathal segments DIVERSITY IN VENTRAL NERVE neuromeres (anterior to the mouthparts) is still debated, CORD STRUCTURE Neuropile: a region but there are likely to be four (53, 129). There Establishing the structure of the ancestral in- of the insect central are three additional gnathal segments (bearing sect VNC is essential for understanding the nervous system the mouthparts) in the head and three thoracic structural changes that have taken place dur- bounded by the segments (pro-, meso-, and metathorax) asso- ing the evolution of the insects. The VNCs cortex of cell bodies ciated with each pair of legs. Ancestrally there documented from the apterygote insect or- and mainly consisting of are 11 abdominal segments, but in almost all ders, Archaeognatha (51, 59) and Zygentoma dendrites, axons, and extant species this number is reduced by one (7, 59, 140), all possess three thoracic (TI- synaptic connections or more segments, depending on the order TS) and eight abdominal ganglia (A1-A8), (53,83,114). ranged across the whole length of the ab- The basic organizational unit of the central domen and ending in a fused terminal gan- nervous system is the neuromere, an accretion glion (Figure la.l). The anterior seven ab- of neurons that are responsible for processing dominal ganglia (A1-A7) are unfused and the sensory signals of a segment and for control- terminal ganglion (A8) consists of at least ling the movements of that segment. These three fused neuromeres. Thus, the ancestral segmental neuromeres are combined in var- condition is likely to have been that all tho- ious ways to form the pre-oral, dorsal brain, racic and abdominal neuromeres were un- the subesophageal ganglion, and the thoracic fused except for the three to four neuromeres and abdominal ganglia of the VNC, which to- contributing to the terminal abdominal gan- gether form most of the CNS (22, 109, 114). glion. What is the arrangement of thoracic Each of these structures is linked in a chain and abdominal ganglia in extant groups of by pairs of connectives that consist of the ax- winged insects? ons of many different types of neurons. Each The Pterygota or winged insects are ex- segmental ganglion of the ventral chain may traordinarily diverse in their size, body form, consist of a single neuromere or it may be a and behavior. Within and between the differ- fusion of two or more neuromeres. In ganglia ent orders there is a corresponding diversity composed of two or more fused neuromeres, in the size, structure, and position of ganglia the connectives between neuromeres are re- along the VNC relative to the segments they duced in length but still exist as tracts of axon innervate, and in the fusion patterns of neigh- bundles within the fused neuropile areas (22, boring ganglia (Figure 1). The
Recommended publications
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro
    Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro To cite this version: Marília Silva, Mauro Ramalho, Daniela Monteiro. Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest. Apidologie, Springer Verlag, 2013, 44 (6), pp.699-707. 10.1007/s13592-013-0218-5. hal-01201339 HAL Id: hal-01201339 https://hal.archives-ouvertes.fr/hal-01201339 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:699–707 Original article * INRA, DIB and Springer-Verlag France, 2013 DOI: 10.1007/s13592-013-0218-5 Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest 1,2 1 1 Marília Dantas E. SILVA , Mauro RAMALHO , Daniela MONTEIRO 1Laboratório de Ecologia da Polinização, ECOPOL, Instituto de Biologia, Departamento de Botânica, Universidade Federal da Bahia, Campus Universitário de Ondina, Rua Barão do Jeremoabo s/n, Ondina, CEP 40170-115, Salvador, Bahia, Brazil 2Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Governador Mangabeira, Rua Waldemar Mascarenhas, s/n—Portão, CEP 44350000, Governador Mangabeira, Bahia, Brazil Received 28 August 2012 – Revised 16 May 2013 – Accepted 27 May 2013 Abstract – The present study discusses spatial variations in the community structure of stingless bees as well as associated ecological factors by comparing the nest densities in two stages of forest regeneration in a Brazilian Tropical Atlantic rainforest.
    [Show full text]
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]
  • Stingless Bee Nesting Biology David W
    Stingless bee nesting biology David W. Roubik To cite this version: David W. Roubik. Stingless bee nesting biology. Apidologie, Springer Verlag, 2006, 37 (2), pp.124-143. hal-00892207 HAL Id: hal-00892207 https://hal.archives-ouvertes.fr/hal-00892207 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 37 (2006) 124–143 124 c INRA/DIB-AGIB/ EDP Sciences, 2006 DOI: 10.1051/apido:2006026 Review article Stingless bee nesting biology* David W. Ra,b a Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá, República de Panamá b Unit 0948, APO AA 34002-0948, USA Received 2 October 2005 – Revised 29 November 2005 – Accepted 23 December 2005 Abstract – Stingless bees diverged since the Cretaceous, have 50 times more species than Apis,andare both distinctive and diverse. Nesting is capitulated by 30 variables but most do not define clades. Both architectural features and behavior decrease vulnerability, and large genera vary in nest habit, architecture and defense. Natural stingless bee colony density is 15 to 1500 km−2. Symbionts include mycophagic mites, collembolans, leiodid beetles, mutualist coccids, molds, and ricinuleid arachnids.
    [Show full text]
  • Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus Rotundipennis (Scudder, 1878) Via Correlative Microscopy
    JOURNAL OF MORPHOLOGY 278:334–359 (2017) Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus rotundipennis (Scudder, 1878) via Correlative Microscopy Derek A. Woller* and Hojun Song Department of Entomology, Texas A&M University, College Station, Texas ABSTRACT We investigated probable functions of the males, in terms of the number of components interacting genitalic components of a male and a involved in copulation and reproduction (Eberhard, female of the flightless grasshopper species Melanoplus 1985; Arnqvist, 1997; Eberhard, 2010). This rela- rotundipennis (Scudder, 1878) (frozen rapidly during tive complexity has often masked our ability to copulation) via correlative microscopy; in this case, by understand functional genitalic morphology, partic- synergizing micro-computed tomography (micro-CT) with digital single lens reflex camera photography with ularly during the copulation process. This process focal stacking, and scanning electron microscopy. To is difficult to examine intensely due to its often- assign probable functions, we combined imaging results hidden nature (internal components shielded from with observations of live and museum specimens, and view by external components) and because it is function hypotheses from previous studies, the majority often easily interrupted by active observation, but of which focused on museum specimens with few inves- some studies investigating function have manipu- tigating hypotheses in a physical framework of copula- lated genitalia as a way around such issues tion. For both sexes, detailed descriptions are given for (Briceno~ and Eberhard, 2009; Grieshop and Polak, each of the observed genitalic and other reproductive 2012; Dougherty et al., 2015). Adding further com- system components, the majority of which are involved in copulation, and we assigned probable functions to plexity to understanding function, several studies these latter components.
    [Show full text]
  • Warfare in Stingless Bees
    Insect. Soc. (2016) 63:223–236 DOI 10.1007/s00040-016-0468-0 Insectes Sociaux REVIEW ARTICLE Warfare in stingless bees 1,2 1,3 4 5 C. Gru¨ter • L. G. von Zuben • F. H. I. D. Segers • J. P. Cunningham Received: 24 August 2015 / Revised: 28 January 2016 / Accepted: 6 February 2016 / Published online: 29 February 2016 Ó International Union for the Study of Social Insects (IUSSI) 2016 Abstract Bees are well known for being industrious pol- how victim colonies are selected, but a phylogenetically linators. Some species, however, have taken to invading the controlled analysis suggests that the notorious robber bee nests of other colonies to steal food, nest material or the nest Lestrimelitta preferentially attacks colonies of species with site itself. Despite the potential mortality costs due to more concentrated honey. Warfare among bees poses many fighting with an aggressive opponent, the prospects of a interesting questions, including why species differ so large bounty can be worth the risk. In this review, we aim to greatly in their response to attacks and how these alternative bring together current knowledge on intercolony fighting strategies of obtaining food or new nest sites have evolved. with a view to better understand the evolution of warfare in bees and identify avenues for future research. A review of Keywords Stingless bees Á Warfare Á literature reveals that at least 60 species of stingless bees are Alternative foraging strategies Á Cleptoparasitism Á involved in heterospecific conflicts, either as attacking or Lestrimelitta Á Meliponini victim colonies. The threat of invasion has led to the evo- lution of architectural, behavioural and morphological adaptations, such as narrow entrance tunnels, mud balls to Introduction block the entrance, decoy nests that direct invaders away from the brood chamber, fighting swarms, and soldiers that The nest is the all-important centre of the bee’s universe, are skilled at immobilising attackers.
    [Show full text]
  • Hym., Apidae, Meliponinae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) MISCELLANEOUS OBSERVATIONS ON THE BEHAVIOUR OF SCHWARZIANA QUADRIPUNCTATA (HYM., APIDAE, MELIPONINAE) VERA LUCIA IMPERATRIZ FONSECA * Departamento de Zoologia do Instituto de Biociências da Universidade de São Paulo. OBSERVAÇÕES GERAIS SOBRE O COMPORTAMENTO DE SCHWARZIANA QUADRIPUNCTATA (HYM., APIDAE, MELIPONINAE) RESUMO Apresentamos aqui alguns aspectos novos das atividades de rainhas virgens, rainhas grávidas e machos de Schwarziana quaãripunctata. Em uma colônia encontramos duas rainhas grávidas, sendo que apenas uma delas punha ovos; a principal atividade da outra rainha era o trabalho com cerume na região do tubo de entrada da colmeia. As principais atividades dos machos na colônia eram as relacio­ nadas com o néctar: foram observados machos desidratando néctar e trabalhando como receptores de néctar. Possivelmente o néctar seja desidratado para consumo próprio. Estes fatos não foram observados anteriormente nos Apidae sociais, onde machos não trabalham. ABSTRACT This work presents some new aspects of the activities of virgin queens, pregnant queens and males of Schwarziana quadripunctata. Some work with cerumen was performed by the queens of Schw ar­ ziana quadripunctata. Two pregnant queens were found in a colony: the activity of the oldest was related to the oviposition; the youngest queen worked with cerumen in the canal entrance. The chief activities of the males of S. quadripunctata inside their colony are related to nectar. Some males were seen working with cerumen and other working as nectar receivers and dehydrating nectar. Possibly this nectar was dehydrated for their own nourishment. In other social Apidae, the males don’t work.
    [Show full text]
  • FLIGHT ACTIVITY of Melipona Asilvai MOURE (HYMENOPTERA: APIDAE)
    FLIGHT ACTIVITY OF Melipona asilvai MOURE (HYMENOPTERA: APIDAE) SOUZA, B. A.1, CARVALHO, C. A. L.2 and ALVES, R. M. O.3 1Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, Universidade de São Paulo, Av. Pádua Dias, 11, C. P. 09, CEP 13418-900, Piracicaba, SP, Brasil 2Escola de Agronomia, Departamento de Fitotecnia, Universidade Federal da Bahia, CEP 44380-000, Cruz das Almas, BA, Brasil 3Escola Agrotécnica Federal de Catu, Catu, BA, Brasil Correspondence to: Bruno de Almeida Souza, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, Universidade de São Paulo, Av. Pádua Dias, 11, C. P. 09, CEP 13418-900, Piracicaba, SP, Brazil, e-mail: [email protected] Received August 9, 2004 – Accepted December 22, 2004 – Distributed May 31, 2006 (With 2 figures) ABSTRACT Many stingless bee species are specific to their areas of occurrence. Even when adapted to their local climate and flora conditions, they are subject to modifications in the environment, directly influencing flight activity. The aim of this work is to obtain information about the flight activity of the stingless bee Melipona asilvai Moure, thus contributing to the knowledge of this species. The flow of bees entering and leaving the colony was evaluated, and the type of transported material was identified. This information was correlated with climatic data collected at the time of observations, performed between June 2002 and March 2003. It can be proved that temperature was the factor with the greatest influence on the external activity of this species, showing a significant positive correlation with the entry of bees into the colony and pollen collection.
    [Show full text]
  • Insect Morphology and Systematics (Ento-131) - Notes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276175248 Insect Morphology and Systematics (Ento-131) - Notes Book · April 2010 CITATIONS READS 0 14,110 1 author: Cherukuri Sreenivasa Rao National Institute of Plant Health Management (NIPHM), Hyderabad, India 36 PUBLICATIONS 22 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Agricultural College, Jagtial View project ICAR-All India Network Project on Pesticide Residues View project All content following this page was uploaded by Cherukuri Sreenivasa Rao on 12 May 2015. The user has requested enhancement of the downloaded file. Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL EntoEnto----131131131131 Insect Morphology & Systematics Prepared by Dr. Cherukuri Sreenivasa Rao M.Sc.(Ag.), Ph.D.(IARI) Associate Professor & Head Department of Entomology Agricultural College Jagtial-505529 Karminagar District 1 Page 2010 Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL ENTO 131 INSECT MORPHOLOGY AND SYSTEMATICS Total Number of Theory Classes : 32 (32 Hours) Total Number of Practical Classes : 16 (40 Hours) Plan of course outline: Course Number : ENTO-131 Course Title : Insect Morphology and Systematics Credit Hours : 3(2+1) (Theory+Practicals) Course In-Charge : Dr. Cherukuri Sreenivasa Rao Associate Professor & Head Department of Entomology Agricultural College, JAGTIAL-505529 Karimanagar District, Andhra Pradesh Academic level of learners at entry : 10+2 Standard (Intermediate Level) Academic Calendar in which course offered : I Year B.Sc.(Ag.), I Semester Course Objectives: Theory: By the end of the course, the students will be able to understand the morphology of the insects, and taxonomic characters of important insects.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • External Insect Morphology: a Negative Factor in Attitudes Toward Insects and Likelihood of Incorporation in Future Science Education Settings
    International Journal Journal of Environmental of Environmental & Science & Educat Scienceion Education Vol. 7, No. 2, April 2012, 313-325 Vol. 3, No. 3, July 2008, xx-xx External insect morphology: A negative factor in attitudes toward insects and likelihood of incorporation in future science education settings Ron Wagler Amy Wagler Received 14 September 2011; Accepted 22 February 2012 This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher’s attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers participated and a randomized design with a control group was used for the study. The participants were shown pictures of three insects (i.e., butterfly, lady beetle or dragonfly) and were asked to rate their attitude toward the insects and beliefs concerning the likelihood of incorporat- ing the insects into future science education settings. The treatment group was shown a picture of the larva and adult stage of the insect. The control group was only shown the adult stage of the insect. Unique to this study, is the finding that the external morphology of an insect is a causal factor that can negatively affect preservice elementary teacher’s attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. Implications are discussed that can assist preservice teacher training programs. Keywords: Attitude; Belief; Elementary; Insect; Morphology; Preservice Introduction Based upon life history, global biodiversity and sheer numbers, insects are arguably the most evolutionarily and biologically successful group of animals on Earth.
    [Show full text]
  • The Sensory Structures of the Antennal Flagellum in Hyalesthes Obsoletus
    Arthropod Structure & Development 38 (2009) 473–483 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd The sensory structures of the antennal flagellum in Hyalesthes obsoletus (Hemiptera: Fulgoromorpha: Cixiidae): A functional reduction? Roberto Romani a,*, Marco Valerio Rossi Stacconi a, Paola Riolo b, Nunzio Isidoro b a Dipartimento di Scienze Agrarie e Ambientali, Perugia University, 06121 Perugia, Italy b Dipartimento Scienze Ambientali e delle Produzioni Vegetali, Marche Polytechnic University, 60131 Ancona, Italy article info abstract Article history: Despite their relevance as harmful pests on plants of economic importance, Hemiptera Fulgoromorpha Received 3 April 2009 have been poorly studied as regards their antennal sensory structures. In particular, the flagellum has Accepted 6 August 2009 been neglected and, therefore, to date there are no data on its structural organization and sensory equipment. In order to fill this gap, we carried out a study on the sensillum types and distribution on the Keywords: flagellum of the planthopper Hyalesthes obsoletus Signoret, an efficient vector of the stolbur phytoplasma, Ultrastructure the cause of various crop diseases. In this cixiid species the antenna is composed of three segments, the Sensilla scape, an enlarged pedicel and a long flagellum. This latter is made of a single segment and presents Scolopidia Thermo-hygroreceptors a basal, bulb-like enlargement from which two processes arise, a short spur and a long arista. Combining scanning electron microscopy, transmission electron microscopy and focused ion beam investigations, CO2 receptors Phytoplasma vectors we discovered the presence of a total number of 6 sensilla, belonging to 4 different types: a single FIB scolopidium extending from the bulb to the arista, three sensilla styloconica within the cuticular spur and two different sensilla coeloconica inside the bulb.
    [Show full text]