Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus Rotundipennis (Scudder, 1878) Via Correlative Microscopy

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus Rotundipennis (Scudder, 1878) Via Correlative Microscopy JOURNAL OF MORPHOLOGY 278:334–359 (2017) Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus rotundipennis (Scudder, 1878) via Correlative Microscopy Derek A. Woller* and Hojun Song Department of Entomology, Texas A&M University, College Station, Texas ABSTRACT We investigated probable functions of the males, in terms of the number of components interacting genitalic components of a male and a involved in copulation and reproduction (Eberhard, female of the flightless grasshopper species Melanoplus 1985; Arnqvist, 1997; Eberhard, 2010). This rela- rotundipennis (Scudder, 1878) (frozen rapidly during tive complexity has often masked our ability to copulation) via correlative microscopy; in this case, by understand functional genitalic morphology, partic- synergizing micro-computed tomography (micro-CT) with digital single lens reflex camera photography with ularly during the copulation process. This process focal stacking, and scanning electron microscopy. To is difficult to examine intensely due to its often- assign probable functions, we combined imaging results hidden nature (internal components shielded from with observations of live and museum specimens, and view by external components) and because it is function hypotheses from previous studies, the majority often easily interrupted by active observation, but of which focused on museum specimens with few inves- some studies investigating function have manipu- tigating hypotheses in a physical framework of copula- lated genitalia as a way around such issues tion. For both sexes, detailed descriptions are given for (Briceno~ and Eberhard, 2009; Grieshop and Polak, each of the observed genitalic and other reproductive 2012; Dougherty et al., 2015). Adding further com- system components, the majority of which are involved in copulation, and we assigned probable functions to plexity to understanding function, several studies these latter components. The correlative microscopy have demonstrated that individual genitalic compo- approach is effective for examining functional morphol- nents may play different roles during copulation ogy in grasshoppers, so we suggest its use for other and evolve at different rates (Song and Wenzel, animals as well, especially when investigating body 2008; Song and Bucheli, 2010; Rowe and Arnqvist, regions or events that are difficult to access and under- 2011). Furthermore, when studying the evolution of stand otherwise, as shown here with genitalia and cop- genitalia, there has been a continued general bias ulation. J. Morphol. 278:334–359, 2017. VC 2017 Wiley toward examining the morphology of male genitalia Periodicals, Inc. for various reasons, including the difficulties in KEY WORDS: anatomy; insect; Acrididae; sexual selec- examining female genitalic morphology (Eberhard, tion; speciation 1985) (e.g., a common lack of rigidity), assumptions that female components do not appear to vary as much between conspecifics (which may also be true INTRODUCTION in some cases) (Eberhard, 1985; Ah-King et al., The evolution of animal genitalia is an active area of research in evolutionary biology and it is Additional Supporting Information may be found in the online generally accepted that sexual selection is the version of this article. major driving force that explains the observed divergence of genitalic components often found Contract grant sponsors: Orthopterists’ Society Research Grant among closely related species (especially in males (2012, to D.A.W.), and NSF Grant IOS-1253493 and Texas A&M University start-up (to H.S.). and particularly in insects), with these divergen- ces playing a potentially significant role in specia- *Correspondence to: Derek A. Woller, Minnie Belle Heep Center, tion (Eberhard, 1985; Arnqvist et al., 2000; Room 412, Campus MS 2475, College Station, TX 77843-2475. Arnqvist and Rowe, 2002; Hosken and Stockley, E-mail: [email protected] 2004; Ritchie, 2007; Hotzy et al., 2012; Richmond et al., 2012; Simmons, 2013). Insights into the Received 24 August 2016; Revised 18 November 2016; underlying mechanisms of this evolutionary pro- Accepted 3 December 2016. cess, however, are difficult to gain for a number of Published online 23 January 2017 in reasons. For one, insect genitalia are extremely Wiley Online Library (wileyonlinelibrary.com). diverse and often relatively complex, especially in DOI 10.1002/jmor.20642 VC 2017 WILEY PERIODICALS, INC. FUNCTIONAL MORPHOLOGY DURING COPULATION 335 Fig. 1. Melanoplus rotundipennis, abdomina of original male and female specimens frozen in copula compared to their 3D-reconstructions using micro-CT scanning (for all, female is above and male is below): A. left lateral view; B. right lateral view; C. left lateral view of 3D- reconstructions; D. right lateral view of 3D-reconstructions. 2014), and because differences in male components stacking and scanning electron microscopy (SEM), are typically more obvious (Eberhard, 1985; Arnqv- a method known as correlative microscopy (Caplan ist, 1997). However, male and female genitalia have et al., 2011), to investigate the copulation process presumably co-evolved, and, therefore, should be in the context: functional morphology. Compre- studied together. hending the function of morphology, principally We are currently in the midst of an insect (and how the male and female parts interact, is a key other invertebrates) morphology renaissance ever to better understanding genitalia evolution (Kelly since a pioneering study in by Hornschemeyer€ and Moore, 2016). The copulation process in et al. (2002) used micro-computed tomography insects has previously been difficult to study in (micro-CT) to examine beetle morphology. This fine detail because of the cryptic nature of interac- powerful imaging technology is non-invasive and tions between male and female genitalia and the non-destructive and has been used by many to invasive techniques that were necessary for exami- investigate the morphology of insect morphology nation. This frontier is ripe for exploration with in novel ways (e.g., Jongerius and Lentink, 2010; relatively few studies focusing on functional geni- Wipfler et al., 2011; Wojcieszek et al., 2012; talic morphology in insects (e.g., Eberhard and Breeschoten et al., 2013; Faulwetter et al., 2013; Ramirez, 2004; Briceno~ and Eberhard, 2009; Grie- Michalik et al., 2013; Beutel et al., 2014; Greco shop and Polak, 2012; Briceno~ et al., 2016; Rheber- et al., 2014; Simonsen and Kitching, 2014). One of gen et al., 2016), with even fewer utilizing micro- the primary benefits of micro-CT is the ability to CT to do so (e.g., Dougherty et al., 2015; Holwell build three-dimensional (3D) reconstructions of et al., 2015; Mattei et al., 2015; Schmitt and Uhl, any anatomical component included in the high- 2015). In terms of the order Orthoptera, only one resolution scanning process (Fig. 1A–D). For this other study of a similar nature has yet been study, we couple this technology synergistically undertaken (with Metrioptera roeselii (Hagenbach, with two other imaging methods, digital single 1822) (Ensifera: Tettigoniidae) in Wulff et al. lens reflex (DSLR) camera photography with focal (2015), but, to our knowledge, our study is the first Journal of Morphology 336 D.A. WOLLER AND H. SONG (here defined as Alabama, North and South Caroli- na, Georgia, and Florida), and many are endemic to relatively small regions. Externally, all species resemble one another to a strong degree, but it is the male genitalia, primarily the aedeagus, that separate them due to their highly divergent forms (Hubbell, 1932). These collective factors make the Puer Group an excellent system in which to exam- ine the evolution of genitalia. Of all group members, M. rotundipennis was chosen for four reasons, the first being that it is the most widely distributed (in both Florida and southern Georgia), meaning that locating populations, normally quite abundant, was easy and integral to encouraging specimens to mate in the lab within habitat boxes (Fig. 2C). The second is that intraspecific variation in male genitalia, especially in the aedeagi, is negligible (Squitier et al., 1998), http://onlinelibrary.wiley.com/journal/ 10.1002/(ISSN)1097-4687/homepage/ForAuthors. html, which may also be true for female genitalia. Third, the species is one of the largest in the Puer Group with an average length of 15 mm in males and 20 mm in females and the aedeagus is males in also one of the most prominent, making this species one of the easiest to work with overall. Finally, the 58 named genitalic and other reproductive system components across both sexes (33 male, 25 female) of M. rotundipennis can arguably be labeled as the most complex in the Puer Group in terms of number and structural shape based on comparative observa- tions, making this species interesting to study. The general functions of grasshopper genitalia during copulation have been described and specu- lated on by numerous sources (Federov, 1927; Bol- dyrev, 1929; Snodgrass, 1935; Kyl, 1938; Roberts, 1941; Dirsh, 1956; Randell, 1963; Gregory, 1965; Otte, 1970; Pickford and Gillott, 1971; Whitman and Loher, 1984; Snodgrass, 1993; Eades, 2000; Chapman, 2012; Song and Marino-P~ erez, 2013), with the majority focused on museum specimens Fig. 2. Melanoplus rotundipennis,livephotosof:A. male; B. and many biased toward male anatomy. Only five female; C. in copula pair. of those studies (Boldyrev, 1929; Kyl, 1938; Grego- ry, 1965; Pickford and Gillott, 1971; Whitman and Loher, 1984) investigated hypotheses
Recommended publications
  • Lozano-Fernandez Et Al
    Citation for published version: Lozano-Fernandez, J, Giacomelli, M, Fleming, JF, Chen, A, Vinther, J, Thomsen, PF, Glenner, H, Palero, F, Legg, DA, Iliffe, TM, Pisani, D & Olesen, J 2019, 'Pancrustacean Evolution Illuminated by Taxon-Rich Genomic- Scale Data Sets with an Expanded Remipede Sampling', Genome biology and evolution, vol. 11, no. 8, pp. 2055-2070. https://doi.org/10.1093/gbe/evz097 DOI: 10.1093/gbe/evz097 Publication date: 2019 Link to publication University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 GBE Pancrustacean Evolution Illuminated by Taxon-Rich Genomic- Scale Data Sets with an Expanded Remipede Sampling 1,2,9,* 1 2,10 2,11 1,2 Jesus Lozano-Fernandez , Mattia Giacomelli , James F. Fleming ,AlbertChen , Jakob Vinther , Philip Downloaded from https://academic.oup.com/gbe/article-abstract/11/8/2055/5528088 by University of Cambridge user on 30 September 2019 Francis Thomsen3,12, Henrik Glenner4, Ferran Palero5,6,DavidA.Legg7,ThomasM.Iliffe8, Davide
    [Show full text]
  • Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
    ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses.
    [Show full text]
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]
  • Insect Morphology and Systematics (Ento-131) - Notes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276175248 Insect Morphology and Systematics (Ento-131) - Notes Book · April 2010 CITATIONS READS 0 14,110 1 author: Cherukuri Sreenivasa Rao National Institute of Plant Health Management (NIPHM), Hyderabad, India 36 PUBLICATIONS 22 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Agricultural College, Jagtial View project ICAR-All India Network Project on Pesticide Residues View project All content following this page was uploaded by Cherukuri Sreenivasa Rao on 12 May 2015. The user has requested enhancement of the downloaded file. Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL EntoEnto----131131131131 Insect Morphology & Systematics Prepared by Dr. Cherukuri Sreenivasa Rao M.Sc.(Ag.), Ph.D.(IARI) Associate Professor & Head Department of Entomology Agricultural College Jagtial-505529 Karminagar District 1 Page 2010 Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL ENTO 131 INSECT MORPHOLOGY AND SYSTEMATICS Total Number of Theory Classes : 32 (32 Hours) Total Number of Practical Classes : 16 (40 Hours) Plan of course outline: Course Number : ENTO-131 Course Title : Insect Morphology and Systematics Credit Hours : 3(2+1) (Theory+Practicals) Course In-Charge : Dr. Cherukuri Sreenivasa Rao Associate Professor & Head Department of Entomology Agricultural College, JAGTIAL-505529 Karimanagar District, Andhra Pradesh Academic level of learners at entry : 10+2 Standard (Intermediate Level) Academic Calendar in which course offered : I Year B.Sc.(Ag.), I Semester Course Objectives: Theory: By the end of the course, the students will be able to understand the morphology of the insects, and taxonomic characters of important insects.
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • External Insect Morphology: a Negative Factor in Attitudes Toward Insects and Likelihood of Incorporation in Future Science Education Settings
    International Journal Journal of Environmental of Environmental & Science & Educat Scienceion Education Vol. 7, No. 2, April 2012, 313-325 Vol. 3, No. 3, July 2008, xx-xx External insect morphology: A negative factor in attitudes toward insects and likelihood of incorporation in future science education settings Ron Wagler Amy Wagler Received 14 September 2011; Accepted 22 February 2012 This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher’s attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers participated and a randomized design with a control group was used for the study. The participants were shown pictures of three insects (i.e., butterfly, lady beetle or dragonfly) and were asked to rate their attitude toward the insects and beliefs concerning the likelihood of incorporat- ing the insects into future science education settings. The treatment group was shown a picture of the larva and adult stage of the insect. The control group was only shown the adult stage of the insect. Unique to this study, is the finding that the external morphology of an insect is a causal factor that can negatively affect preservice elementary teacher’s attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. Implications are discussed that can assist preservice teacher training programs. Keywords: Attitude; Belief; Elementary; Insect; Morphology; Preservice Introduction Based upon life history, global biodiversity and sheer numbers, insects are arguably the most evolutionarily and biologically successful group of animals on Earth.
    [Show full text]
  • Morphological Data, Extant Myriapoda, and the Myriapod Stem-Group
    Contributions to Zoology, 73 (3) 207-252 (2004) SPB Academic Publishing bv, The Hague Morphological data, extant Myriapoda, and the myriapod stem-group Gregory+D. Edgecombe Australian Museum, 6 College Street, Sydney, NSW 2010, Australia, e-mail: [email protected] Keywords: Myriapoda, phylogeny, stem-group, fossils Abstract Tagmosis; long-bodied fossils 222 Fossil candidates for the stem-group? 222 Conclusions 225 The status ofMyriapoda (whether mono-, para- or polyphyletic) Acknowledgments 225 and controversial, position of myriapods in the Arthropoda are References 225 .. fossils that an impediment to evaluating may be members of Appendix 1. Characters used in phylogenetic analysis 233 the myriapod stem-group. Parsimony analysis of319 characters Appendix 2. Characters optimised on cladogram in for extant arthropods provides a basis for defending myriapod Fig. 2 251 monophyly and identifying those morphological characters that are to taxon to The necessary assign a fossil the Myriapoda. the most of the allianceofhexapods and crustaceans need notrelegate myriapods “Perhaps perplexing arthropod taxa 1998: to the arthropod stem-group; the Mandibulatahypothesis accom- are the myriapods” (Budd, 136). modates Myriapoda and Tetraconata as sister taxa. No known pre-Silurianfossils have characters that convincingly place them in the Myriapoda or the myriapod stem-group. Because the Introduction strongest apomorphies ofMyriapoda are details ofthe mandible and tentorial endoskeleton,exceptional fossil preservation seems confound For necessary to recognise a stem-group myriapod. Myriapods palaeontologists. all that Cambrian Lagerstdtten like the Burgess Shale and Chengjiang have contributed to knowledge of basal Contents arthropod inter-relationships, they are notably si- lent on the matter of myriapod origins and affini- Introduction 207 ties.
    [Show full text]
  • The Sensory Structures of the Antennal Flagellum in Hyalesthes Obsoletus
    Arthropod Structure & Development 38 (2009) 473–483 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd The sensory structures of the antennal flagellum in Hyalesthes obsoletus (Hemiptera: Fulgoromorpha: Cixiidae): A functional reduction? Roberto Romani a,*, Marco Valerio Rossi Stacconi a, Paola Riolo b, Nunzio Isidoro b a Dipartimento di Scienze Agrarie e Ambientali, Perugia University, 06121 Perugia, Italy b Dipartimento Scienze Ambientali e delle Produzioni Vegetali, Marche Polytechnic University, 60131 Ancona, Italy article info abstract Article history: Despite their relevance as harmful pests on plants of economic importance, Hemiptera Fulgoromorpha Received 3 April 2009 have been poorly studied as regards their antennal sensory structures. In particular, the flagellum has Accepted 6 August 2009 been neglected and, therefore, to date there are no data on its structural organization and sensory equipment. In order to fill this gap, we carried out a study on the sensillum types and distribution on the Keywords: flagellum of the planthopper Hyalesthes obsoletus Signoret, an efficient vector of the stolbur phytoplasma, Ultrastructure the cause of various crop diseases. In this cixiid species the antenna is composed of three segments, the Sensilla scape, an enlarged pedicel and a long flagellum. This latter is made of a single segment and presents Scolopidia Thermo-hygroreceptors a basal, bulb-like enlargement from which two processes arise, a short spur and a long arista. Combining scanning electron microscopy, transmission electron microscopy and focused ion beam investigations, CO2 receptors Phytoplasma vectors we discovered the presence of a total number of 6 sensilla, belonging to 4 different types: a single FIB scolopidium extending from the bulb to the arista, three sensilla styloconica within the cuticular spur and two different sensilla coeloconica inside the bulb.
    [Show full text]
  • Plasticity and Constraints in Development and Evolution JASON HODIN* Science and Math, Seattle Central Community College, Seattle, Washington 98122
    JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 288:1–20 (2000) Plasticity and Constraints in Development and Evolution JASON HODIN* Science and Math, Seattle Central Community College, Seattle, Washington 98122 ABSTRACT Morphological similarities between organisms may be due to either homology or homoplasy. Homologous structures arise by common descent from an ancestral form, whereas homoplasious structures are independently derived in the respective lineages. The finding that simi- lar ontogenetic mechanisms underlie the production of the similar structures in both lineages is not sufficient evidence of homology, as such similarities may also be due to parallel evolution. Parallel- isms are a class of homoplasy in which the two lineages have come up with the same solution independently using the same ontogenetic mechanism. The other main class of homoplasy, conver- gence, is superficial similarity in morphological structures in which the underlying ontogenetic mecha- nisms are distinct. I argue that instances of convergence and parallelism are more common than is generally realized. Convergence suggests flexibility in underlying ontogenetic mechanisms and may be indicative of developmental processes subject to phenotypic plasticity. Parallelisms, on the other hand, may characterize developmental processes subject to constraints. Distinguishing between ho- mology, parallelisms and convergence may clarify broader taxonomic patterns in morphological evo- lution. J. Exp. Zool. (Mol. Dev. Evol.) 288:1–20, 2000. © 2000 Wiley-Liss, Inc. As the fields of developmental and evolution- lar approach. I argue, on the contrary, that since ary biology continue to converge, an underlying innovations are manifest at the morphological pattern is beginning to emerge: namely that the level, it is necessary to integrate a morphological astonishing diversity of morphological variation with a molecular approach if we hope to uncover in plants and animals is built on a scaffolding of any such underlying principles.
    [Show full text]
  • The Internal Anatomy of the Silverfish Otenclepisma Campbelli Barnhart and Lepisma Saccharina Linnaeus (Thysanura: Lepismatidae)
    THE INTERNAL ANATOMY OF THE SILVERFISH OTENCLEPISMA CAMPBELLI BARNHART AND LEPISMA SACCHARINA LINNAEUS (THYSANURA: LEPISMATIDAE) DISSERTATION Presented in Pertial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By CLYDE STERLING BARNHART, SR., B.Sc., M.Sc The Ohio State University 1958 Approved byj Department PREFACE In 19^7 the writer began a study of the trachea- tion of a silverfish collected from the Main Library on the Ohio State University campus. This began under the direction of the late Dr. C. H. Kennedy, professor of Entomology, the Ohio State University, in his course on Insect anatomy. Professor Kennedy was Impressed with the minute detail with which the tracheation could be traced since this insect was so small. It was his interest and encouragement which prompted the writer to continue this work beyond the course and later to expand it into the more complete study embodied in this dissertation. The writer is grateful to the late professor Kennedy for his part in providing the original encouragement for this study. The writer wishes also to express his sincere gratitude to Dr. Donald J. Borror, professor of Entomo­ logy* The Ohio State University, for his helpful guidance and suggestions in bringing the work of this dissertation to completion. li TABLE CP CONTENTS Pege INTRODUCTION................................... 1 MATERIALS AND METHODS........................... 2 TIES RESPIRATORY SYSTEM.......................... 4 THE ALIMENTARY CANAL............................ 14 THE CENTRAL NERVOUS SYSTEM...................... 24 THE DORSAL VESSEL............................... 28 THE REPRODUCTIVE ORGANS......................... 32 ABBREVIATIONS USED ON FIGURES.................... 40 FIGURES........................................ 43 SUMMARY......................................... 65 BIBLIOGRAPHY.................................... 68 ill LIST OF ILLUSTRATIONS Figure Page 1 Tracheation of the head, thorax, and first abdominal segment of C .
    [Show full text]
  • The Biology and External Morphology of Bees
    3?00( The Biology and External Morphology of Bees With a Synopsis of the Genera of Northwestern America Agricultural Experiment Station v" Oregon State University V Corvallis Northwestern America as interpreted for laxonomic synopses. AUTHORS: W. P. Stephen is a professor of entomology at Oregon State University, Corval- lis; and G. E. Bohart and P. F. Torchio are United States Department of Agriculture entomolo- gists stationed at Utah State University, Logan. ACKNOWLEDGMENTS: The research on which this bulletin is based was supported in part by National Science Foundation Grants Nos. 3835 and 3657. Since this publication is largely a review and synthesis of published information, the authors are indebted primarily to a host of sci- entists who have recorded their observations of bees. In most cases, they are credited with specific observations and interpretations. However, information deemed to be common knowledge is pre- sented without reference as to source. For a number of items of unpublished information, the generosity of several co-workers is ac- knowledged. They include Jerome G. Rozen, Jr., Charles Osgood, Glenn Hackwell, Elbert Jay- cox, Siavosh Tirgari, and Gordon Hobbs. The authors are also grateful to Dr. Leland Chandler and Dr. Jerome G. Rozen, Jr., for reviewing the manuscript and for many helpful suggestions. Most of the drawings were prepared by Mrs. Thelwyn Koontz. The sources of many of the fig- ures are given at the end of the Literature Cited section on page 130. The cover drawing is by Virginia Taylor. The Biology and External Morphology of Bees ^ Published by the Agricultural Experiment Station and printed by the Department of Printing, Ore- gon State University, Corvallis, Oregon, 1969.
    [Show full text]
  • Insect Morphology and Physiology 1. Catalog Description A. BIO 5
    CGS Agenda CGS Agenda Item: 04-17 Proposal Effective Date: Spring, 2006 Eastern Illinois University New Course Proposal BIO 5210 – Insect Morphology and Physiology 1. Catalog description a. BIO 5210 b. Insect Morphology and Physiology c. (3-3-4) d. S-even-numbered years e. Insect Morphol. f. An in-depth examination of the physiology processes and morphological adaptations by which insects function in their physical, chemical and biological environments. Experimental methods and research equipment appropriate to the discipline will be introduced. g. Prerequisites: BIO 3720 or equivalent, or by consent of instructor. h. Spring 2006 2. Objectives of the course a. Students will: 1. learn and discuss basic principles used in the study of insect morphology and physiology through a systems approach illustrated by both generalized and specialized taxa. 2. apply basic principles and develop skills using experimental methods and equipment relevant to the study of insect morphology and physiology. 3. apply experimental techniques and analyze results of individualized projects investigating aspects of insect morphology and physiology in the laboratory. 4. conduct library research of current literature relevant to their project topic and synthesize literature with their own project results. 5. analyze experimental results to write a formal scientific research paper and demonstrate effective verbal communication of the application and synthesis of insect morphology and physiology through an oral presentation of project results. b. Assessment will be
    [Show full text]