The Sensory Structures of the Antennal Flagellum in Hyalesthes Obsoletus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inter-Plant Vibrational Communication in a Leafhopper Insect
Inter-Plant Vibrational Communication in a Leafhopper Insect Anna Eriksson1,2, Gianfranco Anfora1*, Andrea Lucchi2, Meta Virant-Doberlet3, Valerio Mazzoni1 1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy, 2 Department of Coltivazione e Difesa delle Specie Legnose, University of Pisa, Pisa, Italy, 3 Department of Entomology, National Institute of Biology, Ljubljana, Slovenia Abstract Vibrational communication is one of the least understood channels of communication. Most studies have focused on the role of substrate-borne signals in insect mating behavior, where a male and a female establish a stereotyped duet that enables partner recognition and localization. While the effective communication range of substrate-borne signals may be up to several meters, it is generally accepted that insect vibrational communication is limited to a continuous substrate. Until now, interplant communication in absence of physical contact between plants has never been demonstrated in a vibrational communicating insect. With a laser vibrometer we investigated transmission of natural and played back vibrational signals of a grapevine leafhopper, Scaphoideus titanus, when being transmitted between leaves of different cuttings without physical contact. Partners established a vibrational duet up to 6 cm gap width between leaves. Ablation of the antennae showed that antennal mechanoreceptors are not essential in detection of mating signals. Our results demonstrate for the first time that substrate discontinuity does not impose a limitation on communication range of vibrational signals. We also suggest that the behavioral response may depend on the signal intensity. Citation: Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-Plant Vibrational Communication in a Leafhopper Insect. -
(Hemiptera: Fulgoromorpha: Fulgoridae) from Sabah, East Malaysia
Département du Rhône - Musée des Confluences, Lyon UNE NOUVELLE ESPÈCE DE SAIVA DISTANT, 1906 (HEMIPTERA: FULGOROMORPHA: FULGORIDAE) DU SABAH, EST MALAISIE A NEW SPECIES OF SAIVA DISTANT, 1906 (HEMIPTERA: FULGOROMORPHA: FULGORIDAE) FROM SABAH, EAST MALAYSIA Steven CHEW KEA FOO* & Thierry PORION** RÉSUMÉ ABSTRACT Une nouvelle espèce de Saiva Distant est décrite et A new Saiva Distant species of the Fulgorinae sub- illustrée, à partir de quatre spécimens collectés au family is described, discussed and illustrated based on Sabah, Est Malaisie. four specimens collected in Sabah, East Malaysia. Mots-clés : Hemiptera, Fulgoromorpha, Fulgoridae, Keywords: Hemiptera, Fulgoromorpha, Fulgoridae, Fulgorinae, Saiva, Sabah, Borneo, Est Malaisie. Fulgorinae, Saiva, Sabah, Borneo, East Malaysia. INTRODUCTION INTRODUCTION Le genre Saiva Distant comprend 14 espèces, Saiva The genus Saiva Distant is composed of 14 species, as cultellata (Walker), 1857 ayant été replacée dans le Saiva cultellata (Walker), 1857 has been placed in the genre voisin le plus proche Pyrops Spinola, 1839 par closest genus Pyrops Spinola, 1839 by Nagai & Nagai & Porion (2002) suivant la clé des deux genres Porion (2002) based on Lallemand’s (1963) key to de la sous-famille des Fulgorinae (Lallemand, 1963). both genera of the Fulgorinae subfamily. La description de la nouvelle espèce est basée sur The new species is described based on two mâles and deux spécimens mâles et deux spécimens femelles two females collected in 2005 in Crocker range, collectés en 2005 à Crocker range, Sabah, Est Sabah, East Malaysia. Malaisie. Saiva karimbujangi Chew Kea Foo & Porion, Saiva karimbujangi Steven Chew & Porion, sp. nov. sp. nov. Matériel examiné: Material examinated: Holotype mâle, East Malaysia, Sabah, Crocker range, Holotype male, East Malaysia, Sabah, Crocker range, 1000 m., 14-V-2005, Steven Chew Kea Foo leg., in 1000 m., 14-V-2005, Steven Chew Kea Foo leg., Muséum de Lyon, Rhône, France. -
Conservation Assessment for the Kansan Spikerush Leafhopper (Dorydiella Kansana Beamer)
Conservation Assessment For The Kansan spikerush leafhopper (Dorydiella kansana Beamer) USDA Forest Service, Eastern Region January 11, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 1 DESCRIPTION OF SPECIES....................................................................................................... -
Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24. -
'Candidatus Phytoplasma Solani' (Quaglino Et Al., 2013)
‘Candidatus Phytoplasma solani’ (Quaglino et al., 2013) Synonyms Phytoplasma solani Common Name(s) Disease: Bois noir, blackwood disease of grapevine, maize redness, stolbur Phytoplasma: CaPsol, maize redness phytoplasma, potato stolbur phytoplasma, stolbur phytoplasma, tomato stolbur phytoplasma Figure 1: A ‘dornfelder’ grape cultivar Type of Pest infected with ‘Candidatus Phytoplasma Phytoplasma solani’. Courtesy of Dr. Michael Maixner, Julius Kühn-Institut (JKI). Taxonomic Position Class: Mollicutes, Order: Acholeplasmatales, Family: Acholeplasmataceae Genus: ‘Candidatus Phytoplasma’ Reason for Inclusion in Manual OPIS A pest list, CAPS community suggestion, known host range and distribution have both expanded; 2016 AHP listing. Background Information Phytoplasmas, formerly known as mycoplasma-like organisms (MLOs), are pleomorphic, cell wall-less bacteria with small genomes (530 to 1350 kbp) of low G + C content (23-29%). They belong to the class Mollicutes and are the putative causal agents of yellows diseases that affect at least 1,000 plant species worldwide (McCoy et al., 1989; Seemüller et al., 2002). These minute, endocellular prokaryotes colonize the phloem of their infected plant hosts as well as various tissues and organs of their respective insect vectors. Phytoplasmas are transmitted to plants during feeding activity by their vectors, primarily leafhoppers, planthoppers, and psyllids (IRPCM, 2004; Weintraub and Beanland, 2006). Although phytoplasmas cannot be routinely grown by laboratory culture in cell free media, they may be observed in infected plant or insect tissues by use of electron microscopy or detected by molecular assays incorporating antibodies or nucleic acids. Since biological and phenotypic properties in pure culture are unavailable as aids in their identification, analysis of 16S rRNA genes has been adopted instead as the major basis for phytoplasma taxonomy. -
Leafhoppers, Planthoppers and Psyllids (Hemiptera: Cicadomorpha, Fulgoromorpha, Psylloidea)
ISSN 1211-8788 Acta Musei Moraviae, Scientiae biologicae (Brno) 90: 195–207, 2005 Leafhoppers, planthoppers and psyllids (Hemiptera: Cicadomorpha, Fulgoromorpha, Psylloidea) in ruderal habitats: material attracted by light in the suburbs of Brno (Czech Republic) IGOR MALENOVSKÝ & PAVEL LAUTERER Department of Entomology, Moravian Museum, Hviezdoslavova 29a, 627 00 Brno, Czech Republic; e-mail: [email protected], [email protected] MALENOVSKÝ I. & LAUTERER P. 2005: Leafhoppers, planthoppers and psyllids (Hemiptera: Cicadomorpha, Fulgoromorpha, Psylloidea) in ruderal habitats: material attracted by light in the suburbs of Brno (Czech Republic). Acta Musei Moraviae, Scientiae biologicae (Brno) 90: 195–207. – Leafhoppers, planthoppers and psyllids light-trapped into streetlamps were examined at two sites in complex ruderal habitats (fields, annual and perennial ruderal vegetation, scrub with ruderal and alien species) in Slatina, on the periphery of the city of Brno in South Moravia. A total of 1628 specimens and 61 species were found. Among the dominant species were Empoasca vitis, E. decipiens, E. pteridis, Macrosteles laevis, Psammotettix alienus, Javesella pellucida, Laodelphax striatella, Zyginidia pullula, Kybos lindbergi, and Edwardsiana rosae. Noteworthy are records of Kybos calyculus and Oncopsis appendiculata (both new for the Czech Republic), several rare species living in dry ruderal grassland (Recilia horvathi, Macrosteles quadripunctulatus, Balclutha saltuella), and hygrophilous species caught on dispersal flight (Pentastiridius leporinus, Calamotettix taeniatus, Cicadula placida, Limotettix striola, and Paramesus major). Key words. Hemiptera, Auchenorrhyncha, Psylloidea, ruderal habitats, city fauna, light traps, streetlamps, Czech Republic, South Moravia, faunistics, new records. Introduction Leafhoppers (Cicadomorpha), planthoppers (Fulgoromorpha) and psyllids (Sternorrhyncha: Psylloidea) are phytophagous insects belonging to the order Hemiptera. They suck plant sap, mostly from phloem vessels, some groups feed on xylem or mesophyll tissues. -
Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus Rotundipennis (Scudder, 1878) Via Correlative Microscopy
JOURNAL OF MORPHOLOGY 278:334–359 (2017) Investigating the Functional Morphology of Genitalia During Copulation in the Grasshopper Melanoplus rotundipennis (Scudder, 1878) via Correlative Microscopy Derek A. Woller* and Hojun Song Department of Entomology, Texas A&M University, College Station, Texas ABSTRACT We investigated probable functions of the males, in terms of the number of components interacting genitalic components of a male and a involved in copulation and reproduction (Eberhard, female of the flightless grasshopper species Melanoplus 1985; Arnqvist, 1997; Eberhard, 2010). This rela- rotundipennis (Scudder, 1878) (frozen rapidly during tive complexity has often masked our ability to copulation) via correlative microscopy; in this case, by understand functional genitalic morphology, partic- synergizing micro-computed tomography (micro-CT) with digital single lens reflex camera photography with ularly during the copulation process. This process focal stacking, and scanning electron microscopy. To is difficult to examine intensely due to its often- assign probable functions, we combined imaging results hidden nature (internal components shielded from with observations of live and museum specimens, and view by external components) and because it is function hypotheses from previous studies, the majority often easily interrupted by active observation, but of which focused on museum specimens with few inves- some studies investigating function have manipu- tigating hypotheses in a physical framework of copula- lated genitalia as a way around such issues tion. For both sexes, detailed descriptions are given for (Briceno~ and Eberhard, 2009; Grieshop and Polak, each of the observed genitalic and other reproductive 2012; Dougherty et al., 2015). Adding further com- system components, the majority of which are involved in copulation, and we assigned probable functions to plexity to understanding function, several studies these latter components. -
A Checklist of the Auchenorrhyncha of Belarus (Hemiptera, Fulgoromorpha Et Cicadomorpha)
Beiträge zur Zikadenkunde 7: 29-47 (2004) 29 A checklist of the Auchenorrhyncha of Belarus (Hemiptera, Fulgoromorpha et Cicadomorpha) Oleg Borodin1 Kurzfassung: Es wird eine Artenliste der Zikaden von Weißrußland präsentiert, mit An- gaben zu Vorkommen in einzelnen Regionen, Habitat- und Feuchtepräferenzen, Lebens- formen der Nährpflanzen und Phänologie. Die Liste enthält 331 Arten aus 10 Familien. Abstract: A checklist of the Auchenorrhyncha species of Belarus is provided, with data of their occurrence in geographic provinces, habitat and moisture preferences, life forms of food plants, and phenology. The list includes 331 species belonging to 10 families. Key words: Auchenorrhyncha, checklist, Belarus, phytophagous insects 1. Introduction For a long time the Auchenorrhyncha have been one of the least studied insect groups of Belarus. Nast (1972, 1987) lists only 7 species for the whole country, although early studies were carried out in 1925-1926 (Yazentkovskij 1925; Bryanzev 1926; Solowiew 1926). These works, including a number of successive studies carried out through the Belorussian Agricul- tural Academy (Dubrovskaya & Kovaleva 1970; Kovaleva 1970) and the Institute of Plant Protection have applied character and include only a few species which are important for agriculture. Other studies contain information about Auchenorrhyncha communities (Yaki- movich 1982; Chumakov 1986). Furthermore, some species were recorded by foreign col- leagues, e.g. Cicadella lasiocarpae Oss. (Dmitriev 1998), Coryphaelus gyllenhalii (Fall.) and Anake- lisia fasciata (Kbm.) (Nast 1976). The total number of published species in all these papers is only 71. The present paper provides an up-to-date checklist based on new studies and collec- tions carried out by the author since 1998, mainly in western and central parts of the country. -
Relationships Between Hyalesthes Obsoletus, Its Herbaceous Hosts and Bois Noir Epidemiology in Northern Italian Vineyards
insects Article Relationships between Hyalesthes obsoletus, Its Herbaceous Hosts and Bois Noir Epidemiology in Northern Italian Vineyards Nicola Mori 1 , Elena Cargnus 2, Marta Martini 2 and Francesco Pavan 2,* 1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; [email protected] 2 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 3100 Udine, Italy; [email protected] (E.C.); [email protected] (M.M.) * Correspondence: [email protected]; Tel.: +39-0432-558504; Fax: +39-0432-558501 Received: 31 July 2020; Accepted: 3 September 2020; Published: 7 September 2020 Simple Summary: Bois noir is a phytoplasma disease causing heavy yield losses in European vineyards mainly transmitted by the planthopper Hyalesthes obsoletus. There are two main molecular types of the phytoplasma causal agent acquired from Convolvolus arvensis and Urtica dioica, respectively. Previous studies showed biological and genetic differences in the H. obsoletus populations associated with the two host plants and respective phytoplasma molecular types. Over a six-year study, the relationship between H. obsoletus phenology and its yearly abundance, and spatial distribution of both vector and its host plants was studied in northern Italian infected vineyards. The results showed clear differences in the two H. obsoletus populations (i.e., earlier phenology on C. convolvulus, adult better survival on the host plant where nymphs developed, adult distribution inside or outside vineyards according to C. arvensis and U. dioica presence) and supported the hypothesis of a cryptic speciation. Moreover, an influence of late frosts in spring on nymphal mortality was found. -
Big Time for Small Singers Use and Benefit of Laser Vibrometry in Insect Research
Biology Big Time for Small Singers Use and benefit of laser vibrometry in insect research A planthopper (Hyalesthes obsoletus). This species is a vector of a plant-disease in vineyards and there- fore of scientific and economic interest. Cicadas, leafhoppers, planthoppers and spittlebugs (also called Auchenorrhyncha) are a very diverse group of animals within the insect world. Nevertheless, relatively little is known about their behavior and phylogeny. Vibrational signals play an important role in species recognition and mating behavior. Here, the use of laser vibrometer is extremely helpful. 30 | Biology Cicadas and their songs are THE PROBLEM Species differentiation is difficult familiar to many people who live for many groups of Auchen- or vacation in the USA, Mediterra- In contrast to cicada songs, orrhyncha, and until now the nean or tropics. The “true bugs” which are easily heard unaided identification is mainly based on (Hemiptera), which not only by humans, leafhoppers and anatomical characteristics. How- include Auchenorrhyncha but also planthoppers use substrate-born ever these are often very small, bugs, aphids and whiteflies, are a signals. They produce vibrations so other features are needed for very successful and diverse insect (100 - 3,000 Hz) that can only be identification. Aside from molec- order. To date, about 42,000 registered on the plant the animal ular methods, it turns out that species of Auchenorrhyncha have is sitting on. Substrate-born bioacoustics is a helpful solution. been described worldwide. Most signals were ignored for a long of these species are leafhoppers time although they are wide- EXPERIMENTAL SETUP or planthoppers (cover picture) spread among insects. -
Candidatus Phytoplasma Solani
Eur J Plant Pathol (2016) 144:619–630 DOI 10.1007/s10658-015-0800-y ‘Candidatus phytoplasma solani’ genotypes associated with potato stolbur in Serbia and the role of Hyalesthes obsoletus and Reptalus panzeri (hemiptera, cixiidae) as natural vectors Milana Mitrović & Miljana Jakovljević & Jelena Jović & Oliver Krstić & Andrea Kosovac & Valeria Trivellone & Mauro Jermini & Ivo Toševski & Tatjana Cvrković Accepted: 13 October 2015 /Published online: 17 October 2015 # Koninklijke Nederlandse Planteziektenkundige Vereniging 2015 Abstract A progressive spread of stolbur-associated with plausible insect vectors. Semi- field experiments symptoms observed in potato fields in Serbia over the with naturally ‘Ca. P. solani’-infected H. obsoletus and past few years initiated the study on disease epidemiology R. panzeri confirmed the ability of both species to suc- and transmission pathways performed during 2013 and cessfully transmit the pathogen to potato plants and in- 2014. Inspection of potato fields on 12 localities in north- duce symptoms characteristic of stolbur disease. The third ern Serbia revealed high incidence (60 % of symptomatic putative vector R. quinquecostatus shared genotypes of plants) and wide dispersal (100 % of inspected localities) ‘Ca. P. solani’ with potato plants and other two cixiids, of ‘Candidatus Phytoplasma solani’. A qualitative analy- and though not tested in this study should not be ruled out sis of Auchenorrhyncha fauna in affected potato fields as a potential vector. Our study revealed rather identified 16 species, however only Hyalesthes obsoletus, complex epidemiology of potato stolbur in Serbia Reptalus panzeri and R. quinquecostatus tested positive involving several possible routes of horizontal transmis- for ‘Ca.P.solani’. Multilocus typing of strains associated sion and provided experimental evidence for two natural with field collected potato plants and insects had been planthopper vectors. -
An Inventory of Nepal's Insects
An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera & Diptera) V. K. Thapa An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera& Diptera) V.K. Thapa IUCN-The World Conservation Union 2000 Published by: IUCN Nepal Copyright: 2000. IUCN Nepal The role of the Swiss Agency for Development and Cooperation (SDC) in supporting the IUCN Nepal is gratefully acknowledged. The material in this publication may be reproduced in whole or in part and in any form for education or non-profit uses, without special permission from the copyright holder, provided acknowledgement of the source is made. IUCN Nepal would appreciate receiving a copy of any publication, which uses this publication as a source. No use of this publication may be made for resale or other commercial purposes without prior written permission of IUCN Nepal. Citation: Thapa, V.K., 2000. An Inventory of Nepal's Insects, Vol. III. IUCN Nepal, Kathmandu, xi + 475 pp. Data Processing and Design: Rabin Shrestha and Kanhaiya L. Shrestha Cover Art: From left to right: Shield bug ( Poecilocoris nepalensis), June beetle (Popilla nasuta) and Ichneumon wasp (Ichneumonidae) respectively. Source: Ms. Astrid Bjornsen, Insects of Nepal's Mid Hills poster, IUCN Nepal. ISBN: 92-9144-049 -3 Available from: IUCN Nepal P.O. Box 3923 Kathmandu, Nepal IUCN Nepal Biodiversity Publication Series aims to publish scientific information on biodiversity wealth of Nepal. Publication will appear as and when information are available and ready to publish. List of publications thus far: Series 1: An Inventory of Nepal's Insects, Vol. I. Series 2: The Rattans of Nepal.