Peripheral Nerve Injury Pathology and Classification

Total Page:16

File Type:pdf, Size:1020Kb

Peripheral Nerve Injury Pathology and Classification Peripheral Nerve Injury Peripheral nerves are bundles of axons conducting efferent (motor) impulses from cells in the anterior horn of the spinal cord to the muscles, and afferent (sensory) impulses from peripheral receptors via cells in the posterior root ganglia to the cord. They also convey sudomotor and vasomotor fibres from ganglion cells in the sympathetic chain. Some nerves are predominantly motor, some predominantly sensory; the larger trunks are mixed, with motor and sensory axons running in separate bundles. Pathology and Classification: Nerves can be injured by ischaemia, compression, traction, laceration or burning. Damage varies in severity from transient and quickly recoverable loss of function to complete interruption and degeneration. There may be a mixture of types of damage in the various fascicles of a single nerve trunk. Seddon described three different types of nerve injury (neurapraxia, axonotmesis and neurotmesis) served as a useful classification for many years. Increasingly, however, it has been recognized that many cases fall into an area somewhere between axonotmesis and neurotmesis. Therefore, Sunderland classification (1978) more practical. Neurapraxia It is a reversible physiological nerve conduction block in which there is loss of some types of sensation and muscle power followed by spontaneous recovery after a few days or weeks. It is due to mechanical pressure causing segmental demyelination and is seen typically in crutch palsy, pressure paralysis in states of drunkenness (‘Saturday night palsy’) and the milder types of tourniquet palsy. Axonotmesis This is a more severe form of nerve injury, seen typically after closed fractures and dislocations. The term means, axonal interruption. There is loss of conduction but the nerve is in continuity and the neural tubes are intact. Distal to the lesion, and for a few millimetres retrograde, axons disintegrate and are resorbed by phagocytes. This wallerian degeneration takes only a few days and is accompanied by marked proliferation of Schwann cells and fibroblasts lining the endoneurial tubes. The denervated target organs (motor end-plates and sensory receptors) gradually atrophy, and if they are not reinnervated within 2 years they will never recover. Axonal regeneration starts within hours of nerve damage, probably encouraged by neurotropic factors produced by Schwann cells distal to the injury.These axonal processes grow at a speed of 1–2 mm per day. Neurotmesis It means division of the nerve trunk, such as that which occurs in an open wound(e.g:bullet or knife injuries), if the injury is more severe, whether thenerve is in continuity or not, recovery will not occur. As in axonotmesis, there is rapid wallerian degeneration, Even after surgical repair, many new axons fail to reach the distal segment, and Function may be adequate but is never normal. Signs and Symptoms: Peripheral nerve injury may result in some of the following symptoms depending on the severity and extent of injury: • Pain. • Numbness or Loss of sensation. • Muscle weakness. • Paralysis of some or all of the muscles of the limb. Diagnosis: Due to the complex spectrum of peripheral nerve injuries, a detailed and comprehensive understanding of the exact nature of injury in each patient is required for proper management. Multiple modalities are utilized to diagnose a Peripheral nerve injury including: • History and clinical examination • Electrodiagnostic studies (EMG, Nerve conduction study ) • Imaging studies (X-rays, CT, MRI) Some of these evaluations may need to be repeated on a regular basis to track the progression of recovery of function, including information about the severity of the injury and prognosis. Treatment: Treatment depends on several factors including the severity of injury, the type of injury, the length of time since the injury and other existing conditions and it includes: Conservative Treatment: Nerves that have only been stretched may recover without further treatment. Physical therapy is required to keep the joints and muscles working properly, maintain the range of motion, and prevent joints stiffness. There is a role for transcutaneous electrical nerve stimulation (TENS) to stimulate nerve recovery. Surgical Treatment: The healing process sometimes forms scar tissue that must be removed surgically to improve the nerve's function. Surgical repair is often required for nerves that have significant surrounding scar tissue or that have been cut or torn. Surgical treatments include : Nerve exploration Closed low energy injuries usually recover spontaneously and it is worth waiting until the most proximallysupplied muscle should have regained function.Exploration is indicated: (1) if the nerve was seen to be divided and needs to be repaired; (2) if the type of injury suggests that the nerve has been divided or severely damaged; (e.g. a knife wound or a high energy injury). (3) if recovery is inappropriately delayed and the diagnosis is in doubt. Vascular injuries, unstable fractures, contaminated soft tissues and tendon injuries should be dealt with before the nerve lesion. Primary repair is best done as soon as this can be feasible during wound toilet and delayed repair i.e. weeks or months after the injury, maybe indicated. Nerve grafting Free autogenous nerve grafts can be used to bridge gaps too large for direct suture. The sural nerve ismost commonly used; up to 40 cm can be obtainedfrom each leg. Because the nerve diameter is small, several strips may be used (cable graft). Vascularized grafts are used in special situations. Tendon transfers Motor recovery may not occur if the axons, regenerating at about 1 mm per day, do not reach the muscle within 18–24 months of injury. This is most likelywhen there is a proximal injury in a nerve supplying distal muscles. In such circumstances, tendon transfers most of the time is considered. Care of paralysed parts PROGNOSIS: The prognosis is depends on the following factors: Type of lesion Neurapraxia always recovers fully;axonotmesis may or may not; neurotmesis will not unless the nerve is repaired. Level of lesion The higher the lesion, the worse the prognosis. Type of nerve Purely motor or purely sensory nerves recover better than mixed nerves, because there is less likelihood of axonal confusion. Size of gap. Age Children do better than adults. Old people do poorly. Delay in suture This is a most important adverse factor.The best results are obtained with early nerve repair. After a few months, recovery following suture becomes progressively less likely. Associated lesions Damage to vessels, tendons and other structures makes it more difficult to obtain recoveryof a useful limb even if the nerve itself recovers. Surgical techniques Skill, experience and suitable facilities are needed to treat nerve injuries. If these are lacking, it is wiser to perform the essential wound toilet and then transfer the patient to a specialized centre. Complications: Given enough time, many peripheral nerve injuries heal with no lasting damage. But some injuries can cause temporary or permanent problems include: • Stiff joints. • Pain. This results from nerve damage and may become chronic. • Loss of feeling.-neuropathic ulcer. • Muscle atrophy. • Permanent disability. • Deformities. .
Recommended publications
  • Schwann Cell Supplementation in Neurosurgical Procedures After Neurotrauma Santiago R
    ll Scienc Ce e f & o T l h a e Unda, J Cell Sci Ther 2018, 9:2 n r a r a p p u u DOI: 10.4172/2157-7013.1000281 y y o o J J Journal of Cell Science & Therapy ISSN: 2157-7013 Review Open Access Schwann Cell Supplementation in Neurosurgical Procedures after Neurotrauma Santiago R. Unda* Instituto de Biotecnología, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja, Argentina *Corresponding author: Santiago R. Unda, Instituto de Biotecnología, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja, Argentina, Tel: 3804277348; E-mail: [email protected] Rec Date: January 12, 2018, Acc Date: March 13, 2018, Pub Date: March 16, 2018 Copyright: © 2018 Santiago R. Unda. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Nerve trauma is a common cause of quality of life decline, especially in young people. Causing a high impact in personal, psychological and economic issues. The Peripheral Nerve Injury (PNI) with a several grade of axonotmesis and neurotmesis represents a real challenge for neurosurgeons. However, the basic science has greatly contribute to axonal degeneration and regeneration knowledge, making possible to implement in new protocols with molecular and cellular techniques for improve nerve re-growth and to restore motor and sensitive function. The Schwann cell transplantation from different stem cells origins is one of the potential tools for new therapies. In this briefly review is included the recent results of animal and human neurosurgery protocols of Schwann cells transplantation for nerve recovery after a PNI.
    [Show full text]
  • Types and Classification of Nerve Injury: a Review
    Indian Journal of Clinical Practice, Vol. 31, No. 5, October 2020 REVIEW ARTICLE Types and Classification of Nerve Injury: A Review R JAYASRI KRUPAA*, KMK MASTHAN†, ARAVINTHA BABU N‡, SONA B# ABSTRACT Nerve injuries are the most common conditions with varying symptoms, depending on the severity, intensity and nerves involved. Though much information is available on the mechanisms of injury and regeneration, reliable treatments that ensure full functional recovery are limited. The type of nerve injury alters the treatment and prognosis. This review article aims to summarize the various types of nerve injuries and their classification. Keywords: Axonotmesis, neurotmesis, neurapraxia, Wallerian degeneration erve injuries are the most common conditions bundles of fibers called fascicles, which are covered with varying symptoms depending on the by perineurium. severity, intensity and nerves involved. N Â Epineurium: Finally, groups of fascicles are bundled Recovery after any nerve injury is variable. Though together to form the peripheral nerve (such as the much information exists on the mechanisms of injury median nerve), which is covered by epineurium. and regeneration, reliable treatments that ensure full functional recovery are limited. The type of nerve CLASSIFICATION injury alters the treatment and prognosis. This review article aims to summarize the various types of nerve Classification by Type of Nerve Injury injuries and classification of nerve injuries, which is There are three types of nerve injuries: useful in understanding their pathological basis, and to evaluate the prognosis for recovery. Nerve section Understanding the basic nerve anatomy is important Nerve section can be partial or complete, sharp or for the classification and also essential to evaluate blunt.
    [Show full text]
  • Enhanced Repair Effect of Toll-Like Receptor 4 Activation on Neurotmesis: Assessment Using MR Neurography
    ORIGINAL RESEARCH PERIPHERAL NERVOUS SYSTEM Enhanced Repair Effect of Toll-Like Receptor 4 Activation on Neurotmesis: Assessment Using MR Neurography H.J. Li, X. Zhang, F. Zhang, X.H. Wen, L.J. Lu, and J. Shen ABSTRACT BACKGROUND AND PURPOSE: Alternative use of molecular approaches is promising for improving nerve regeneration in surgical repair of neurotmesis. The purpose of this study was to determine the role of MR imaging in assessment of the enhanced nerve regeneration with toll-like receptor 4 signaling activation in surgical repair of neurotmesis. MATERIALS AND METHODS: Forty-eight healthy rats in which the sciatic nerve was surgically transected followed by immediate surgical coaptation received intraperitoneal injection of toll-like receptor 4 agonist lipopolysaccharide (n ϭ 24, study group) or phosphate buffered saline (n ϭ 24, control group) until postoperative day 7. Sequential T2 measurements and gadofluorine M-enhanced MR imaging and sciatic functional index were obtained over an 8-week follow-up period, with histologic assessments performed at regular intervals. T2 relaxation times and gadofluorine enhancement of the distal nerve stumps were measured and compared between nerves treated with lipopolysaccharide and those treated with phosphate buffered saline. RESULTS: Nerves treated with lipopolysaccharide injection achieved better functional recovery and showed more prominent gadofluo- rine enhancement and prolonged T2 values during the degenerative phase compared with nerves treated with phosphate buffered saline. T2 values in nerves treated with lipopolysaccharide showed a more rapid return to baseline level than did gadofluorine enhancement. Histology exhibited more macrophage recruitment, faster myelin debris clearance, and more pronounced nerve regeneration in nerves treated with toll-like receptor 4 activation.
    [Show full text]
  • Perioperative Upper Extremity Peripheral Nerve Injury and Patient Positioning: What Anesthesiologists Need to Know
    Anaesthesia & Critical Care Medicine Journal ISSN: 2577-4301 Perioperative Upper Extremity Peripheral Nerve Injury and Patient Positioning: What Anesthesiologists Need to Know Kamel I* and Huck E Review Article Lewis Katz School of Medicine at Temple University, USA Volume 4 Issue 3 Received Date: June 20, 2019 *Corresponding author: Ihab Kamel, Lewis Katz School of Medicine at Temple Published Date: August 01, 2019 University, MEHP 3401 N. Broad street, 3rd floor outpatient building ( Zone-B), DOI: 10.23880/accmj-16000155 Philadelphia, United States, Tel: 2158066599; Email: [email protected] Abstract Peripheral nerve injury is a rare but significant perioperative complication. Despite a variety of investigations that include observational, experimental, human cadaveric and animal studies, we have an incomplete understanding of the etiology of PPNI and the means to prevent it. In this article we reviewed current knowledge pertinent to perioperative upper extremity peripheral nerve injury and optimal intraoperative patient positioning. Keywords: Nerve Fibers; Proprioception; Perineurium; Epineurium; Endoneurium; Neurapraxia; Ulnar Neuropathy Abbreviations: PPNI: Perioperative Peripheral Nerve 2018.The most common perioperative peripheral nerve Injury; MAP: Mean Arterial Pressure; ASA CCP: American injuries involve the upper extremity with ulnar Society of Anesthesiology Closed Claims Project; SSEP: neuropathy and brachial plexus injury being the most Somato Sensory Evoked Potentials frequent [3,4]. In this article we review upper extremity PPNI with regards to anatomy and physiology, Introduction mechanisms of injury, risk factors, and prevention of upper extremity PPNI. Perioperative peripheral nerve injury (PPNI) is a rare complication with a reported incidence of 0.03-0.1% [1,2]. Anatomy and Physiology of Peripheral PPNI is a significant source of patient disability and is the Nerves second most common cause of anesthesia malpractice claims [3,4].
    [Show full text]
  • Development of a Z-Stack Projection Imaging Protocol for a Nerve Allograft
    DEVELOPMENT OF A Z-STACK PROJECTION IMAGING PROTOCOL FOR A NERVE ALLOGRAFT by SELVAANISH SELVAM Submitted in partial fulfillment of the requirements for the degree of Master of Science Dissertation Advisor: Dr. George F. Muschler Department of Biomedical Engineering CASE WESTERN RESERVE UNIVERSITY August 2018 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of Selvaanish Selvam candidate for the degree of (Master of Science) *. Committee Chair Dr. George F. Muschler Committee Member Dr. Eben Alsberg Committee Member Dr. Robert Kirsch Committee Member Cynthia Boehm Date of Defense May 4th 2018 *we also certify that written approval has been obtained For any proprietary material contained therein 2 Table of Contents List of Tables……………………………………………………………………..4 Figures List……………………………………………………………………….5 Acknowledgments………………………………………………………………..6 List of Abbreviations………………………………………………………….....7 Abstract…………………………………………………………………………...8 Introduction……………………………………………………………………..10 Methods………………………………………………………………………….21 Data and Analysis………………………………………………………………31 Conclusions and Future Directions……………………………………………51 References……………………………………………………………………….53 3 List of Tables Table 1: Overall summary of ratios and retention rates……………………..31 Table 2: Selection Ratio for grafts (3X – 10-minute rinse) ………………….35 Table 3: Selection Ratio for grafts (15-minute soak) ………………………...35 4 List of Figures: Figure 1: 2D 10X DAPI stained image using current techniques…….……….9 Figure 2: Peripheral Nerve Anatomy………………………………………….10
    [Show full text]
  • Restoration of Neurological Function Following Peripheral Nerve Trauma
    International Journal of Molecular Sciences Review Restoration of Neurological Function Following Peripheral Nerve Trauma Damien P. Kuffler 1,* and Christian Foy 2 1 Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR 00901, USA 2 Section of Orthopedic Surgery, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00901, USA; [email protected] * Correspondence: dkuffl[email protected] Received: 12 January 2020; Accepted: 3 March 2020; Published: 6 March 2020 Abstract: Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery.
    [Show full text]
  • Painful Abdominal Wall Nerves
    CASE REPORT Reconstructive Treatment of Painful Nerves in the Abdominal Wall Using Processed Nerve Allografts Andrew Bi, BS Eugene Park, MD Summary: Neuromas can be a debilitating cause of pain and often negatively af- Gregory A. Dumanian, MD fect patients’ quality of life. One effective method of treatment involves surgical resection of the painful neuroma and use of a processed nerve allograft to repair the injured nerve segment. Giving the nerve “somewhere to go and something to do” has been shown to effectively alleviate pain in upper and lower extremities. We present the first report of this concept to treat a painful neuroma of the ab- dominal wall that developed following a laparoscopic gastric bypass. The neuroma was excised, and the affected nerve was reconstructed using a processed nerve allograft as an interposition graft, with resolution of pain and gradual return of normal sensation. Patient-reported outcomes were measured using the Patient Reported Outcomes Measurement Information System. Neuroma excision with concurrent interposition grafting using processed nerve allografts may be a promising method of treatment for postsurgical painful neuromas of the trunk. Bi et al. (Plast Reconstr Surg Glob Open 2018;6:e1670; doi: 10.1097/GOX.0000000000001670; Published online 6 March 2018.) INTRODUCTION and unacceptable repeat surgical rates.2 And while wrap- Painful neuromas can form following any surgery when ping the distal point of a painful nerve postneuroma exci- nerves are injured due to cautery or traction. Nerve injury sion
    [Show full text]
  • Axonotmesis of the Sciatic Nerve
    Diagnostic and Interventional Imaging (2012) 93, 398—400 LETTER / Neurology Axonotmesis of the sciatic nerve a,∗ b c c M. Ohana , S. Quijano-Roy , F. Colas , C. Lebreton , c c C. Vallée , R.-Y. Carlier a Radiology Department, Nouvel Hôpital Civil, Strasbourg University Hospitals, 1, place de l’Hôpital, 67000 Strasbourg, France b Paediatrics Department, Raymond-Poincaré Hospital, 104, boulevard Raymond-Poincaré, 92380 Garches, France c Radiology Department, Raymond-Poincaré Hospital, 104, boulevard Raymond-Poincaré, 92380 Garches, France Case report KEYWORDS Peripheral nerve; We report the case of an eight-year old girl who was admitted for aftercare and rehabilita- MRI; tion one month after a serious head injury that required a four-day stay in intensive care. Axonotmesis Initial investigations did not show any evidence of post-traumatic injury. During her admission, she developed significant pain in the left buttock radiating to the lower limb associated with a sensorimotor deficit. These disabling pains persisted at rest. The clinical examination revealed that the patient had great difficulty walking, presenting a limp, a tender point on palpation of the left buttock radiating to the thigh and the leg along a posterolateral course, with hyperaesthesia in the whole area. Extension of the leg and both flexion and extension of the foot were impossible; hip flexion was normal. Hypoaesthesia was noted on the inside of the left leg and foot. The left patellar and Achilles reflexes were absent. Vital signs were normal. First-line magnetic resonance imaging (MRI) of the lumbar spine did not reveal any abnormalities. An MRI of the pelvis and lower limbs was then carried out and this highlighted involve- ment of the sciatic nerve along its whole extra-perineal course (Fig.
    [Show full text]
  • Diagnosis of the of the Extremities
    Postgrad Med J: first published as 10.1136/pgmj.22.251.255 on 1 September 1946. Downloaded from DIAGNOSIS OF THE COMMON FORMS OF NERVE INJURY OF THE EXTREMITIES By COLIN EDWARDS, M.B., B.S., M.R.C.P., D.P.M. History-taking is the first step in diagnosis and panying diminution or loss of reflexes. In the it is useful to know how varied the causes of peri- absence of an external wound or contusion near the pheral nerve injuries can be. Otherwise the true nerve concerned these muscle changes may be the nature of a traumatic lesion sometimes may not only guide. be suspected. Look first at the most peripheral muscles and The commoner ones are the result of:- particularly those which move the hands and feet. (I) Cutting and laceration. If these are normal (indicating an intact nerve (2) Stretching, which may be sudden (e.g. supply) it is uncommon, although not impossible, stretching of the sciatic by jumping upon the for muscles to be involved whose supply leaves extended foot) causing fibre rupture and those same nerves at a more proximal level. And haemorrhage, or prolonged (e.g. lying with the proximal involvement with normal peripheral arm extended for hours above the head) muscles only occurs close to the actual spot where ischaemia. causing the nerve is injured. The state of innervation of Contusion. the muscles moving the hands and feet gives no (3) to that of the limb (4) Concussion (including that produced by a guide, however, girdle muscles,Protected by copyright. "near miss" when a missile passes through as they are supplied by comparatively short nerves neighbouring tissues without touching the nerve).
    [Show full text]
  • Upper Extremity Compression Neuropathies
    Upper Extremity Compression Neuropathies John Dougherty, DO, FACOFP, FAOASM, FAODME Dean – Touro University Nevada AOASM Annual Mee@ng – Las Vegas 2017 • Nerve L. nervus - sinew • Axon Gr. axon - axis • -praxia Gr. praxis – ac@on • -tmesis – cung • Tunnel – Old English - covered passageway • Canal – L. canalis pipe • Groove - Norse grof "brook, river bed” • A 23 year old first year medical student is par@cipang in OMM lab when she no@ces she is having a hard @me bending her arm at the elbow and has difficulty raising her arm at the shoulder. Her lab partner does an exam and finds no signs of impingement or RC weakness. She does no@ce that she has some numbness over the deltoid. You suspect which of the following is impacted? A. Spinal Accessory (CN XI) nerve B. Axillary nerve C. Long Thoracic nerve D. Suprascapular nerve E. Brachial Plexus Axillary - Altered Sensation Axillary – Causes of Lesion Axillary – Causes of Lesion • The suspected e@ology of this diagnosis is due to which of the following? A. Improper “Kirksville Crunch” technique B. Falling asleep in class with her arm draped over her the back of the chair C. Her extensive use talking on her cellphone D. Excessive use of the mouse on her computer E. Her 70 pound backpack slung over her shoulder Quadrilateral Space Syndrome (QSS): Backpack Shoulder Triceps weakness Saturday Night Palsy • Radial Nerve Palsy Cubital tunnel syndrome • Pain, numbness or @ngling of forearm, • Ulnar nerve compression • “Cell phone elbow” • Symptoms include a loss of muscle strength, coordinaon and mobility; • Symptoms are not treated, the ring and pinky finger can eventually become clawed • What type of injury has occurred to the affected nerve? • Neuropraxia • Axonotmesis • Neurotmesis • Nerve injury secondary to compression or trac@on depends on intensity and duraon.
    [Show full text]
  • Current and Future Imaging of the Peripheral Nervous System
    Diagnostic and Interventional Imaging (2014) 95, 17—26 REVIEW / Neuroradiology Current and future imaging of the peripheral nervous system a,∗ b c d M. Ohana , T. Moser , A. Moussaouï , S. Kremer , e f d R.Y. Carlier , P. Liverneaux , J.-L. Dietemann a Department of Radiology, Nouveau Civil Hospital — Strasbourg University Hospitals, 1, place de l’Hôpital, 67000 Strasbourg, France b Department of Radiology, Montreal University Hospitals —Notre-Dame Hospital, 1560 Sherbrooke East, Montreal (Quebec), Canada c Department of Radiology, Sainte-Odile Clinic, 6, rue Simonis, 67100 Strasbourg, France d Department of Radiology II, Hautepierre Hospital — Strasbourg University Hospitals, avenue Molière, 67098 Strasbourg, France e Department of Radiology, Raymond-Poincaré Hospital, 104, boulevard Raymond-Poincaré, 92380 Garches, France f SOS main, CCOM — Strasbourg University Hospitals, 10, avenue Baumann, 67403 Illkirch, France KEYWORDS Abstract Peripheral nervous system (PNS) imaging is usually carried out by ultrasound and MRI. Peripheral nervous Thanks to its wide availability and excellent spatial resolution, ultrasound is a mature investiga- system; tion with clearly established indications, particularly in entrapment syndromes and tumors. MRI Ultrasound; is generally a second-line examination, which provides decisive additional information thanks to MRI; its excellent contrast resolution and its multiplanar abilities. This review describes the current Neurography methods for imaging the PNS, concentrating on acquisition techniques, normal results and basic pathological semiology. Ongoing and future developments are described in order to underline the forthcoming changes in this very dynamic field of musculoskeletal radiology. © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved. The nervous system is divided into the central nervous system (CNS) which consists of the brain, spinal cord and retina, and the peripheral nervous system (PNS) which is made up of all of the other nervous structures [1].
    [Show full text]
  • Traumatic Injury to Peripheral Nerves
    AAEM MINIMONOGRAPH 28 ABSTRACT: This article reviews the epidemiology and classification of traumatic peripheral nerve injuries, the effects of these injuries on nerve and muscle, and how electrodiagnosis is used to help classify the injury. Mecha- nisms of recovery are also reviewed. Motor and sensory nerve conduction studies, needle electromyography, and other electrophysiological methods are particularly useful for localizing peripheral nerve injuries, detecting and quantifying the degree of axon loss, and contributing toward treatment de- cisions as well as prognostication. © 2000 American Association of Electrodiagnostic Medicine. Published by John Wiley & Sons, Inc. Muscle Nerve 23: 863–873, 2000 TRAUMATIC INJURY TO PERIPHERAL NERVES LAWRENCE R. ROBINSON, MD Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195 USA EPIDEMIOLOGY OF PERIPHERAL NERVE TRAUMA company central nervous system trauma, not only Traumatic injury to peripheral nerves results in con- compounding the disability, but making recognition siderable disability across the world. In peacetime, of the peripheral nerve lesion problematic. Of pa- peripheral nerve injuries commonly result from tients with peripheral nerve injuries, about 60% have 30 trauma due to motor vehicle accidents and less com- a traumatic brain injury. Conversely, of those with monly from penetrating trauma, falls, and industrial traumatic brain injury admitted to rehabilitation accidents. Of all patients admitted to Level I trauma units, 10 to 34% have associated peripheral nerve 7,14,39 centers, it is estimated that roughly 2 to 3% have injuries. It is often easy to miss peripheral nerve peripheral nerve injuries.30,36 If plexus and root in- injuries in the setting of central nervous system juries are also included, the incidence is about 5%.30 trauma.
    [Show full text]