Traumatic Injury to Peripheral Nerves

Total Page:16

File Type:pdf, Size:1020Kb

Traumatic Injury to Peripheral Nerves AAEM MINIMONOGRAPH 28 ABSTRACT: This article reviews the epidemiology and classification of traumatic peripheral nerve injuries, the effects of these injuries on nerve and muscle, and how electrodiagnosis is used to help classify the injury. Mecha- nisms of recovery are also reviewed. Motor and sensory nerve conduction studies, needle electromyography, and other electrophysiological methods are particularly useful for localizing peripheral nerve injuries, detecting and quantifying the degree of axon loss, and contributing toward treatment de- cisions as well as prognostication. © 2000 American Association of Electrodiagnostic Medicine. Published by John Wiley & Sons, Inc. Muscle Nerve 23: 863–873, 2000 TRAUMATIC INJURY TO PERIPHERAL NERVES LAWRENCE R. ROBINSON, MD Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195 USA EPIDEMIOLOGY OF PERIPHERAL NERVE TRAUMA company central nervous system trauma, not only Traumatic injury to peripheral nerves results in con- compounding the disability, but making recognition siderable disability across the world. In peacetime, of the peripheral nerve lesion problematic. Of pa- peripheral nerve injuries commonly result from tients with peripheral nerve injuries, about 60% have 30 trauma due to motor vehicle accidents and less com- a traumatic brain injury. Conversely, of those with monly from penetrating trauma, falls, and industrial traumatic brain injury admitted to rehabilitation accidents. Of all patients admitted to Level I trauma units, 10 to 34% have associated peripheral nerve 7,14,39 centers, it is estimated that roughly 2 to 3% have injuries. It is often easy to miss peripheral nerve peripheral nerve injuries.30,36 If plexus and root in- injuries in the setting of central nervous system juries are also included, the incidence is about 5%.30 trauma. Because the neurological history and exami- In the upper limb, the nerve most commonly re- nation is limited, early hints to a superimposed pe- ported injured is the radial nerve, followed by ulnar ripheral nerve lesion might be only flaccidity, are- and median nerves.30,36 Lower limb peripheral nerve flexia, and reduced movement of a limb. injuries are less common, with the sciatic most fre- Peripheral nerve injuries are of significant im- quently injured, followed by peroneal and rarely port as they impede recovery of function and return tibial or femoral nerves. Fractures of nearby bones to work and carry risk of secondary disabilities from are commonly associated, such as humeral fractures falls, fractures, or other secondary injuries. An un- with radial neuropathy. derstanding of the classification, pathophysiology, In wartime, peripheral nerve trauma is much and electrodiagnosis of these lesions is critical to the more common, and much of the knowledge about appropriate diagnosis, localization, and manage- peripheral nerve injury, repair, and recovery comes ment of peripheral nerve trauma. from experience derived in the American Civil War, World Wars I and II, and subsequent wars.20,35,40 CLASSIFICATION OF NERVE INJURIES Peripheral nerve injuries may be seen as an iso- For the purposes of this article, trauma is defined as lated nervous system injury but may also often ac- injury resulting from kinetic energy applied to the nerve or limb. This includes, for example, the ki- Abbreviations: CMAP, compound muscle action potential; EMG, elec- netic energy of the patient moving at high speed into tromyography; MUAP, motor unit action potential; NCS, nerve conduction a car or wall, a bullet moving through tissue with a study; SNAP, sensory nerve action potential Key words: electromyography; peripheral nerve; trauma high velocity, or a sudden stretch of a limb. Kinetic Correspondence to: American Association of Electrodiagnostic Medi- energy (KE) is proportional to the mass of the object cine, 421 First Avenue SW, Suite 300 East, Rochester, MN 55902; e-mail [email protected] (m) and the square of the velocity (v): © 2000 American Association of Electrodiagnostic Medicine. Published 2 by John Wiley & Sons, Inc. KE=½mv. AAEM MM#28: Nerve Injury MUSCLE & NERVE June 2000 863 Thus, a doubling of the velocity (e.g., bullet velocity rium) remains partially or fully intact. Wallerian de- or motor vehicle speed) results in a fourfold increase generation occurs, but subsequent axonal regrowth in kinetic energy applied to the body or body part. may proceed along the intact endoneurial tubes. Re- Knife or other sharp wounds are also included in this covery ultimately depends upon the degree of inter- review, though the amount of kinetic energy neces- nal disorganization in the nerve as well as the dis- sary for a significant peripheral nerve injury is prob- tance to the end organ. Sunderland’s classification ably lower. Although burns and electrical injuries (see below) further divides this category. Neurotme- also derive from high amounts of energy (thermal or sis describes a nerve that has been either completely electrical) applied to tissue, these injuries will not be severed or is so markedly disorganized by scar tissue considered here because the pathophysiology of the that axonal regrowth is impossible. Examples are injury is significantly different from those wounds sharp injury, some traction injuries, and percussion resulting from kinetic energy. injuries, or injection of noxious drugs. Prognosis for There are two predominant schemes that have spontaneous recovery is extremely poor without sur- been proposed for classification of peripheral nerve gical intervention. traumatic injuries: that of Seddon35 and that of Sun- Sunderland40 uses a more subdivided scheme to derland40 (Table 1). The former is more commonly describe peripheral nerve injuries, with five groups used in the literature. Seddon has used the terms instead of three. First-degree injury represents con- “neurapraxia,” “axonotmesis,” and “neurotmesis” to duction block with completely intact stroma and cor- describe peripheral nerve injuries.35 Neurapraxia is responds to Seddon’s classification of neurapraxia. a comparatively mild injury with motor and sensory Prognosis is good. Second-degree injury involves loss but no evidence of Wallerian degeneration. The transection of the axon but with completely intact nerve distally conducts normally. Focal demyelin- endoneurium and stroma. Recovery can occur by ation and/or ischemia are thought to be the etiolo- axonal regrowth along endoneurial tubes. Third- gies of the conduction block. Recovery may occur degree injury represents transection of the axon and within hours, days, weeks, or up to a few months. endoneurial tubes, but the surrounding perineu- Axonotmesis is commonly seen in crush injuries, rium is intact. Recovery depends upon how well the nerve stretch injuries (such as from motor vehicle axons can cross the site of the lesion and find endo- accidents and falls), or percussion injuries (such as neurial tubes. Fourth degree injury involves loss of from gunshot wounds). The axons and their myelin continuity of axons, endoneurial tubes, and perineu- sheaths are broken, yet the surrounding stroma (i.e., rium. Individual nerve fascicles are transected, and the Schwann tubes, endoneurium, and perineu- the continuity of the nerve trunk is maintained only Table 1. Classification systems for nerve injury.* Seddon Sunderland classification classification Pathology Prognosis Neurapraxia First degree Myelin injury or ischemia Excellent recovery in weeks to months Axonotmesis Axon loss Good to poor, depending upon integrity of Variable stromal disruption supporting structures and distance to muscle Second degree Axon loss Good, depending upon distance to muscle Endoneurial tubes intact Perineurium intact Epineurium intact Third degree Axon loss Poor Endoneurial tubes disrupted Axonal misdirection Perineurium intact Surgery may be required Epineurium intact Fourth degree Axon loss Poor Endoneurial tubes disrupted Axonal misdirection Perineurium disrupted Surgery usually required Epineurium intact Neurotmesis Fifth degree Axon loss No spontaneous recovery Endoneurial tubes severed Surgery required Perineurium severed Prognosis after surgery guarded Epineurium severed *Adapted from Dillingham.8 864 AAEM MM#28: Nerve Injury MUSCLE & NERVE June 2000 by the surrounding epineurium. Traction injuries results in block of conduction rather than simply commonly produce these types of lesions. Prognosis severe slowing. is usually poor without surgical intervention because There are relatively few changes in muscle as a of the marked internal disorganization of guiding result of neurapraxic lesions. Disuse atrophy can oc- connective tissue elements and associated scarring. cur when neurapraxia is more than transient. There Fifth-degree injury describes transection of the en- remains debate as to whether muscle fibrillates after tire nerve trunk and is similar to Seddon’s neurot- a purely neurapraxic lesion (see below). mesis. Some authors have described another degree of EFFECTS OF AXONOTMESIS ON NERVE injury, known as sixth-degree injury.25 This is a AND MUSCLE mixed lesion with both axon loss and conduction Soon after an axonal lesion, the process of Wallerian block occurring in some fibers. This type of lesion is degeneration starts to occur in nerve fibers. This probably quite common and requires skillful electro- process is well described elsewhere10,27 and will be diagnostic data collection and analysis to separate it only briefly reviewed here. There are changes in from pure axon-loss lesions. both the
Recommended publications
  • Schwann Cell Supplementation in Neurosurgical Procedures After Neurotrauma Santiago R
    ll Scienc Ce e f & o T l h a e Unda, J Cell Sci Ther 2018, 9:2 n r a r a p p u u DOI: 10.4172/2157-7013.1000281 y y o o J J Journal of Cell Science & Therapy ISSN: 2157-7013 Review Open Access Schwann Cell Supplementation in Neurosurgical Procedures after Neurotrauma Santiago R. Unda* Instituto de Biotecnología, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja, Argentina *Corresponding author: Santiago R. Unda, Instituto de Biotecnología, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja, Argentina, Tel: 3804277348; E-mail: [email protected] Rec Date: January 12, 2018, Acc Date: March 13, 2018, Pub Date: March 16, 2018 Copyright: © 2018 Santiago R. Unda. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Nerve trauma is a common cause of quality of life decline, especially in young people. Causing a high impact in personal, psychological and economic issues. The Peripheral Nerve Injury (PNI) with a several grade of axonotmesis and neurotmesis represents a real challenge for neurosurgeons. However, the basic science has greatly contribute to axonal degeneration and regeneration knowledge, making possible to implement in new protocols with molecular and cellular techniques for improve nerve re-growth and to restore motor and sensitive function. The Schwann cell transplantation from different stem cells origins is one of the potential tools for new therapies. In this briefly review is included the recent results of animal and human neurosurgery protocols of Schwann cells transplantation for nerve recovery after a PNI.
    [Show full text]
  • Nerve Ultrasound in Dorsal Root Ganglion Disorders: Smaller Nerves Lead to Bigger Insights
    Clinical Neurophysiology 130 (2019) 550–551 Contents lists available at ScienceDirect Clinical Neurophysiology journal homepage: www.elsevier.com/locate/clinph Editorial Nerve ultrasound in dorsal root ganglion disorders: Smaller nerves lead to bigger insights See Article, pages 568–572 After decades of having to make do with electric stimulation representing the fascicles, bundled together in a large outer cable and recording (i.e. nerve conduction studies, electromyography sheath (van Alfen et al., 2018). and evoked potentials), nerve ultrasound now provides the oppor- Next, it is important to realize what the ratio between axon/ tunity to improve neurodiagnostic patient care by deploying a myelin and connective tissue in a given nerve segment is, and powerful tool to detect neuromuscular pathology in an accurate how that ratio changes from the proximal root to the distal end and patient-friendly way (Mah et al., 2018; Walker et al., 2018). branches (Schraut et al., 2016). Connective tissue elements of the Nerve ultrasound is also increasingly providing neurologists and perineurium and epineurium are relatively sparse at the very prox- clinical neurophysiologists with the opportunity to increase their imal root and plexus levels, with an average connective tissue con- insight in the pathophysiology of peripheral nervous system tent of around 25–30%. Ultrasonographically, this means that roots (PNS) pathology. In this issue of Clinical Neurophysiology, Leadbet- will always look rather black in appearance without much dis- ter and coworkers (Leadbetter et al., 2019) describe the results of cernible fascicular architecture, as the sparseness of connective tis- their study on nerve ultrasound for diagnosing sensory neuronopa- sue elements provides relatively few reflectors to create an image thy in spinocerebellar ataxia type 2 and CANVAS syndrome.
    [Show full text]
  • Types and Classification of Nerve Injury: a Review
    Indian Journal of Clinical Practice, Vol. 31, No. 5, October 2020 REVIEW ARTICLE Types and Classification of Nerve Injury: A Review R JAYASRI KRUPAA*, KMK MASTHAN†, ARAVINTHA BABU N‡, SONA B# ABSTRACT Nerve injuries are the most common conditions with varying symptoms, depending on the severity, intensity and nerves involved. Though much information is available on the mechanisms of injury and regeneration, reliable treatments that ensure full functional recovery are limited. The type of nerve injury alters the treatment and prognosis. This review article aims to summarize the various types of nerve injuries and their classification. Keywords: Axonotmesis, neurotmesis, neurapraxia, Wallerian degeneration erve injuries are the most common conditions bundles of fibers called fascicles, which are covered with varying symptoms depending on the by perineurium. severity, intensity and nerves involved. N Â Epineurium: Finally, groups of fascicles are bundled Recovery after any nerve injury is variable. Though together to form the peripheral nerve (such as the much information exists on the mechanisms of injury median nerve), which is covered by epineurium. and regeneration, reliable treatments that ensure full functional recovery are limited. The type of nerve CLASSIFICATION injury alters the treatment and prognosis. This review article aims to summarize the various types of nerve Classification by Type of Nerve Injury injuries and classification of nerve injuries, which is There are three types of nerve injuries: useful in understanding their pathological basis, and to evaluate the prognosis for recovery. Nerve section Understanding the basic nerve anatomy is important Nerve section can be partial or complete, sharp or for the classification and also essential to evaluate blunt.
    [Show full text]
  • Strategies to Improve Nerve Regeneration After Radical Prostatectomy: a Narrative Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin Strategies to improve nerve regeneration after radical prostatectomy: a narrative review Stefano Geuna 1, 2, Luisa Muratori1, 2, Federica Fregnan 1, 2, Matteo Manfredi4 , Riccardo Bertolo 3, 4 , Francesco Porpiglia4. 1 Department of Clinical and Biological Sciences, University of Turin, Orbassano (To), 10043, Italy. 2 Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (To), 10043, Italy. 3 Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, US. 4 Department of Oncology, University of Turin, Orbassano (To), 10043, Italy. Abstract Peripheral nerves are complex organs that spread throughout the entire human body. They are frequently affected by lesions not only as a result of trauma but also following radical tumor resection. In fact, despite the advancement in surgical techniques, such as nerve- sparing robot assisted radical prostatectomy, some degree of nerve injury may occur resulting in erectile dysfunction with significant impairment of the quality of life. The aim of this review is to provide an overview on the mechanisms of the regeneration of injured peripheral nerves and to describe the potential strategies to improve the regeneration process and the functional recovery. Yet, the recent advances in bio- engineering strategies to promote nerve regeneration in the urological field are outlined with a view on the possible future regenerative therapies which might ameliorate the functional outcome after radical prostatectomy. 1 Introduction Radical prostatectomy is the gold standard surgical treatment for organ-confined prostate cancer. The employment of innovative surgical technique such as nerve-sparing robot assisted radical prostatectomy allowed to magnify the anatomical field leading to a three- dimensional perspective obtained through the robotic lenses and a better anatomical knowledge.
    [Show full text]
  • Electromagnetic Field and TGF-Β Enhance the Compensatory
    www.nature.com/scientificreports OPEN Electromagnetic feld and TGF‑β enhance the compensatory plasticity after sensory nerve injury in cockroach Periplaneta americana Milena Jankowska1, Angelika Klimek1, Chiara Valsecchi2, Maria Stankiewicz1, Joanna Wyszkowska1* & Justyna Rogalska1 Recovery of function after sensory nerves injury involves compensatory plasticity, which can be observed in invertebrates. The aim of the study was the evaluation of compensatory plasticity in the cockroach (Periplaneta americana) nervous system after the sensory nerve injury and assessment of the efect of electromagnetic feld exposure (EMF, 50 Hz, 7 mT) and TGF‑β on this process. The bioelectrical activities of nerves (pre‑and post‑synaptic parts of the sensory path) were recorded under wind stimulation of the cerci before and after right cercus ablation and in insects exposed to EMF and treated with TGF‑β. Ablation of the right cercus caused an increase of activity of the left presynaptic part of the sensory path. Exposure to EMF and TGF‑β induced an increase of activity in both parts of the sensory path. This suggests strengthening efects of EMF and TGF‑β on the insect ability to recognize stimuli after one cercus ablation. Data from locomotor tests proved electrophysiological results. The takeover of the function of one cercus by the second one proves the existence of compensatory plasticity in the cockroach escape system, which makes it a good model for studying compensatory plasticity. We recommend further research on EMF as a useful factor in neurorehabilitation. Injuries in the nervous system caused by acute trauma, neurodegenerative diseases or even old age are hard to reverse and represent an enormous challenge for modern medicine.
    [Show full text]
  • Management of Postpolio Syndrome
    Review Management of postpolio syndrome Henrik Gonzalez, Tomas Olsson, Kristian Borg Lancet Neurol 2010; 9: 634–42 Postpolio syndrome is characterised by the exacerbation of existing or new health problems, most often muscle weakness See Refl ection and Reaction and fatigability, general fatigue, and pain, after a period of stability subsequent to acute polio infection. Diagnosis is page 561 based on the presence of a lower motor neuron disorder that is supported by neurophysiological fi ndings, with exclusion Division of Rehabilitation of other disorders as causes of the new symptoms. The muscle-related eff ects of postpolio syndrome are possibly Medicine, Department of associated with an ongoing process of denervation and reinnervation, reaching a point at which denervation is no Clinical Sciences, Danderyd Hospital (H Gonzalez MD, longer compensated for by reinnervation. The cause of this denervation is unknown, but an infl ammatory process is K Borg MD) and Department of possible. Rehabilitation in patients with postpolio syndrome should take a multiprofessional and multidisciplinary Clinical Neurosciences, Centre approach, with an emphasis on physiotherapy, including enhanced or individually modifi ed physical activity, and muscle for Molecular Medicine training. Patients with postpolio syndrome should be advised to avoid both inactivity and overuse of weak muscles. (T Olsson MD), Karolinska Institute, Stockholm, Sweden Evaluation of the need for orthoses and assistive devices is often required. Correspondence to: Henrik Gonzalez, Division of Introduction summary of the pathophysiology and clinical Rehabilitation Medicine, 12–20 million people worldwide have sequelae of characteristics of postpolio syndrome, outline diagnostic Department of Clinical Sciences, poliomyelitis, according to Post-Polio Health and treatment options, and suggest future research Karolinska Institute, Danderyd Hospital, S-182 88 Stockholm, International.
    [Show full text]
  • Some Aspects of Facial Nerve Paralysis* PART Li
    13 Januarie 1973 S.-A. MEDIESE TVDSKRIF 65 Some Aspects of Facial Nerve Paralysis* PART lI. ELECTRICAL TESTS AND THE SUBMAXILLARY SALlYARY TEST M. G. POTGIETER,t M.B. CH.B. UNIV. PRET., M.MED. OTOL. UNIV. CAPE TOWN, Department of Otolaryngology, Groote Schuur Hospital, Observatory, Cape SUMMARY fibres are the first to be affected and when there is re­ generation, the new fibres conduct slowly.' The submaxillary salivary flow test gives reliable in­ The maintenance of nerve and muscle excitability de­ formation as to whether neurapraxia, axono:mesis, or pends greatly upon sodium and potassium cations. States neurotmesis of the facial nerve is present. This can be of polarization and depolarization are dependent on the corroborated by electrical studies. This test can make an shift of sodium and potassium cations across the cell important contribution to the topognosis and prognosis of membranes. With injury to the nerve;" elimination of facial paralysis, especially when elaborate electrical the membrane potential takes place and this causes a lack equipment for nerve excitability tests and electromyo­ of electrical conduction. A shift of potassium from the graphy is not available. cell takes place. An over-all increase in the potassium content of the injured nerve exists where, for instance, S. Afr. Med. J., 47, 65 (1973). bone fragments cause a foreign body reaction. Hyaluronic acid from an inflammatory response, occurs as a potas­ sium hyaluronate. Fibroblast and mast-cell activities in­ ELECTRlCAL TESTS crease and elaborate mucopolysaccharides. This may explain the high potassium values, maintained in the In 1872 Duchenne described the technique of nerve ex­ injured area of the nerve, inhibiting transmission.
    [Show full text]
  • Wallerian Degeneration and Inflammation in Rat Peripheral Nerve Detected by in Vivo MR Imaging
    741 Wallerian Degeneration and Inflammation in Rat Peripheral Nerve Detected by in Vivo MR Imaging DavidS. Titelbaum 1 To investigate the role of MR imaging in wallerian degeneration, a series of animal Joel L. Frazier 2 models of increasingly complex peripheral nerve injury were studied by in vivo MR. Robert I. Grossman 1 Proximal tibial nerves in brown Norway rats were either crushed, transected (neurotomy), Peter M. Joseph 1 or transected and grafted with Lewis rat (allograft) or brown Norway (isograft) donor Leonard T. Yu 2 nerves. The nerves distal to the site of injury were imaged at intervals of 0-54 days after surgery. Subsequent histologic analysis was obtained and correlated with MR Eleanor A. Kassab 1 3 findings. Crush injury, neurotomy, and nerve grafting all resulted in high signal intensity William F. Hickey along the course of the nerve observed on long TR/TE sequences, corresponding to 2 Don LaRossa edema and myelin breakdown from wallerian degeneration. The abnormal signal inten­ 4 Mark J. Brown sity resolved by 30 days after crush injury and by 45-54 days after neurotomy, when the active changes of wallerian degeneration had subsided. These changes were not seen in sham-operated rats. Our findings suggest that MR is capable of identifying traumatic neuropathy in a peripheral nerve undergoing active wallerian degeneration. The severity of injury may be reflected by the corresponding duration of signal abnormality. With the present methods, MR did not distinguish inflammatory from simple posttraumatic neuropathy. Wallerian degeneration is the axonal degeneration and loss of myelin that occurs when an axon is separated from its cell body.
    [Show full text]
  • Acute Reduction of Microglia Does Not Alter Axonal Injury in a Mouse Model of Repetitive Concussive Traumatic Brain Injury Rachel E
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury Rachel E. Bennett Washington University School of Medicine David L. Brody Washington University School of Medicine Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Bennett, Rachel E. and Brody, David L., ,"Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury." Journal of Neurotrauma.31,9. 1647-1663. (2014). https://digitalcommons.wustl.edu/open_access_pubs/4711 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. JOURNAL OF NEUROTRAUMA 31:1647–1663 (October 1, 2014) ª Mary Ann Liebert, Inc. DOI: 10.1089/neu.2013.3320 Acute Reduction of Microglia Does Not Alter Axonal Injury in a Mouse Model of Repetitive Concussive Traumatic Brain Injury Rachel E. Bennett and David L. Brody Abstract The pathological processes that lead to long-term consequences of multiple concussions are unclear. Primary mechanical damage to axons during concussion is likely to contribute to dysfunction. Secondary damage has been hypothesized to be induced or exacerbated by inflammation. The main inflammatory cells in the brain are microglia, a type of macrophage. This research sought to determine the contribution of microglia to axon degeneration after repetitive closed-skull traumatic brain injury (rcTBI) using CD11b-TK (thymidine kinase) mice, a valganciclovir-inducible model of macrophage depletion.
    [Show full text]
  • Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves
    Chapter 13 Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves Posterior Spinous process of vertebra Posterior root Deep muscles of back Posterior ramus Spinal cord Transverse process of vertebra Posterior root ganglion Spinal nerve Anterior ramus Meningeal branch Communicating rami Anterior root Vertebral body Sympathetic ganglion Anterior General Anatomy of Nerves and Ganglia • Spinal cord communicates with the rest of the body by way of spinal nerves • nerve = a cordlike organ composed of numerous nerve fibers (axons) bound together by connective tissue – mixed nerves contain both afferent (sensory) and efferent (motor) fibers – composed of thousands of fibers carrying currents in opposite directions Anatomy of a Nerve Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Epineurium Perineurium Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Endoneurium Nerve Rootlets fiber Posterior root Fascicle Posterior root ganglion Anterior Blood root vessels Spinal nerve (b) Copyright by R.G. Kessel and R.H. Kardon, Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy, 1979, W.H. Freeman, All rights reserved Blood vessels Fascicle Epineurium Perineurium Unmyelinated nerve fibers Myelinated nerve fibers (a) Endoneurium Myelin General Anatomy of Nerves and Ganglia • nerves of peripheral nervous system are ensheathed in Schwann cells – forms neurilemma and often a myelin sheath around the axon – external to neurilemma, each fiber is surrounded by
    [Show full text]
  • Anatomical, Clinical, and Electrodiagnostic Features of Radial Neuropathies
    Anatomical, Clinical, and Electrodiagnostic Features of Radial Neuropathies a, b Leo H. Wang, MD, PhD *, Michael D. Weiss, MD KEYWORDS Radial Posterior interosseous Neuropathy Electrodiagnostic study KEY POINTS The radial nerve subserves the extensor compartment of the arm. Radial nerve lesions are common because of the length and winding course of the nerve. The radial nerve is in direct contact with bone at the midpoint and distal third of the humerus, and therefore most vulnerable to compression or contusion from fractures. Electrodiagnostic studies are useful to localize and characterize the injury as axonal or demyelinating. Radial neuropathies at the midhumeral shaft tend to have good prognosis. INTRODUCTION The radial nerve is the principal nerve in the upper extremity that subserves the extensor compartments of the arm. It has a long and winding course rendering it vulnerable to injury. Radial neuropathies are commonly a consequence of acute trau- matic injury and only rarely caused by entrapment in the absence of such an injury. This article reviews the anatomy of the radial nerve, common sites of injury and their presentation, and the electrodiagnostic approach to localizing the lesion. ANATOMY OF THE RADIAL NERVE Course of the Radial Nerve The radial nerve subserves the extensors of the arms and fingers and the sensory nerves of the extensor surface of the arm.1–3 Because it serves the sensory and motor Disclosures: Dr Wang has no relevant disclosures. Dr Weiss is a consultant for CSL-Behring and a speaker for Grifols Inc. and Walgreens. He has research support from the Northeast ALS Consortium and ALS Therapy Alliance.
    [Show full text]
  • Nerve Injury After Peripheral Nerve Block: Allbest Rights Practices Reserved
    PRINTER-FRIENDLY VERSION AVAILABLE AT ANESTHESIOLOGYNEWS.COM Nerve Injury After Peripheral Nerve Block: AllBest rights Practices reserved. Reproduction and Medical-Legal in whole or in part without Protection permission isStrategies prohibited. Copyright © 2015 McMahon Publishing Group unless otherwise noted. DAVID HARDMAN, MD, MBA Professor of Anesthesiology Vice Chair for Professional Affairs Department of Anesthesiology University of North Carolina at Chapel Hill Chapel Hill, North Carolina Dr. Hardman reports no relevant financial conflicts of interest. he risk for permanent or severe nerve injury after peripheral nerve blocks (PNBs) is Textremely low, irrespective of its etiology (ie, related to anesthesia, surgery or the patient). The risk inherent in a procedure should always be explicitly discussed with the patient (sidebar, page 4). In fact, it may be better to define this phenomenon ultrasound-guided axillary blocks were used, demon- as postoperative neurologic symptoms (PONS) or peri- strated a very low nerve injury rate of 0.0037% at hos- operative nerve injuries (PNI) in order to help stan- pital discharge.1-7 dardize terminology. Permanent injury rates, as defined A 2009 prospective case series involving more than by a neurologic abnormality present at or beyond 12 7,000 PNBs, conducted in Australia and New Zealand, months after the procedure, have consistently ranged demonstrated that when a postoperative neurologic from 0.029% to 0.2%, although the results of a recent symptom was diagnosed, it was 9 times more likely to multicenter Web-based survey in France, in which be due to a non–anesthesia-related cause than a nerve ANESTHESIOLOGY NEWS • JULY 2015 1 block–related cause.6 On the other hand, it is well doc- PNI rate of 1.7% in patients who received a single-injec- umented in the orthopedic and anesthesia literature tion interscalene block (ISB).
    [Show full text]