Nerve Injury After Peripheral Nerve Block: Allbest Rights Practices Reserved

Total Page:16

File Type:pdf, Size:1020Kb

Nerve Injury After Peripheral Nerve Block: Allbest Rights Practices Reserved PRINTER-FRIENDLY VERSION AVAILABLE AT ANESTHESIOLOGYNEWS.COM Nerve Injury After Peripheral Nerve Block: AllBest rights Practices reserved. Reproduction and Medical-Legal in whole or in part without Protection permission isStrategies prohibited. Copyright © 2015 McMahon Publishing Group unless otherwise noted. DAVID HARDMAN, MD, MBA Professor of Anesthesiology Vice Chair for Professional Affairs Department of Anesthesiology University of North Carolina at Chapel Hill Chapel Hill, North Carolina Dr. Hardman reports no relevant financial conflicts of interest. he risk for permanent or severe nerve injury after peripheral nerve blocks (PNBs) is Textremely low, irrespective of its etiology (ie, related to anesthesia, surgery or the patient). The risk inherent in a procedure should always be explicitly discussed with the patient (sidebar, page 4). In fact, it may be better to define this phenomenon ultrasound-guided axillary blocks were used, demon- as postoperative neurologic symptoms (PONS) or peri- strated a very low nerve injury rate of 0.0037% at hos- operative nerve injuries (PNI) in order to help stan- pital discharge.1-7 dardize terminology. Permanent injury rates, as defined A 2009 prospective case series involving more than by a neurologic abnormality present at or beyond 12 7,000 PNBs, conducted in Australia and New Zealand, months after the procedure, have consistently ranged demonstrated that when a postoperative neurologic from 0.029% to 0.2%, although the results of a recent symptom was diagnosed, it was 9 times more likely to multicenter Web-based survey in France, in which be due to a non–anesthesia-related cause than a nerve ANESTHESIOLOGY NEWS • JULY 2015 1 block–related cause.6 On the other hand, it is well doc- PNI rate of 1.7% in patients who received a single-injec- umented in the orthopedic and anesthesia literature tion interscalene block (ISB). Patients who received an that there is an alarmingly high incidence of temporary ISB had significantly reduced odds for PNI (odds ratio, postoperative neurologic symptoms after arthroscopic 0.47).11 Factors not associated with an increased risk for shoulder surgery, both with and without regional blocks. PNI in this study included patient sex and longer oper- Most of these involve minor sensory paresthesias and ative time. dysesthesias, but they can range as high as 16% to 30% Over 97% of patients who developed PNI eventu- in the first week postoperatively.1,8,9 ally recovered completely or partially at 2.5 years after The PNI rate associated with total shoulder arthro- the procedure, and 71% experienced full recovery. Nota- plasty has been previously reported to be 4% under bly, there was no difference in overall recovery from generalAll anesthesia rights reserved. alone, and Reproduction represents the underlyingin whole or PNIin part between without patients permission who received is prohibited. ISB and those who independent surgical risk.10 Despite advances in surgi- received general anesthesia alone.11 cal techniques, this Copyrightnumber has © not 2015 changed McMahon apprecia- PublishingNot allGroup surgical unless procedures otherwise have the noted. same incidence bly over time. of PNI, and this variation may be due to procedure-spe- The most recent data from a clinical registry at Mayo cific risk for nerve injury, apart from the use of periph- Clinic, for 1993 to 2007, demonstrated a PNI rate of eral nerve blockade and regional anesthesia. Data from 3.7% during general anesthesia.11 This contrasts with a three clinical registries at a single institution demon- strated a PNI incidence of 2.2% after total shoulder arthroplasty, 0.79% after total knee arthroplasty and 11-13 Arthroscopic shoulder surgery ± 0.72% after total hip arthroplasty (Figure). regional block, 7 days postoperatively: The use of regional anesthesia was not an indepen- dent risk factor for PNI in any of these procedures; in fact, it reduced the risk for PNI in total shoulder 16%-30% arthroplasties. Total shoulder arthroplasty: Strategies To Reduce Medical-Legal Risk Before initiating a block, and particularly in a patient with previous injuries, I recommend that you take a 2.2% focused history for the presence of current or previ- ous paresthesias, dysesthesias, or pain in the limb that will receive the block. It would also be helpful to do Single-injection interscalene block: a quick, focused sensory and motor neurologic exam. Many of these patients have preexisting lesions; unfor- tunately, they are not noticed until the postoperative 1.7% period, when we become much more observant of abnormalities. Be careful with the administration of sedatives dur- Total knee arthroplasty: ing the block procedure in order to not obscure any symptoms of paresthesia, dysesthesia, or pain during 0.79% injection.14 Refer to the American Society of Regional Anesthesia and Pain Medicine (ASRA) Practice Advi- sory on Complications in Regional Anesthesia.15 Be advised that a favorite tactic of medical malpractice Total hip arthroplasty: attorneys is to argue that patients given any amount of sedation would be unlikely to be able to report pain or 0.72% paresthesia on injection. I would recommend that you document in the chart that meaningful verbal communication with the patient was maintained throughout the block procedure. Ultrasound-guided axillary blocks, Documentation of blocks is essential for clinical care, at discharge: regulatory, billing, and medical-legal reasons. ASRA has published a recommended PNB note template.16 My 0.0037% experience reviewing cases for potential medical-legal problems has shown me that many of the block notes are poorly documented. Figure. Rates of perioperative nerve This is an area that can be rectified with the introduc- injuries following each type of tion of an electronic anesthesia medical record, which procedure. can allow you to create custom templates for every type of block you perform, and document detailed 2 ANESTHESIOLOGYNEWS.COM information pertaining to the block. Table 1 shows an is challenging to keep the tip of the needle visualized in example of a block form. the plane of the ultrasound beam at all times, it is diffi- Patients discharged home after a PNB procedure cult to distinguish between a subfascial, subepineural, should receive written instructions with precautions or intrafascicular injection.28 about how to take care of an insensate extremity, and Even exceptionally well-trained experts in regional how to prevent injury. Patients with a single-injection anesthesia have subsequently realized that they may block should be called the next day and questioned have contributed to a PNI after reviewing video clips of about complete block resolution or persistent symp- an interscalene block demonstrating intraneural injec- toms, and this contact should be documented until the tion, despite an uneventful block procedure without symptoms resolve. Any patient with persistent motor pain or paresthesia.29 Allweakness rights beyondreserved. the Reproductionnormal expected in recovery whole timeor in partCurrent without thinking permission is geared is toprohibited. depositing local anes- should be seen in clinic immediately, for examination thesia farther away from the nerves, rather than around and potential Copyrightneurologic consultation. © 2015 McMahon Publishingthe Group nerves unless in the interscaleneotherwise brachialnoted. plexus region.30 You should be particularly vigilant when dealing with We should consider thinking about the maximum effec- a patient returning for a second surgical procedure and tive distance from the plexus that will still result in an block within an intervening short interval, for example, effective block,31 with a paraplexus approach rather 3 months or less. Nerve injury can exist with subclinical than an intraplexus approach. A conservative tech- symptoms, and a second insult, either distal or prox- nique would involve using a hydrodissection approach imal, without necessarily having anything to do with with needle advancement, along with a nerve stimula- your nerve block, can elicit clinical findings postopera- tor (no data support this) and a lower anesthetic mass tively. This phenomenon is known as the double-crush and volume.32 theory of nerve injury.17 Is There Anything We Can Do To Prevent Table 1. A Form Template for Nerve Injury? Describing a Block Ultrasound-guided techniques have been shown to have many advantages, including shorter procedure An example of a block form might include the time, faster block onset, lower drug volume, fewer vas- following items: cular punctures and, most recently, a reduction in the Focused neurologic exam prior to block incidence of local anesthetic systemic toxicity (rela- tive risk reduction, 65%).4,18-20 Although many benefits Time-out (patient and block site identified and are associated with ultrasound-guided blocks, there is marked, informed consent verified) insufficient evidence to demonstrate a lower neurologic Patient level of awareness during block complication rate with this technique.21,22 For that mat- ter, there is no evidence to show fewer neurologic com- Aseptic skin prep, drape plications associated with neurostimulation techniques versus paresthesia-seeking techniques.23 Type of needle used, depth to target prior to injection, and if catheter, depth at skin Many publications call into question the sensitivity and specificity of nerve stimulation techniques, and Ultrasound and/or nerve stimulator, with minimum studies demonstrate that intraneural injections (defined
Recommended publications
  • Nerve Blocks for Surgery on the Shoulder, Arm Or Hand
    Nerve blocks for surgery on the shoulder, arm or hand Information for patients and families First Edition 2015 www.rcoa.ac.uk/patientinfo Nerve blocks for surgery on the shoulder, arm or hand This leaflet is for anyone who is thinking about having a nerve block for an operation on the shoulder, arm or hand. It will be of particular interest to people who would prefer not to have a general anaesthetic. The leaflet has been written with the help of patients who have had a nerve block for their operation. Throughout this leaflet we have used the above symbol to highlight key facts. Brachial plexus block? The brachial plexus is the group of nerves that lies between your neck and your armpit. It contains all the nerves that supply movement and feeling to your arm – from your shoulder to your fingertips. A brachial plexus block is an injection of local anaesthetic around the brachial plexus. It ‘blocks’ information travelling along these nerves. It is a type of nerve block. Your arm becomes numb and immobile. You can then have your operation without feeling anything. The block can also provide excellent pain relief for between three and 24 hours, depending on what kind of local anaesthetic is used. A brachial plexus block rarely affects the rest of the body so it is particularly advantageous for patients who have medical conditions which put them at a higher risk for a general anaesthetic. A brachial plexus block may be combined with a general anaesthetic or with sedation. This means you have the advantage of the pain relief provided by a brachial plexus block, but you are also unconscious or sedated during the operation.
    [Show full text]
  • Wallerian Degeneration and Inflammation in Rat Peripheral Nerve Detected by in Vivo MR Imaging
    741 Wallerian Degeneration and Inflammation in Rat Peripheral Nerve Detected by in Vivo MR Imaging DavidS. Titelbaum 1 To investigate the role of MR imaging in wallerian degeneration, a series of animal Joel L. Frazier 2 models of increasingly complex peripheral nerve injury were studied by in vivo MR. Robert I. Grossman 1 Proximal tibial nerves in brown Norway rats were either crushed, transected (neurotomy), Peter M. Joseph 1 or transected and grafted with Lewis rat (allograft) or brown Norway (isograft) donor Leonard T. Yu 2 nerves. The nerves distal to the site of injury were imaged at intervals of 0-54 days after surgery. Subsequent histologic analysis was obtained and correlated with MR Eleanor A. Kassab 1 3 findings. Crush injury, neurotomy, and nerve grafting all resulted in high signal intensity William F. Hickey along the course of the nerve observed on long TR/TE sequences, corresponding to 2 Don LaRossa edema and myelin breakdown from wallerian degeneration. The abnormal signal inten­ 4 Mark J. Brown sity resolved by 30 days after crush injury and by 45-54 days after neurotomy, when the active changes of wallerian degeneration had subsided. These changes were not seen in sham-operated rats. Our findings suggest that MR is capable of identifying traumatic neuropathy in a peripheral nerve undergoing active wallerian degeneration. The severity of injury may be reflected by the corresponding duration of signal abnormality. With the present methods, MR did not distinguish inflammatory from simple posttraumatic neuropathy. Wallerian degeneration is the axonal degeneration and loss of myelin that occurs when an axon is separated from its cell body.
    [Show full text]
  • Nerve Blocks for Surgery on the Shoulder, Arm Or Hand
    The Association of Regional The Royal College of Anaesthetists of Great Anaesthesia – Anaesthetists Britain and Ireland United Kingdom Nerve blocks for surgery on the shoulder, arm or hand Information for patients and families www.rcoa.ac.uk/patientinfo First edition 2015 This leaflet is for anyone who is thinking about having a nerve block for an operation on the shoulder, arm or hand. It will be of particular interest to people who would prefer not to have a general anaesthetic. The leaflet has been written with the help of patients who have had a nerve block for their operation. You can find more information leaflets on the website www.rcoa.ac.uk/patientinfo. The leaflets may also be available from the anaesthetic department or pre-assessment clinic in your hospital. The website includes the following: ■ Anaesthesia explained (a more detailed booklet). ■ You and your anaesthetic (a shorter summary). ■ Your spinal anaesthetic. ■ Anaesthetic choices for hip or knee replacement. ■ Epidural pain relief after surgery. ■ Local anaesthesia for your eye operation. ■ Your child’s general anaesthetic. ■ Your anaesthetic for major surgery with planned high dependency care afterwards. ■ Your anaesthetic for a broken hip. Risks associated with your anaesthetic This is a collection of 14 articles about specific risks associated with having an anaesthetic or an anaesthetic procedure. It supplements the patient information leaflets listed above and is available on the website: www.rcoa.ac.uk/patients-and-relatives/risks. Throughout this leaflet and others in the series, we have used this symbol to highlight key facts. 2 NERVE BLOCKS FOR SURGERY ON THE SHOULDER, ARM OR HAND Brachial plexus block? The brachial plexus is the group of nerves that lies between your neck and your armpit.
    [Show full text]
  • OHSU Regional Anesthesia Peripheral Nerve Block Overview
    OHSU Regional Anesthesia Peripheral Nerve Block Overview Recommended information: To view 3 short informative videos about nerve blocks, how they are placed, and postoperative care, please search for OHSU Home Pump in your internet browser, or visit: http://www.ohsu.edu/xd/health/services/anesthesiology/for-patients/home-pump.cfm What does an anesthesiologist do? An anesthesiologist is a medical doctor who keeps you safe and comfortable during surgery. An anesthesiologist will meet with you prior to surgery to make sure you are prepared and medically fit to undergo surgery and anesthesia. Your anesthesiologist will discuss a plan for what kind of anesthesia you will receive. During the surgery, your anesthesiologist will monitor and regulate your critical life functions, such as your heart rate, blood pressure, and level of oxygen in the blood. And, they take care of you after surgery to make sure you’re as comfortable as possible as you recover. What are the types of anesthesia? 1. General anesthesia. This type of anesthesia is given as an anesthetic gas you breathe in, or as an intravenous medication given through an intravenous catheter (IV). It makes you lose consciousness. While the anesthesia is working, many of your body’s functions will slow down or need help to work effectively. A tube may be placed in your throat to help you breathe. Once your surgery is complete, your anesthesiologist will reverse the medication and be with you as you regain consciousness. It is used for major operations. 2. Monitored anesthesia care or IV sedation. IV sedation causes you to feel relaxed and can result in various levels of consciousness.
    [Show full text]
  • Universal Documentation Sheet for Peripheral Nerve Blocks
    THE JOURNAL OF NEW YORK SCHOOL May 2009 V o l u m e OF REGIONAL ANESTHESIA 12 UNIVERSAL DOCUMENTATION SHEET FOR PERIPHERAL NERVE BLOCKS BY KISHOR GANDHI MD MPH, VIJAY PATEL MD, THOMAS MALIAKAL MD, DAQUAN XU MD, KAMIL FLISINSKI BS Author Affiliation: Department of Anesthesiology, St. Luke’s and Roosevelt Hospitals, New York, NY Reimbursements for peripheral nerve blocks (PNB’s) can be complicated by charge bundles that utilize specific procedure codes (CPT) and unit values.1-2 Individual providers use specific information contained in the patient’s medical records for reimbursement. Careful documentation for PNB’s should include: Surgical diagnosis, name of surgeon requesting regional service, and details of procedure (specific nerve block, reason of nerve block, type of needle and catheter used, ultrasound guided versus neurostimulation technique, and the local anesthetic used). In addition, attaching a printed photograph of the nerve block procedure (containing patient identification and localization of the nerve) will also aid in reimbursements from insurance providers. We at NYSORA have found huge discrepancies in billed amount for PNB’s compared to what is reimbursed by different providers.3 We have developed a universal billing sheet for institution to aid in reimbursements. The Journal of NYSORA 2009; 12: 23-24 REFERENCES 1. Mariano, ER. Billing for Peripheral Nerve Blocks (United States). Available at: http://edmariano.com/billing-for- regional-anesthesia 2. Gerancher JC, Viscusi ER, Liguori Ga, McCartney CI, Williams BA, Ilfeld BM, Grant SA, Hebl JR, Hadzic A. Development of a standardized peripheral nerve block procedure note form. Regional Anesthesia and Pain Medicine.
    [Show full text]
  • Delayed Facial Palsy After Head Injury
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.4.342 on 1 April 1977. Downloaded from Journal ofNeurology, Neurosurgery, andPsychiatry, 1977, 40, 342-350 Delayed facial palsy after head injury K. PUVANENDRAN, M. VITHARANA, AND P. K. WONG From the University Department ofMedicine, and the Department ofOtorhinolaryngology, Singapore General Hospital, Singapore SUMMARY Where facial palsy follows head injury after many days, the mechanism is not clear, and there has been no detailed study on this condition. In this prospective study, an attempt is made to estimate this complication of head injury, and to study its pathogenesis, natural history, prognosis, and sequelae which differ markedly from Bell's palsy. It has a much worse prognosis and so surgical decompression should be considered early in this condition. The facial nerve is the motor cranial nerve which is studies, for prediction of prognosis at a time when most commonly affected in closed head injuries surgical intervention seems most advantageous. (Turner, 1943). In facial palsy which immediately follows a head injury, the mechanism is obvious, but Patients and methods Protected by copyright. it is not clear when the facial palsy follows the head injury after many days (Potter and Braakman, 1976). During the period May 1974-April 1975, there were Traumatic facial palsy has received much attention 6304 cases of head injury admitted to government but few authors distinguish between immediate and hospitals in Singapore. The chief criterion for delayed palsy. admission to hospital was the occurrence of traumatic Turner (1944) studied a selected group of war-time amnesia or unconsciousness, indicating concussion head injuries from a military hospital for head of the brain.
    [Show full text]
  • The Role of Vagal Nerve Root Injury on Respiration Disturbances In
    Original Investigation Original Received: 03.12.2013 / Accepted: 11.02.2014 DOI: 10.5137/1019-5149.JTN.9964-13.1 The Role of Vagal Nerve Root Injury on Respiration Disturbances in Subarachnoid Hemorrhage Subaraknoid Kanamada Solunum Bozuklukları Oluşmasında Vagal Sinir Kökü Hasarının Rolü Murteza CAKıR1, Canan AtALAY 2, Zeynep CAKıR3, Mucahit Emet3, Mehmet Dumlu AYDıN1, Nazan AYDıN4, Arif ONDER5, Muhammed CAlıK6 1Ataturk University, School of Medicine, Department of Neurosurgery, Erzurum, Turkey 2Ataturk University, School of Medicine, Department of Anesthesiology and Reanimation, Erzurum, Turkey 3Ataturk University, School of Medicine, Department of Emergency Medicine, Erzurum, Turkey 4Ataturk University, School of Medicine, Department of Psychiatry, Erzurum, Turkey 5Avrasya Hospital, Department of Neurosurgery, Istanbul, Turkey 6Ataturk University, School of Medicine, Department of Pathology, Erzurum, Turkey Corresponding Author: Murteza CAKır / E-mail: [email protected] ABSTRACT AIM: We examined whether there is a relationship between vagal nerve root injury and the severity of respiration disorders associated with subarachnoid hemorrhage (SAH). MaTERIAL and METHODS: This study was conducted on 20 rabbits. Experimental SAH was induced by injecting homologous blood into the cisterna magna. During the experiment, electrocardiography and respiratory rhythms were measured daily. After the experiment, any axonal injury or changes to the arterial nervorums of the vagal nerves were examined. All respiratory irregularities and vagal nerve degenerations were statistically analyzed. RESULTS: Normal respiration rate, as measured in the control group, was 30±6 bpm. In the SAH-induced group, respiration rates were initially 20±4 bpm, increasing to 40±9/min approximately ten hours later, with severe tachypneic and apneic variation. In histopathological examinations, axon density of vagal nerves was 28500±5500 in both control and sham animals, whereas axon density was 22250±3500 in survivors and 16450±2750 in dead SAH animals.
    [Show full text]
  • Fascia Iliaca Block in the Emergency Department
    The Royal College of Emergency Medicine Best Practice Guideline Fascia Iliaca Block in the Emergency Department 1 Revised: July 2020 Contents Summary of recommendations ...................................................................................................... 3 Scope ..................................................................................................................................................... 4 Reason for development ................................................................................................................. 4 Introduction .......................................................................................................................................... 4 Considerations ..................................................................................................................................... 4 Safety of FIB ...................................................................................................................................... 4 Improving safety of FIB .................................................................................................................. 5 Controversies regarding FIB ......................................................................................................... 5 Efficacy of FIB ................................................................................................................................... 6 Procedures within ED ....................................................................................................................
    [Show full text]
  • Repairing Spinal Cord Nerves
    Repairing spinal cord nerves Ronald Schnaar The Johns Hopkins School of Medicine Traumatic spinal cord injury Edwin Smith Papyrus, Egypt, circa 1500 BC Earliest medical text on battlefield trauma, in which spinal cord injury was deemed: “An ailment not to be treated” Axon transection in traumatic nerve injury Modified from Brittis and Flanagan, Neuron (2001) 30, 11 Even after a microcrush injury, nerve axons fail to regenerate after injury optic nerve microcrush: Axon retraction Regeneration failure 24 h post-injury 2 wks post-injury 100100 µm µm Selles-Navarro, et al. (2001) Exp. Neurol. 167, 282-289 • The peripheral nervous system (PNS) is more permissive for axon regeneration than the central nervous system (CNS). • When PNS nerve sheath is grafted into a CNS injury, some CNS axons regenerate through the graft Adult Rat CNS axon regeneration David & Aguayo (1981) Science 214, 931-933 In vitro, superior cervical ganglion neurites extend on a surface coated without myelin (P) or on PNS myelin (PR), but not on a surface coated with CNS myelin (CR) Caroni & Schwab (1988) J Cell Biol 106, 1281-1288 Axon transection in traumatic nerve injury Modified from Brittis and Flanagan, Neuron (2001) 30, 11 Multiple axon regeneration inhibitors (ARI’s) accumulate at the site of a CNS injury • Myelin-associated glycoprotein (MAG) – on residual myelin • Nogo – on residual myelin • OMgp – on residual myelin • Chondroitin sulfate proteoglycan (CSPG) – on residual myelin and the astroglial scar Blocking one or more ARI may enhance axon regeneration after
    [Show full text]
  • Chronic Traumatic Encephalopathy: the Dangers of Getting “Dinged” Shaheen E Lakhan1* and Annette Kirchgessner1,2
    Lakhan and Kirchgessner SpringerPlus 2012, 1:2 http://www.springerplus.com/content/1/1/2 a SpringerOpen Journal REVIEW Open Access Chronic traumatic encephalopathy: the dangers of getting “dinged” Shaheen E Lakhan1* and Annette Kirchgessner1,2 Abstract Chronic traumatic encephalopathy (CTE) is a form of neurodegeneration that results from repetitive brain trauma. Not surprisingly, CTE has been linked to participation in contact sports such as boxing, hockey and American football. In American football getting “dinged” equates to moments of dizziness, confusion, or grogginess that can follow a blow to the head. There are approximately 100,000 to 300,000 concussive episodes occurring in the game of American football alone each year. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, sets off a cascade of events that result in neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and neuronal TAR DNA-binding protein-43 (TDP-43). Symptoms of CTE may begin years or decades later and include a progressive decline of memory, as well as depression, poor impulse control, suicidal behavior, and, eventually, dementia similar to Alzheimer’s disease. In some individuals, CTE is also associated with motor neuron disease similar to amyotrophic lateral sclerosis. Given the millions of athletes participating in contact sports that involve repetitive brain trauma, CTE represents an important public health issue. In this review, we discuss recent advances in understanding the etiology of CTE. It is now known that those instances of mild concussion or “dings” that we may have previously not noticed could very well be causing progressive neurodegenerative damage to a player’s brain.
    [Show full text]
  • Chapter 18 CRANIAL NERVE INJURIES
    Cranial Nerve Injuries Chapter 18 CRANIAL NERVE INJURIES † ‡ SCOTT B. ROOFE, MD, FACS*; CAROLINE M. KOLB, MD ; AND JARED SEIBERT, MD INTRODUCTION CRANIAL NERVE V CRANIAL NERVE VII Evaluation Imaging Electrodiagnostic Testing Eye Care Nerve Exploration Nerve Repair Interposition Grafting Intratemporal Injuries Facial Nerve Decompression LOWER CRANIAL NERVES, IX THROUGH XII CRANIAL NERVE IX CRANIAL NERVE X CRANIAL NERVE XI CRANIAL NERVE XII SUMMARY CASE PRESENTATIONS Case Study 18-1 Case Study 18-2 *Colonel, Medical Corps, US Army; Program Director, Otolaryngology Residency, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, Hawaii 96859-5000; Assistant Professor of Surgery, Uniformed Services University of the Health Sciences †Major, Medical Corps, US Army; Staff Otolaryngologist, Fort Belvoir Community Hospital, 9300 Dewitt Loop, Fort Belvoir, Virginia 20112 ‡Captain, Medical Corps, US Army; Otolaryngology Resident, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, Hawaii 96859-5000 213 Otolaryngology/Head and Neck Combat Casualty Care INTRODUCTION Injuries to the head and neck rank as some of the cal to maximizing the outcomes for these patients. most common injuries suffered in the current combat The otolaryngologist clearly has a vital role in the environment. These injuries often lead to extensive management of nearly all cranial nerve injuries. bony and soft tissue disruption, which places the cra- However, in the combat environment, this specialty nial nerves at increased risk for damage. Functional generally focuses on deficits arising from cranial deficits of any of these nerves can be devastating to nerves VII and VIII as well as the lower cranial nerves, both appearance and function. Due to the complex IX through XII.
    [Show full text]
  • Peripheral Nerve Regeneration and Muscle Reinnervation
    International Journal of Molecular Sciences Review Peripheral Nerve Regeneration and Muscle Reinnervation Tessa Gordon Department of Surgery, University of Toronto, Division of Plastic Reconstructive Surgery, 06.9706 Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; [email protected]; Tel.: +1-(416)-813-7654 (ext. 328443) or +1-647-678-1314; Fax: +1-(416)-813-6637 Received: 19 October 2020; Accepted: 10 November 2020; Published: 17 November 2020 Abstract: Injured peripheral nerves but not central nerves have the capacity to regenerate and reinnervate their target organs. After the two most severe peripheral nerve injuries of six types, crush and transection injuries, nerve fibers distal to the injury site undergo Wallerian degeneration. The denervated Schwann cells (SCs) proliferate, elongate and line the endoneurial tubes to guide and support regenerating axons. The axons emerge from the stump of the viable nerve attached to the neuronal soma. The SCs downregulate myelin-associated genes and concurrently, upregulate growth-associated genes that include neurotrophic factors as do the injured neurons. However, the gene expression is transient and progressively fails to support axon regeneration within the SC-containing endoneurial tubes. Moreover, despite some preference of regenerating motor and sensory axons to “find” their appropriate pathways, the axons fail to enter their original endoneurial tubes and to reinnervate original target organs, obstacles to functional recovery that confront nerve surgeons. Several surgical manipulations in clinical use, including nerve and tendon transfers, the potential for brief low-frequency electrical stimulation proximal to nerve repair, and local FK506 application to accelerate axon outgrowth, are encouraging as is the continuing research to elucidate the molecular basis of nerve regeneration.
    [Show full text]