Chapter 18 CRANIAL NERVE INJURIES
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
6 Ways to Instantly Stimulate Your Vagus Nerve to Relieve Inflammation, Depression, Migraines and More
O 6 WAYS TO INSTANTLY STIMULATE YOUR VAGUS NERVE TO RELIEVE INFLAMMATION, DEPRESSION, MIGRAINES AND MORE I read an article yesterday that has me extremely excited about the implications. The article is called “Hacking the Nervous System” by Gaia Vince (http://mosaicscience.com/story/hacking-nervous-system). In the article, the author describes the experience of a woman who suffered from severe, debilitating rheumatoid arthritis and her eventual treatment with a device which minimized inflammation by simply stimulating the vagus nerve. What this means, is that by activating the vagus nerve which works through the parasympathetic nervous system, we can greatly influence inflammation and the immune system. The role of the brain on body inflammation can be profound. If you suffer from digestive complaints, high blood pressure, depression or any inflammatory condition, please read on. Let me explain the possible implications step by step. What is the vagus nerve? First of all, the vagus nerve is the longest nerve in the body which originates in the brain as cranial nerve ten, travels down the from go the neck and then passes around the digestive system, liver, spleen, pancreas, heart and lungs. This nerve is a major player in the parasympathetic nervous system, which is the ‘rest and digest’ part (opposite to the sympathetic nervous system which is ‘fight of flight’). Vagal tone The tone of the vagus nerve is key to activating the parasympathetic nervous system. Vagal tone is measured by tracking your heart-rate alongside your breathing rate. Your heart-rate speeds up a little when your breathe in, and slows down a little when you breathe out. -
Questions and Answers About Vagus Nerve Stimulation by Jerry Shih, M.D. 1. WHAT IS VAGUS NERVE STIMULATION? Therapeutic Vagus Ne
Questions and Answers About Vagus Nerve Stimulation By Jerry Shih, M.D. 1. WHAT IS VAGUS NERVE STIMULATION? Therapeutic vagus nerve stimulation (VNS) is chronic, intermittent electrical stimulation of the mid-cervical segment of the left vagus nerve. The stimulation occurs automatically at set intervals, during waking and sleep. The electrical pulses are generated by a pacemaker-like device that is implanted below the clavicle and are delivered by a lead wire that is coiled around the vagus nerve. 2. WHAT IS THE EVIDENCE THAT VAGUS NERVE STIMULATION IS EFFECTIVE IN EPILEPSY? The empirical evidence of antiepileptic efficacy arose sequentially from l) experiments in animal models of epilepsy; 2) anecdotal reports and small case series ofearly human trials, and 3) two prospec-tive, double-blind, controlled studies in large groups of patients with complex partial and secondarily generalized seizures. 3. HOW DOES VAGUS NERVE STIMULATION CONTROL SEIZURES? The mechanisms by which therapeutic VNS reduces seizure activity in humans and in experimental models of epilepsy are unknown. 4. WHEN SHOULD ONE CONSIDER VAGUS NERVE STIMULATION? Medically refractory complex partial and secondarily generalized seizures have been efficaciously treated with adjunctive VNS in the large, randomized studies. Children may benefit considerably from VNS, but large-scale, randomized, controlled studies have not been completed in young children. Thus, any adolescent or adult whose complex partial or secondarily generalized seizures have not been controlled with the appropriate first- and second -line antiepileptic drugs may be a good candidate for VNS. The FDA has specifically approved VNS with the Cyberonics device for adjunctive therapy of refractory partial-onset seizures in persons l2 years of age. -
Wallerian Degeneration and Inflammation in Rat Peripheral Nerve Detected by in Vivo MR Imaging
741 Wallerian Degeneration and Inflammation in Rat Peripheral Nerve Detected by in Vivo MR Imaging DavidS. Titelbaum 1 To investigate the role of MR imaging in wallerian degeneration, a series of animal Joel L. Frazier 2 models of increasingly complex peripheral nerve injury were studied by in vivo MR. Robert I. Grossman 1 Proximal tibial nerves in brown Norway rats were either crushed, transected (neurotomy), Peter M. Joseph 1 or transected and grafted with Lewis rat (allograft) or brown Norway (isograft) donor Leonard T. Yu 2 nerves. The nerves distal to the site of injury were imaged at intervals of 0-54 days after surgery. Subsequent histologic analysis was obtained and correlated with MR Eleanor A. Kassab 1 3 findings. Crush injury, neurotomy, and nerve grafting all resulted in high signal intensity William F. Hickey along the course of the nerve observed on long TR/TE sequences, corresponding to 2 Don LaRossa edema and myelin breakdown from wallerian degeneration. The abnormal signal inten 4 Mark J. Brown sity resolved by 30 days after crush injury and by 45-54 days after neurotomy, when the active changes of wallerian degeneration had subsided. These changes were not seen in sham-operated rats. Our findings suggest that MR is capable of identifying traumatic neuropathy in a peripheral nerve undergoing active wallerian degeneration. The severity of injury may be reflected by the corresponding duration of signal abnormality. With the present methods, MR did not distinguish inflammatory from simple posttraumatic neuropathy. Wallerian degeneration is the axonal degeneration and loss of myelin that occurs when an axon is separated from its cell body. -
Current Neurosurgical Management of Glossopharyngeal Neuralgia and Technical Nuances for Microvascular Decompression Surgery
Neurosurg Focus 34 (3):E8, 2013 ©AANS, 2013 Current neurosurgical management of glossopharyngeal neuralgia and technical nuances for microvascular decompression surgery ROBERTO REY-DIOS, M.D.,1 AND AARON A. COHEN-GADOL, M.D., M.SC.2 1Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi; 2Goodman Campbell Brain and Spine, Indiana University Department of Neurological Surgery, Indianapolis, Indiana Glossopharyngeal neuralgia (GPN) is an uncommon facial pain syndrome often misdiagnosed as trigeminal neuralgia. The rarity of this condition and its overlap with other cranial nerve hyperactivity syndromes often leads to a significant delay in diagnosis. The surgical procedures with the highest rates of pain relief for GPN are rhizotomy and microvascular decompression (MVD) of cranial nerves IX and X. Neurovascular conflict at the level of the root exit zone of these cranial nerves is believed to be the cause of this pain syndrome in most cases. Vagus nerve rhizotomy is usually reserved for cases in which vascular conflict is not evident. A review of the literature reveals that although the addition of cranial nerve X rhizotomy may improve the chances of long-term pain control, this maneuver also increases the risk of permanent dysphagia and vocal cord paralysis. The risks of this procedure have to be carefully weighed against its benefits. Based on the authors’ experience, careful patient selection with a thorough exploratory operation most often leads to identification of the site of vascular conflict, obviating the need for cranial nerve X rhizotomy. (http://thejns.org/doi/abs/10.3171/2012.12.FOCUS12391) KEY WORDS • glossopharyngeal neuralgia • microvascular decompression • vagus nerve • rhizotomy • cranial nerve LOSSOPHARYNGEAL neuralgia, or vagoglossopharyn impairment can be found in the distribution of the above geal neuralgia, is a cranial nerve hyperactivity nerves due to structural lesions.20 This classification does pain syndrome leading to severe, transient, sharp not take into consideration associated syncopal events. -
Nerve Injury After Peripheral Nerve Block: Allbest Rights Practices Reserved
PRINTER-FRIENDLY VERSION AVAILABLE AT ANESTHESIOLOGYNEWS.COM Nerve Injury After Peripheral Nerve Block: AllBest rights Practices reserved. Reproduction and Medical-Legal in whole or in part without Protection permission isStrategies prohibited. Copyright © 2015 McMahon Publishing Group unless otherwise noted. DAVID HARDMAN, MD, MBA Professor of Anesthesiology Vice Chair for Professional Affairs Department of Anesthesiology University of North Carolina at Chapel Hill Chapel Hill, North Carolina Dr. Hardman reports no relevant financial conflicts of interest. he risk for permanent or severe nerve injury after peripheral nerve blocks (PNBs) is Textremely low, irrespective of its etiology (ie, related to anesthesia, surgery or the patient). The risk inherent in a procedure should always be explicitly discussed with the patient (sidebar, page 4). In fact, it may be better to define this phenomenon ultrasound-guided axillary blocks were used, demon- as postoperative neurologic symptoms (PONS) or peri- strated a very low nerve injury rate of 0.0037% at hos- operative nerve injuries (PNI) in order to help stan- pital discharge.1-7 dardize terminology. Permanent injury rates, as defined A 2009 prospective case series involving more than by a neurologic abnormality present at or beyond 12 7,000 PNBs, conducted in Australia and New Zealand, months after the procedure, have consistently ranged demonstrated that when a postoperative neurologic from 0.029% to 0.2%, although the results of a recent symptom was diagnosed, it was 9 times more likely to multicenter Web-based survey in France, in which be due to a non–anesthesia-related cause than a nerve ANESTHESIOLOGY NEWS • JULY 2015 1 block–related cause.6 On the other hand, it is well doc- PNI rate of 1.7% in patients who received a single-injec- umented in the orthopedic and anesthesia literature tion interscalene block (ISB). -
Delayed Facial Palsy After Head Injury
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.4.342 on 1 April 1977. Downloaded from Journal ofNeurology, Neurosurgery, andPsychiatry, 1977, 40, 342-350 Delayed facial palsy after head injury K. PUVANENDRAN, M. VITHARANA, AND P. K. WONG From the University Department ofMedicine, and the Department ofOtorhinolaryngology, Singapore General Hospital, Singapore SUMMARY Where facial palsy follows head injury after many days, the mechanism is not clear, and there has been no detailed study on this condition. In this prospective study, an attempt is made to estimate this complication of head injury, and to study its pathogenesis, natural history, prognosis, and sequelae which differ markedly from Bell's palsy. It has a much worse prognosis and so surgical decompression should be considered early in this condition. The facial nerve is the motor cranial nerve which is studies, for prediction of prognosis at a time when most commonly affected in closed head injuries surgical intervention seems most advantageous. (Turner, 1943). In facial palsy which immediately follows a head injury, the mechanism is obvious, but Patients and methods Protected by copyright. it is not clear when the facial palsy follows the head injury after many days (Potter and Braakman, 1976). During the period May 1974-April 1975, there were Traumatic facial palsy has received much attention 6304 cases of head injury admitted to government but few authors distinguish between immediate and hospitals in Singapore. The chief criterion for delayed palsy. admission to hospital was the occurrence of traumatic Turner (1944) studied a selected group of war-time amnesia or unconsciousness, indicating concussion head injuries from a military hospital for head of the brain. -
The Role of Vagal Nerve Root Injury on Respiration Disturbances In
Original Investigation Original Received: 03.12.2013 / Accepted: 11.02.2014 DOI: 10.5137/1019-5149.JTN.9964-13.1 The Role of Vagal Nerve Root Injury on Respiration Disturbances in Subarachnoid Hemorrhage Subaraknoid Kanamada Solunum Bozuklukları Oluşmasında Vagal Sinir Kökü Hasarının Rolü Murteza CAKıR1, Canan AtALAY 2, Zeynep CAKıR3, Mucahit Emet3, Mehmet Dumlu AYDıN1, Nazan AYDıN4, Arif ONDER5, Muhammed CAlıK6 1Ataturk University, School of Medicine, Department of Neurosurgery, Erzurum, Turkey 2Ataturk University, School of Medicine, Department of Anesthesiology and Reanimation, Erzurum, Turkey 3Ataturk University, School of Medicine, Department of Emergency Medicine, Erzurum, Turkey 4Ataturk University, School of Medicine, Department of Psychiatry, Erzurum, Turkey 5Avrasya Hospital, Department of Neurosurgery, Istanbul, Turkey 6Ataturk University, School of Medicine, Department of Pathology, Erzurum, Turkey Corresponding Author: Murteza CAKır / E-mail: [email protected] ABSTRACT AIM: We examined whether there is a relationship between vagal nerve root injury and the severity of respiration disorders associated with subarachnoid hemorrhage (SAH). MaTERIAL and METHODS: This study was conducted on 20 rabbits. Experimental SAH was induced by injecting homologous blood into the cisterna magna. During the experiment, electrocardiography and respiratory rhythms were measured daily. After the experiment, any axonal injury or changes to the arterial nervorums of the vagal nerves were examined. All respiratory irregularities and vagal nerve degenerations were statistically analyzed. RESULTS: Normal respiration rate, as measured in the control group, was 30±6 bpm. In the SAH-induced group, respiration rates were initially 20±4 bpm, increasing to 40±9/min approximately ten hours later, with severe tachypneic and apneic variation. In histopathological examinations, axon density of vagal nerves was 28500±5500 in both control and sham animals, whereas axon density was 22250±3500 in survivors and 16450±2750 in dead SAH animals. -
Repairing Spinal Cord Nerves
Repairing spinal cord nerves Ronald Schnaar The Johns Hopkins School of Medicine Traumatic spinal cord injury Edwin Smith Papyrus, Egypt, circa 1500 BC Earliest medical text on battlefield trauma, in which spinal cord injury was deemed: “An ailment not to be treated” Axon transection in traumatic nerve injury Modified from Brittis and Flanagan, Neuron (2001) 30, 11 Even after a microcrush injury, nerve axons fail to regenerate after injury optic nerve microcrush: Axon retraction Regeneration failure 24 h post-injury 2 wks post-injury 100100 µm µm Selles-Navarro, et al. (2001) Exp. Neurol. 167, 282-289 • The peripheral nervous system (PNS) is more permissive for axon regeneration than the central nervous system (CNS). • When PNS nerve sheath is grafted into a CNS injury, some CNS axons regenerate through the graft Adult Rat CNS axon regeneration David & Aguayo (1981) Science 214, 931-933 In vitro, superior cervical ganglion neurites extend on a surface coated without myelin (P) or on PNS myelin (PR), but not on a surface coated with CNS myelin (CR) Caroni & Schwab (1988) J Cell Biol 106, 1281-1288 Axon transection in traumatic nerve injury Modified from Brittis and Flanagan, Neuron (2001) 30, 11 Multiple axon regeneration inhibitors (ARI’s) accumulate at the site of a CNS injury • Myelin-associated glycoprotein (MAG) – on residual myelin • Nogo – on residual myelin • OMgp – on residual myelin • Chondroitin sulfate proteoglycan (CSPG) – on residual myelin and the astroglial scar Blocking one or more ARI may enhance axon regeneration after -
Glossopharyngeal and Vagal Neuralgia
BRITISH 26 August 1967 MEDICAL JOURNAL 529 Br Med J: first published as 10.1136/bmj.3.5564.529 on 26 August 1967. Downloaded from Glossopharyngeal and Vagal Neuralgia JAGDISH C. CHAWLA,* F.R.C.S.; MURRAY A. FALCONERt M.CH. F.R.C.S. Brit. med. J., 1967, 3, 529-531 Tic douloureux involving the glossopharyngeal nerve is rare (1945) did record two cases in which, after intracranial section and when it does occur probably often involves the vagus nerve of the glossopharyngeal nerve alone, pain persisted, but it as well. Many cases are undoubtedly not recognized, and yet disappeared after a second operation in which the upper vagal the condition responds favourably and permanently to intra- rootlets were cut, an experience which Bohm and Strang (1962) cranial section of the glossopharyngeal nerve and upper fila- also shared. Wilson and McAlpine (1946) reported a single ments of the vagus nerve. We therefore propose to review the case in which the glossopharyngeal nerve had been dissected in literature, discuss our own experiences, and try to clarify the its tonsillar bed and avulsed with relief. Our experience, how- clinical syndromes that this condition presents and the surgical ever, suggests that recurrence can arise after this procedure, approach that is required. and has led us to recommend intracranial section of the glosso- pharyngeal nerve plus section of the upper two vagal rootlets. Review of the Literature Present Series The condition of glossopharyngeal neuralgia was first described by Weisenburg (1910), who recognized it in a patient This study is based on a review of 10 patients admitted to with a tumour of the cerebellopontine angle. -
Practical Approaches to Dysphagia Caused by Esophageal Motor Disorders Amindra S
Practical Approaches to Dysphagia Caused by Esophageal Motor Disorders Amindra S. Arora, MB BChir and Jeffrey L. Conklin, MD Address nonspecific esophageal motor disorders (NSMD), diffuse Division of Gastroenterology and Hepatology, Mayo Clinic, esophageal spasm (DES), nutcracker esophagus (NE), 200 First Street SW, Rochester, MN 55905, USA. hypertensive lower esophageal sphincter (hypertensive E-mail: [email protected] LES), and achalasia [1••,3,4••,5•,6]. Out of all of these Current Gastroenterology Reports 2001, 3:191–199 conditions, only achalasia can be recognized by endoscopy Current Science Inc. ISSN 1522-8037 Copyright © 2001 by Current Science Inc. or radiology. In addition, only achalasia has been shown to have an underlying distinct pathologic basis. Recent data suggest that disorders of esophageal motor Dysphagia is a common symptom with which patients function (including LES incompetence) affect nearly present. This review focuses primarily on the esophageal 20% of people aged 60 years or over [7••]. However, the motor disorders that result in dysphagia. Following a brief most clearly defined motility disorder to date is achalasia. description of the normal swallowing mechanisms and the Several studies reinforce the fact that achalasia is a rare messengers involved, more specific motor abnormalities condition [8•,9]. However, no population-based studies are discussed. The importance of achalasia, as the only exist concerning the prevalence of most esophageal motor pathophysiologically defined esophageal motor disorder, disorders, and most estimates are derived from people with is discussed in some detail, including recent developments symptoms of chest pain and dysphagia. A recent review of in pathogenesis and treatment options. Other esophageal the epidemiologic studies of achalasia suggests that the spastic disorders are described, with relevant manometric worldwide incidence of this condition is between 0.03 and tracings included. -
Chronic Traumatic Encephalopathy: the Dangers of Getting “Dinged” Shaheen E Lakhan1* and Annette Kirchgessner1,2
Lakhan and Kirchgessner SpringerPlus 2012, 1:2 http://www.springerplus.com/content/1/1/2 a SpringerOpen Journal REVIEW Open Access Chronic traumatic encephalopathy: the dangers of getting “dinged” Shaheen E Lakhan1* and Annette Kirchgessner1,2 Abstract Chronic traumatic encephalopathy (CTE) is a form of neurodegeneration that results from repetitive brain trauma. Not surprisingly, CTE has been linked to participation in contact sports such as boxing, hockey and American football. In American football getting “dinged” equates to moments of dizziness, confusion, or grogginess that can follow a blow to the head. There are approximately 100,000 to 300,000 concussive episodes occurring in the game of American football alone each year. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, sets off a cascade of events that result in neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and neuronal TAR DNA-binding protein-43 (TDP-43). Symptoms of CTE may begin years or decades later and include a progressive decline of memory, as well as depression, poor impulse control, suicidal behavior, and, eventually, dementia similar to Alzheimer’s disease. In some individuals, CTE is also associated with motor neuron disease similar to amyotrophic lateral sclerosis. Given the millions of athletes participating in contact sports that involve repetitive brain trauma, CTE represents an important public health issue. In this review, we discuss recent advances in understanding the etiology of CTE. It is now known that those instances of mild concussion or “dings” that we may have previously not noticed could very well be causing progressive neurodegenerative damage to a player’s brain. -
Peripheral Nerve Regeneration and Muscle Reinnervation
International Journal of Molecular Sciences Review Peripheral Nerve Regeneration and Muscle Reinnervation Tessa Gordon Department of Surgery, University of Toronto, Division of Plastic Reconstructive Surgery, 06.9706 Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; [email protected]; Tel.: +1-(416)-813-7654 (ext. 328443) or +1-647-678-1314; Fax: +1-(416)-813-6637 Received: 19 October 2020; Accepted: 10 November 2020; Published: 17 November 2020 Abstract: Injured peripheral nerves but not central nerves have the capacity to regenerate and reinnervate their target organs. After the two most severe peripheral nerve injuries of six types, crush and transection injuries, nerve fibers distal to the injury site undergo Wallerian degeneration. The denervated Schwann cells (SCs) proliferate, elongate and line the endoneurial tubes to guide and support regenerating axons. The axons emerge from the stump of the viable nerve attached to the neuronal soma. The SCs downregulate myelin-associated genes and concurrently, upregulate growth-associated genes that include neurotrophic factors as do the injured neurons. However, the gene expression is transient and progressively fails to support axon regeneration within the SC-containing endoneurial tubes. Moreover, despite some preference of regenerating motor and sensory axons to “find” their appropriate pathways, the axons fail to enter their original endoneurial tubes and to reinnervate original target organs, obstacles to functional recovery that confront nerve surgeons. Several surgical manipulations in clinical use, including nerve and tendon transfers, the potential for brief low-frequency electrical stimulation proximal to nerve repair, and local FK506 application to accelerate axon outgrowth, are encouraging as is the continuing research to elucidate the molecular basis of nerve regeneration.